
Handling Implication and Universal

Quantification Constraints in FLUX

Michael Thielscher

Dresden University of Technology, 01062 Dresden, Germany,
mit@inf.tu-dresden.de

Abstract. FLUX is a CLP-approach for programming agents that rea-
son about actions under incomplete state knowledge. FLUX is based on
the solution to the fundamental frame problem in the fluent calculus. The
core is a set of Constraint Handling Rules for the constraints that are
used to encode state knowledge. In order to allow for efficient constraint
solving, the original expressiveness of state representations in FLUX has
been carefully restricted. In this paper, we enhance the expressiveness by
adding both implication and universal quantification constraints. We do
so without losing the computational merits of FLUX. We present a set
of Constraint Handling Rules for these new constraints and prove their
correctness against the fluent calculus.

1 Introduction

Reasoning about actions is one of the central issues in Artificial Intelligence [1].
The classical formalism for representing knowledge of actions and their effects
is the situation calculus [2]. A fundamental challenge in this context is raised
by the classical frame problem, which means to find an efficient way of inferring
what changes and what does not change as a result of an action [3]. Simple
solutions to this problem, such as STRIPS [4], apply only to the special case
of complete knowledge. Solutions to the frame problem for the general case of
incomplete states have recently evolved into logic programming approaches, e.g.,
[5, 6] based on the situation calculus and the event calculus, respectively. These
allow to program agents who use an internal world model for decision making
and who reason about their actions in order to keep this model up to date
as they move along. However, both of the aforementioned approaches lack an
explicit notion of states. Knowledge of the current state is represented indirectly
via the initial conditions and the actions which the agent has performed up to
now. As a consequence, the entire history of actions is needed when evaluating
a condition in an agent program [7]. This problem has been overcome in the
language FLUX [8], where an incomplete state is explicitly represented by a
list (of atomic state components) along with constraints. Actions are specified
in terms of how they affect a state, which allows agents to progress the state
whenever they execute an action and, hence, to directly evaluate conditions in
agent programs against the current world model. This is necessary if we aim at

2

programs that scale up to non-trivial domains in which agents need to perform
long sequences of actions [8].

The core of FLUX is a set of Constraint Handling Rules [9] for the constraints
that are used to describe (incomplete) states. The semantics of FLUX, and in
particular of the constraint solver, is given by the fluent calculus—an action for-
malism which can be viewed as an extension of the classical situation calculus by
the basic notion of a state [10]. In order to obtain an efficient constraint solver,
the expressiveness of FLUX as presented in [11] has been carefully restricted:
States are composed of finitely many atomic state components, so-called fluents,
accompanied by constraints for (possibly universally quantified) negated single
fluents and for disjunctions of fluents. These restrictions allow for efficient con-
straint solving based on unit resolution, so that evaluating a new constraint is
linear in the size of the constraint store. This is necessary if we aim at a system
which scales up gracefully to domains with a large state space [8].

However, the restrictions imposed on the state representation in FLUX are
too weak to cover two important phenomena: Firstly, if an action has conditional
effects and the condition is unknown at the time when the action is performed,
then a complete encoding of what is known after the action requires implica-
tion constraints . Secondly, a state in which infinitely many instances of a fluent
hold cannot be expressed in a finite list. In this paper, we will overcome these
restrictions by extending FLUX to both implication constraints and constraints
for universal quantification. We will develop a set of Constraint Handling Rules
which again is carefully designed so as to retain the linear complexity of con-
straint solving in FLUX. Correctness of these rules is formally proved against
the semantics of the fluent calculus.

2 Reasoning About Actions with FLUX

2.1 The Fluent Calculus

The fluent calculus [10] is a predicate logic language which extends the classical
situation calculus [2]. The latter builds on the basic notions of actions (i.e., prim-
itive behaviors of an agent), situations (i.e., sequences of actions), and fluents
(i.e., atomic state components). To this, the fluent calculus adds the notion of
states (i.e., collections of fluents).

Definition 1. A fluent calculus signature consists of a finite set A of func-
tions into sort action and a finite set F of functions into sort fluent. Sort
fluent is a sub-sort of state. Furthermore,

S0 : sit ∅ : state

Do : action× sit 7→ sit ◦ : state × state 7→ state

State : sit 7→ state

Inherited from the situation calculus, constant S0 denotes the initial situation
and Do(a, s) denotes the situation after performing action a in situation s.

3

The term State(s) denotes the state in situation s. Constant ∅ denotes the
empty state. Finally, every fluent is a (singleton) state, and if z1 and z2 are
states then so is z1 ◦ z2 .

1 A fluent f is defined to hold in a state z just in
case z can be decomposed into two states one of which is the singleton f . For
notational convenience, the following macro is used as an abbreviation for the
corresponding equational formula:

Holds(f, z)
def

= (∃z′) z = f ◦ z′ (1)

The foundational axioms of the fluent calculus stipulate that function “◦” shares
essential properties with the union operation for sets:

Definition 2. The foundational axioms Fstate of the fluent calculus include:

1. Associativity and commutativity,

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) z1 ◦ z2 = z2 ◦ z1 (2)

2. Empty state axiom,
¬Holds(f, ∅) (3)

3. Irreducibility and decomposition,

Holds(f1, f) ⊃ f1 = f (4)

Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨ Holds(f, z2) (5)

Associativity allows us to omit parentheses in nested applications of “◦”.2

Based on the notion of a state, the frame problem is solved in the fluent
calculus by axioms which define the effects of an action A(x) in situation s in
terms of how State(s) is updated to the successor State(Do(A(x), s)) . To this
end, two functions “− ” and “ + ” are used which denote, respectively, removal
and addition of fluents to states. They have a purely axiomatic characterization:
Let ϑ−, ϑ+ be finitely many fluent terms connected by “◦”, then

z1 − ∅ = z2

def

= z2 = z1

z1 − (f ◦ ϑ−) = z2

def

= (∃z) ((z = z1 ∨ z ◦ f = z1) ∧ ¬Holds(f, z)

∧ z − ϑ− = z2)

z2 = (z1 − ϑ−) + ϑ+ def

= (∃z) (z1 − ϑ− = z ∧ z2 = z ◦ ϑ+)

The crucial item is the second one, which inductively defines removal of fluents
f using a case distinction: Either z1 − f equals z1 (which applies in case
¬Holds(f, z1)), or (z1 − f) ◦ f equals z1 (which applies in case Holds(f, z1)).

1 Throughout the paper, free variables in formulas are assumed to be universally
quantified. Variables of sorts fluent, state, action, and situation shall be denoted
by the letters f , z , a, and s, respectively. The function “◦” is written in infix
notation. A (possibly empty) sequence of variables is denoted by x. We use the
standard logical connectives ¬, ∧, ∨, ⊃ (implication), and ≡ (equivalence).

2 The full axiomatic foundation of the fluent calculus contains two further axioms [8],
which, however, are not needed in the present paper. By the foundational axioms,
states are essentially flat sets (of fluents), i.e., which do not contain sets as elements.

4

2.2 FLUX

The basic data structure in FLUX is that of an incomplete state, which represents
what an agent knows of the state of its environment in a specific situation. An
incomplete state is encoded as a fluent list which carries a tail variable; e.g.,

Z0 = [solution(a),solution(b),litmus(p1) | Z]

shall encode the knowledge that there are at least the two (chemical) solutions
a,b and the litmus paper p1. In addition to knowledge of fluents that hold in
a state, FLUX—as presented in [11]—allows to encode negative and disjunctive
state information as constraints on the tail variable. For example,

not_holds(red(p1),Z), or_holds([acidic(a),acidic(b)],Z),

not_holds_all(solution(_),Z)

encodes the knowledge that the litmus paper is not red, that one of the two
solutions is acidic, and that there are no other solutions available. The semantics
of a FLUX state specification is given by an equational fluent calculus formula,
here (∃Z) (Z0 = solution(a)◦solution(b)◦litmus(p1)◦Z), along with formulas
corresponding to the semantics of the constraints:

constraint semantics
not_holds(F,Z) ¬Holds(F, Z)
not_holds_all(F,Z) (∀x)¬Holds(F, Z) , x variables in F

or_holds([F1,...,Fk],Z)
∨k

i=1
Holds(Fi, Z)

(6)

In [11], a set of Constraint Handling Rules (CHRs) [9] has been developed
for the FLUX constraints. CHRs are of the form

H1,...,Hm <=> G1,...,Gk | B1,...,Bn.

where the head H1, . . . , Hm are constraints (m ≥ 1); the guard G1, . . . , Gk are
Prolog literals (k ≥ 0); and the body B1, . . . , Bn are constraints (n ≥ 0). An
empty guard is omitted; the empty body is denoted by true. The declarative
interpretation of a CHR is given by the formula

(∀x) (G1 ∧ . . . ∧ Gk ⊃ [H1 ∧ . . . ∧ Hm ≡ (∃y) (B1 ∧ . . . ∧ Bn)]) (7)

where x are the variables in both guard and head and y are the variables which
additionally occur in the body. The procedural interpretation of a CHR is given
by a transition in a constraint store: If the head can be matched against elements
of the constraint store and the guard can be derived, then the constraints of the
head are replaced by the constraints of the body.

The two main computation mechanisms for constraint solving in FLUX are
propagation and unit resolution. Figure 1 depicts two out of the total of 18 rules,
each of which has been verified against the foundational axioms of the fluent cal-
culus. The first example CHR propagates a negation constraint through a list

5

not_holds(F,[F1|Z]) <=> neq(F,F1), not_holds(F,Z).

not_holds(F,Z) \ or_holds(V,Z) <=> member(G,V,W), F==G | or_holds(W,Z).

Fig. 1. Two example CHRs for the FLUX constraints. The auxiliary predicate
neq(F, G) defines the inequality of F and G by a finite domain constraint [12] among
the arguments of the two fluents. Predicate member(X, Y, Z) is true if X occurs in list Y

and if Z is Y without X. Notation H1 \ H2 <=> G | B abbreviates H1,H2 <=> G | H1,B.

of fluents. Suppose, say, that tail variable Z of our example state were substi-
tuted by [red(X)|Z1], then not_holds(red(p1),[red(X)|Z1]) reduces to fi-
nite domain constraint p1 6= X along with not_holds(red(p1),Z1). The second
CHR resolves a disjunction in the presence of a negation constraint. Suppose,
for instance, we add the constraint not_holds(acidic(b),Z) to our exam-
ple state, then or_holds([acidic(a),acidic(b)],Z) reduces to the singleton
or_holds([acidic(a)],Z).3

Actions are specified in FLUX by state update axioms . Two examples are,

state_update(Z1,get_litmus_paper(P),Z2,[]) :-

update(Z1,[litmus(P)],[],Z2).

state_update(Z1,sense_paper(P),Z2,[Red]) :-

(Red=true, holds(red(P),Z1) ;

Red=false, not_holds(red(P),Z1)), Z2 = Z1.

The semantics of the auxiliary predicate update(Z1,P,N,Z2) is given by the
fluent calculus update equation Z2 = (Z1 − N) + P. The last argument of
state update being empty indicates that action get litmus paper does not
involve sensing. The action of sensing the status of a litmus paper, on the other
hand, does not cause any physical effect, hence the state equality Z2=Z1. Recall,
for instance, the initial state from above, then

?- state_update(Z0,get_litmus_paper(p2),Z1,[]),

state_update(Z1,sense_paper(p2),Z2,[true]).

Z2 = [litmus(p2),solution(a),solution(b),litmus(p1),red(p2)|Z]

Constraints:

not_holds(red(p1),Z)

or_holds([acidic(a),acidic(b)],Z)

not_holds_all(solution(_),Z)

...

3 It is worth mentioning that the guard in the second CHR of Figure 1 cannot be
simplified to member(F, V, W) because constraints may contain variables. For example,
(∃X)¬Holds(acidic(X), Z) and Holds(acidic(a), Z)∨Holds(red(p), Z) do not imply
Holds(red(p), Z).

6

The constraint solver and the definition of state update provide the basis for
agent programs in which an internal model of the environment is used for decision
making and where this model is updated through the execution of actions.

3 Handling Implication Constraints

3.1 Why Implication Constraints?

The constraints and CHRs for FLUX presented in [11] have been carefully de-
signed to allow for efficient constraint solving. This has been achieved by restrict-
ing disjunctions to positive atoms only, which allows to apply unit resolution.
As a consequence, the computational effort of evaluating a new constraint is
linear in the size of the constraint store. A disadvantage, however, is that the
restricted expressiveness is too weak for solving problems which involve actions
with conditional effects and where the condition is unknown at execution time.
As an example, consider the action dip(P,X) of dipping litmus paper P into
solution X, of which it is not known whether it is acidic or not. With the given
restricted expressiveness, FLUX requires to specify this action by the following
state update axiom:

state_update(Z1,dip(P,X),Z2,[]) :-

\+ not_holds(acidic(X),Z1) -> update(Z1,[red(P)],[],Z2) ;

\+ holds(acidic(X),Z1) -> update(Z1,[],[red(P)],Z2) ;

cancel(red(P),Z1,Z2).

That is, if state Z1 contains sufficient information to conclude that acidic(X)

cannot be false, then the agent can update its state knowledge by +red(P).
Conversely, if the agent knows that acidic(X) cannot hold, then it updates its
state by −red(P). If, however, the status of acidic(X) is not known in Z1,
then cancel(F,Z1,Z2) means that state Z2 is as state Z1 except that any
constraint on fluent F is cancelled. With this, the essence of the Litmus Test
cannot be expressed, because testing a solution and afterwards checking the color
of the paper does not enable the agent to infer the status of the solution. Recall,
for example, the initial state Z0 in Section 2, then

?- state_update(Z0,dip(p1,a),Z1,[]),

state_update(Z1,sense_paper(p1),Z2,[true]).

Z2 = [solution(a),solution(b),litmus(p1),red(p1) | _]

Although fluent red(p1) is known to be true now, it does not follow that
solution a is acidic. The reason is that initially the status of the solution is
unknown, and hence the only inferred effect of applying the state update axiom
for dip(p1,a) is that paper p1 is no longer known not to be red. The restricted
expressiveness of FLUX does not allow to encode the effect of this action in such
a way that the logical dependency between redness of the paper and acidity of
the solution is captured in the successor state. This is a general limitation of the
existing FLUX when it comes to actions with conditional effects.

7

if_then_holds(F,G1,Z) <=> if_then_or_holds(F,[G1],Z). %1

if_then_or_holds(F,[],Z) <=> not_holds(F,Z). %2

if_then_or_holds(_,_,[]) <=> true. %3

if_then_or_holds(_,V,Z) <=> member(eq(X,Y),V), %4

or_neq(exists,X,Y,D), \+ call(D) | true.

if_then_or_holds(F,V,Z) <=> member(eq(X,Y),V,W), %5

\+ (and_eq(X,Y,D), call(D))

| if_then_or_holds(F,W,Z).

Fig. 2. Simplification CHRs for implication constraints. The auxiliary predicates
or neq(exists, X, Y, D) and and eq(X, Y, D) define D to be a finite domain constraint
that encodes, respectively, inequality X 6= Y and equality X = Y (see [11] for details).

3.2 Handling Implication Constraints

In this section, we will extend FLUX by a constraint for disjunctions contain-
ing a negative literal. A special case of this will be an auxiliary constraint for
implicational dependencies between two fluents:

constraint semantics

if_then_or_holds(F,[G1,...,Gk],Z) Holds(F, Z) ⊃
∨k

i=1
Holds(Gi, Z)

if_then_holds(F,G,Z) Holds(F, Z) ⊃ Holds(G, Z)

(8)

We incorporate the new constraint into FLUX by adding a set of Constraint
Handling Rules. Each of the new CHRs, too, constitutes either a simplification,
propagation, or unit resolution step, so that evaluating a new constraint is still
linear in the size of the constraint store. The first part of the new set of CHRs is
depicted in Figure 2. The solver employs an extended notion of an implication
constraint where the disjunctive part may include atoms of the form eq(X,Y)

and neq(X,Y) with X and Y being lists of equal length. The meaning of this
general constraint if_then_or_holds(F,[G1,...,Gk],Z) is

Holds(F, Z) ⊃

k
∨

i=1







Holds(Gi, Z) if Gi is a fluent
X = Y if Gi is eq(X,Y)

X 6= Y if Gi is neq(X,Y)

(9)

This generalization is needed for propagating an implication constraint contain-
ing fluents with variable arguments, as will be shown below.

To begin with, CHR 1 defines if_then_holds in terms of the general im-
plication constraint. CHRs 2–5 are simplification rules. Consider, say, the impli-
cation constraint if_then_or_holds(acidic(a),[eq([p1],[p2])],Z), which
has a singleton, equational disjunction. To this, CHR 5 applies since p1 = p2

fails. The application of the rule yields if_then_or_holds(acidic(a),[],Z),
which by CHR 2 gets reduced to not_holds(acidic(a),Z).

The four CHRs in Figure 3 encode unit resolution steps. Specifically, CHRs 6
and 7 solve an implication whose antecedent is implied by a negation constraint.

8

not_holds(F,Z) \ if_then_or_holds(G,_,Z) <=> F==G | true. %6

not_holds_all(F,Z) \ if_then_or_holds(G,_,Z) <=> inst(G,F) | true. %7

not_holds(F,Z) \ if_then_or_holds(C,V,Z) <=> %8

member(G,V,W), F==G | if_then_or_holds(C,W,Z).

not_holds_all(F,Z) \ if_then_or_holds(C,V,Z) <=> %9

member(G,V,W), inst(G,F) | if_then_or_holds(C,W,Z).

Fig. 3. Unit resolution CHRs for implication constraints. Predicate inst(G, F) means
that fluent term G is an instance of F.

CHRs 8 and 9 resolve an implication containing a disjunct that unifies with a
negation constraint. For example, in the presence of not_holds(red(p1),Z),
implication if_then_or_holds(acidic(a),[red(p1)],Z) reduces, by CHR 8,
to if_then_or_holds(acidic(a),[],Z).

Crucial for constraint solving in FLUX is the propagation through a list
of fluents. It is needed whenever the variable state argument is substituted by
an (incomplete) list. This happens when an agent performs actions or acquires
new information about the world. In general, propagating a constraint through
a list of fluents requires us to evaluate these fluents against those that occur
in the constraint. CHRs 10–12 in Figure 4 model the propagation of our new
implication constraint. Specifically, the first case in CHR 10 applies if the an-
tecedent of the implication is true in the given state. The other two cases employ
the 4-ary constraint if_then_or_holds(C,[G1,...,Gk],[H1,...,Hl],[F|Z]),
whose intended semantics is

Holds(C, Z) ⊃
∨k

i=1







Holds(Gi, F ◦ Z) if Gi is a fluent
X = Y if Gi is eq(X,Y)

X 6= Y if Gi is neq(X,Y)

∨
∨l

j=1







Holds(Hj , Z) if Hj is a fluent
X = Y if Hj is eq(X,Y)

X 6= Y if Hj is neq(X,Y)

(10)

Hence, the Gi ’s are the fluents that have not yet been evaluated against the
head F of the state list, while the Hj ’s are those fluents that have been evaluated.
For example, Holds(G, F (x)◦ z) ⊃ Holds(F (a), F (x)◦ z)∨Holds(F (b), F (x)◦ z)
is equivalent to Holds(G, z) ⊃ x = a ∨ x = b ∨ Holds(F (a), z) ∨ Holds(F (b), z)
according to the foundational axioms of decomposition and irreducibility and
given the unique-name axiom F (x) = F (y) ⊃ x = y. Correspondingly,

if(g,[f(a),f(b)],[f(X)|Z])

<=> if(g,[f(a),f(b)],[],[f(X)|Z])

<=> if(g,[f(b)],[eq([a],[X]),f(a)],[f(X)|Z])

<=> if(g,[],[eq([b],[X]),f(b),eq([a],[X]),f(a)],[f(X)|Z])

<=> if(g,[eq([b],[X]),f(b),eq([a],[X]),f(a)],Z)

(where if abbreviates if_then_or_holds). The third case in CHR 10 applies
when the antecedent of an implication constraint unifies with the head of a state.

9

if_then_or_holds(C,V,[F|Z]) <=> %10

C==F -> or_holds(V,[F|Z]) ;

C\=F -> if_then_or_holds(C,V,[],[F|Z]) ;

C=..[_|ArgX], F=..[_|ArgY], or_holds([neq(ArgX,ArgY)|V],[F|Z]),

if_then_or_holds(C,V,[],[F|Z]).

if_then_or_holds(C,[G|V],W,[F|Z]) <=> %11

G==F -> true ;

G\=F -> if_then_or_holds(C,V,[G|W],[F|Z]) ;

G=..[_|ArgX], F=..[_|ArgY],

if_then_or_holds(C,V,[eq(ArgX,ArgY),G|W],[F|Z]).

if_then_or_holds(C,[],W,[_|Z]) <=> if_then_or_holds(C,W,Z). %12

Fig. 4. Propagation CHRs for implication constraints.

For example, Holds(F (a), F (x) ◦ z) ⊃ Holds(G, F (x) ◦ z) is equivalent to

[a 6= x ∨ Holds(G, z)] ∧ [Holds(F (a), z) ⊃ Holds(G, z)]

Correspondingly, if_then_or_holds(f(a),[g],[f(X)|Z]) is reduced to

or_holds([neq([a],[X]),g],Z)

if_then_or_holds(f(a),[g],Z)

3.3 Correctness

In the following we prove the formal correctness of the new Constraint Handling
Rules against the underlying theory of the fluent calculus. The proof is based
on the declarative interpretation of CHRs (see (7)) and the semantics of the
constraints in terms of the fluent calculus, given by (6) and (8)–(10).

Theorem 1. CHRs 1–12 are correct under the foundational axioms Fstate and
the assumption of uniqueness-of-names (UNA) for all fluents.

Proof. The logical reading of the rules are given by these formulas:

1. [Holds(f, z) ⊃ G1] ≡ [Holds(f, z) ⊃
∨1

i=1
Gi];

2. [Holds(f, z) ⊃
∨0

i=1
Gi] ≡ ¬Holds(f, z);

3. [Holds(f, ∅) ⊃
∨k

i=1
Gi] ≡ >;

4. If ¬x 6= y then [Holds(f, z) ⊃ x = y ∨
∨k

i=1
Gi] ≡ >;

5. If ¬x = y then [Holds(f, z) ⊃ x = y ∨
∨k

i=1
Gi] ≡ [Holds(f, z) ⊃

∨k

i=1
Gi];

6. If ¬Holds(f, z) then [(Holds(f, z) ⊃
∨k

i=1
Gi] ≡ >;

7. If (∀x)¬Holds(f, z) and g is an instance of f then

[(Holds(g, z) ⊃
∨k

i=1
Gi] ≡ >;

10

8. If ¬Holds(f1, z) then

[Holds(f, z) ⊃ Holds(f1, z) ∨
∨k

i=1
Gi] ≡ [Holds(f, z) ⊃

∨k

i=1
Gi];

9. If (∀x)¬Holds(f1, z) and g is an instance of f1 then

[Holds(f, z) ⊃ Holds(g, z) ∨
∨k

i=1
Gi] ≡ [Holds(f, z) ⊃

∨k

i=1
Gi];

10. The following corresponds to the three cases in CHR 10:
(a) [Holds(f, f ◦ z) ⊃

∨k

i=1
Gi] ≡

∨k

i=1
Gi ;

(b) If f 6= f1 then [Holds(f, f1 ◦ z) ⊃
∨k

i=1
Gi] ≡ [Holds(f, z) ⊃

∨k

i=1
Gi];

(c) [Holds(F (x), F (y) ◦ z) ⊃
∨k

i=1
Gi] ≡

[(x 6= y ∨
∨k

i=1
Gi) ∧ (Holds(F (x), z) ⊃

∨k

i=1
Gi)];

11. The following corresponds to the three cases in CHR 11:
(a) [Holds(f, z) ⊃ Holds(f1, f1 ◦ z) ∨

∨k

i=1
Gi ∨

∨l

j=1
Hj] ≡ >;

(b) If g 6= f1 then [Holds(f, z) ⊃ (Holds(g, f1 ◦ z)∨
∨k

i=1
Gi)∨

∨l

j=1
Hj] ≡

[Holds(f, z) ⊃
∨k

i=1
Gi ∨ (Holds(g, z) ∨

∨l

j=1
Hj)];

(c) [Holds(f, z) ⊃ (Holds(F (x), F (y) ◦ z) ∨
∨k

i=1
Gi) ∨

∨l

j=1
Hj] ≡

[Holds(f, z) ⊃
∨k

i=1
Gi ∨ (x = y ∨ Holds(F (x), z) ∨

∨l

j=1
Hj)];

12. [Holds(c, z) ⊃
∨0

i=1
Gi ∨

∨l

j=1
Hj] ≡ [Holds(c, z) ⊃

∨l

j=1
Hj].

Let F be the underlying fluent functions, then Fstate ∪ UNA[F] 4 entails each
of the formulas above: Claims 1, 2, 4–9, and 12 are tautologies. Claim 3 fol-
lows by the foundational axiom on the empty state, (3). Claims 10(a) and 11(a)
follow by the definition of Holds , (1). Claim 10(b) follows by the foundational
axioms of decomposition, (5), and irreducibility, (4). Regarding 10(c), by de-

composition and irreducibility Holds(F (x), F (y) ◦ z) ⊃
∨k

i=1
Gi is equivalent to

[x 6= y ∧ ¬Holds(F (x), z)] ∨
∨k

i=1
Gi . This, in turn, is equivalent to the conjunc-

tion [x 6= y∨
∨k

i=1
Gi]∧ [¬Holds(F (x), z)∨

∨k

i=1
Gi], which implies the claim. Re-

garding 11(b), if g 6= f1 then by decomposition and irreducibility Holds(g, f1◦z)
is equivalent to Holds(g, z), which implies the claim. Regarding 11(c), finally, by
decomposition, UNA[F], and irreducibility Holds(F (x), F (y) ◦ z) is equivalent
to x = y ∨ Holds(F (x), z), which implies the claim.

While the extended set of CHRs is provably correct, a limitation is inherited
from the original solver: Agents are not able to draw all conclusions that follow
logically from a state specification if the underlying arithmetic solver trades full
inference capabilities for efficiency; we refer to [11] for details.

3.4 Using the Implication Constraint

The new constraint allows to encode the logical dependencies that result from
applying an action with conditional effects in situations where it is unknown
whether the condition holds. The crucial action in the Litmus Test example can
thus be encoded in such a way as to retain the dependency of cause and effect in
case the status of the chemical solution in question is unknown. By the following

4 UNA[f1, . . . , fn]
def

=
∧

i<j
fi(x) 6= fj(y) ∧

∧

i
[fi(x) = fi(y) ⊃ x = y]

11

update specification for action dip(P,X), first any knowledge of fluent red(P)

is cancelled in state Z1, since this fluent may be affected by the action, and then
the effect of the action is that red(P) is true in case acidic(X) holds and false
in case acidic(X) does not hold:

state_update(Z1,dip(P,X),Z2,[]) :-

cancel(red(P),Z1,Z2),

if_then_holds(acidic(X),red(P),Z2),

if_then_holds(red(P),acidic(X),Z2).

Recall, e.g., the scenario discussed in Section 3.1, where it is given that either of
two solutions is acidic and where the litmus paper is dipped into one of them:5

init(Z0) :- Z0 = [solution(a),solution(b),litmus(p1) | Z],

not_holds(red(p1),Z),

or_holds([acidic(a),acidic(b)],Z),

not_holds_all(solution(_),Z),

duplicate_free(Z0).

?- init(Z0), state_update(Z0,dip(p1,a),Z1,[]).

Z1 = [solution(a),solution(b),litmus(p1) | Z]

Constraints:

or_holds([acidic(a),acidic(b)],Z),

if_then_or_holds(acidic(a),[red(p1)],Z)

if_then_or_holds(red(p1),[acidic(a)],Z)

...

Suppose, now, that the subsequent test of the litmus paper reveals that it turned
red. The update axiom for action sense_paper (cf. Section 2) effects a substitu-
tion of state variable Z by [red(p1)|_]. The extended FLUX constraint solver
is then able to reduce the two implication constraints from above:

?- init(Z0),

state_update(Z0,dip(p1,a),Z1,[]),

state_update(Z1,sense_paper(p1),Z2,[true]).

Z2 = [solution(a),solution(b),litmus(p1),red(p1),acidic(a) | _]

Thus it follows that solution a must be acidic. Conversely, suppose that the
test of the litmus paper reveals that it did not turn red. In this case the update
axiom for action sense_paper adds the constraint not_holds(red(p1),Z).
Again the extended FLUX constraint solver is able to reduce the two implication
constraints from above. Furthermore, the disjunction is solved:

?- init(Z0),

state_update(Z0,dip(p1,a),Z1,[]),

5 Auxiliary constraint duplicate free(Z) ensures that no fluent occurs twice in Z.

12

state_update(Z1,sense_paper(p1),Z2,[true]).

Z2 = [solution(a),solution(b),litmus(p1),acidic(b) | _]

Thus it follows that solution b must be acidic.

3.5 Why not General Disjunctions?

Read as disjunction, the new implication constraint allows to encode disjunctive
clauses which include one negative literal (namely, the antecedent). This imme-
diately raises the question of introducing general disjunctions with two or more
negative literals. This, however, can only be done either by defining a highly
incomplete constraint solver, or by worsening the complexity to exponential. To
see why, consider a disjunctive statement with two negations, like

¬Holds(F (a), F (x1) ◦ . . . ◦ F (xn) ◦ z) ∨ ¬Holds(F (b), F (x1) ◦ . . . ◦ F (xn) ◦ z)

Using propagation through the first element of the state, F (x1), this formula is
equivalent to the conjunction of these four constraints:

a 6= x1 ∨ b 6= x1

a 6= x1 ∨ ¬Holds(F (b), F (x2) ◦ . . . ◦ F (xn) ◦ z)
b 6= x1 ∨ ¬Holds(F (a), F (x2) ◦ . . . ◦ F (xn) ◦ z)
¬Holds(F (a), F (x2) ◦ . . . ◦ F (xn) ◦ z) ∨ ¬Holds(F (b), F (x2) ◦ . . . ◦ F (xn) ◦ z)

Assuming uniqueness-of-names, the first disjunction is trivially true, but the
other three constraints need to be propagated further. Propagation through the
remaining n − 1 fluents will result in 2n − 1 constraints. Hence, either con-
straint solving becomes exponential, or the solver avoids propagating a general
disjunction. The latter, however, would render the solver powerless.

4 Handling Universal Quantification Constraints

A second limitation of the constraint solver presented in [11] is that it lacks
universally quantified positive information. In this section, we will extend FLUX
further by a constraint all_holds(F,C,Z) with the intended semantics

(∀x) (C[x] ⊃ Holds(F, Z)) (11)

where x are the variables occurring in fluent F and where C[x] is a finite domain
constraint over x. The special case of unconstrained universal quantification
shall be encoded by all_holds(F,Z), meaning (∀x)Holds(F, Z). In a similar
way, we generalize universally quantified negation to all_not_holds(F,C,Z)

with the intended semantics

(∀x) (C[x] ⊃ ¬Holds(F, Z)) (12)

where x are the variables occurring in fluent F and where C[x] is a finite
domain constraint over x. In the following, we present a set of CHRs for the
new universal quantification constraints. Lack of space, however, will prevent us
from discussing this extension as thoroughly as in the preceding section.

13

all_holds(F,Z) <=> all_holds(F,(0#=0),Z).

all_holds(F,C,Z), not_holds(G,Z) ==> %1

copy_fluent(F,C,F1,C1) | F1=G, call(#\+C1).

all_holds(F,C,Z), all_not_holds(G,D,Z) <=> %2

copy_fluent(F,C,F1,C1), copy_fluent(G,D,G1,D1),

F1=G1, call(C1#/\D1) | false.

all_holds(F,C,Z) \ or_holds(V,Z) <=> %3

member(G,V), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_holds(F,C,Z) \ if_then_or_holds(G,V,Z) <=> %4

copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | or_holds(V,Z).

all_holds(F,C,Z) \ if_then_or_holds(_,V,Z) <=> %5

member(G,V), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_holds(F,C,[G|Z]) <=> %6

\+ (F=G, call(C)) -> all_holds(F,C,Z) ;

F=..[_|ArgX], G=..[_|ArgY],

or_neq(exists,ArgX,ArgY,C1), all_holds(F,(C#/\C1),Z).

Fig. 5. The CHRs for universal quantification constraints. Following the syntax of
Eclipse Prolog, the symbol # is used to identify the operators for composing finite
domain constraints. The auxiliary predicate copy fluent(F, C, F1, C1) defines F1 and
C1 to be variable-disjoint variants of, respectively, fluent F and constraint C. CHR 1
is a so-called propagation rule, where the constraints in the head are not removed from
the constraint store.

4.1 Handling the Universal Constraint

Figure 5 depicts unit resolution and propagation rules for constraint all_holds.
Specifically, CHRs 1 and 2 model unit resolution wrt. negation constraints. For
example, the constraints all_holds(f(X),X#>5,Z) and not_holds(f(8),Z)

together imply, by CHR 1, the finite domain constraint #\+8#>5, which fails
(since 8 > 5). CHR 3 models the subsumption of a disjunctive constraint by
a universal one. For example, given all_holds(f(X),X#>5,Z) the disjunctive
constraint or_holds([f(3),f(7)],Z) is true (since 7 > 5). CHR 4 models
unit resolution wrt. an implication constraint whose antecedent is implied by
a universal constraint, whereas CHR 5 solves an implication constraint whose
succedent is subsumed by a universal constraint. Finally, CHR 6 defines the
propagation of a universal constraint through a state list: In case the head flu-
ent g of the state is within the range of the universal constraint, this range
is restricted so as to be unequal to g. For example, propagation applied to
all_holds(f(X),X#>5,[f(6)|Z]) yields all_holds(f(X),X#>6,Z).

A similar set of CHRs for negated universal quantification is given in Figure 6.
Altogether the rules can be shown to be correct wrt. the foundational axioms of
the fluent calculus.

Theorem 2. CHRs 1–11 in Figures 5 and 6 are correct under the foundational
axioms Fstate and the assumption of uniqueness-of-names for all fluents.

14

not_holds_all(F,Z) <=> all_not_holds(F,(0#=0),Z).

all_not_holds(F,C,Z) \ not_holds(G,Z) <=> %7

copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_not_holds(F,C,Z) \ or_holds(V,Z) <=> %8

member(G,V,W), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1)

| or_holds(W,Z).

all_not_holds(F,C,Z) \ if_then_or_holds(G,_,Z) <=> %9

copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_not_holds(F,C,Z) \ if_then_or_holds(F2,V,Z) <=> %10

member(G,V,W), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1)

| if_then_or_holds(F2,W,Z).

all_not_holds(F,C,[G|Z]) <=> %11

(\+ (F=G, call(C)) -> true ;

copy_fluent(F,C,F1,C1), F1=G, call(#\+C1)), all_not_holds(F,C,Z).

Fig. 6. CHRs for universally quantified negation.

4.2 Using the Universal Constraints

The new universal constraints can be used for domains with states in which
infinitely many instances of a fluent are true and, at the same time, infinitely
many of its instances are false. We conclude this section with a small example
of a fluent F which, initially, is known to be true for all integers greater than 2
and false for all negative integers. The agent then performs several actions which
affect specific instances of the fluent:

init(Z0) :- all_holds(f(X),X#>2,Z0),

all_not_holds(f(X),X#<0,Z0), duplicate_free(Z0).

state_update(Z1,set(X), Z2,[]) :- update(Z1,[f(X)],[],Z2).

state_update(Z1,reset(X),Z2,[]) :- update(Z1,[],[f(X)],Z2).

?- init(Z0),

state_update(Z0,set(-2), Z1,[]),

state_update(Z1,reset(5),Z2,[]),

state_update(Z2,set(0), Z3,[]).

Z3 = [f(0),f(-2) | Z]

Constraints:

all_holds(f(X),X#>2 #/\ X#\=5,Z)

all_not_holds(f(X),X#<0,Z)

not_holds(f(5),Z)

not_holds(f(0),Z)

duplicate_free(Z)

15

5 Summary

We have enriched significantly the expressiveness of state representations in
FLUX by introducing both implication and universal quantification constraints.
We have presented a set of Constraint Handling Rules based solely on simpli-
fication, propagation, and unit resolution, so that the efficiency of constraint
solving in FLUX is retained. The rules have been formally verified against the
fluent calculus.

The closest work is the logic program presented in [5] for GOLOG with in-
complete states. The main difference is that states are only indirectly represented
in GOLOG and that regression through the history of actions is used to evaluate
conditions in agent programs. In contrast, FLUX uses explicit representations of
incomplete states along with the computation mechanism of progression, which
allows to evaluate conditions directly against the updated state. A further dif-
ference is that the GOLOG variant of [5] employs a general theorem prover for
evaluating a regressed condition (against the initial state knowledge). In con-
trast, the motivation for FLUX is to retain a restricted expressiveness in order
to be able to employ efficient inference techniques. Benchmark problems have
shown that FLUX scales much better to domains with large state space and in
which agents perform long sequences of actions [8, 7].

References

1. McCarthy, J.: Programs with common sense. In: Proc. of the Symposium on the
Mechanization of Thought Processes. Volume 1, London (1958) 77–84.

2. McCarthy, J.: Situations and Actions and Causal Laws. Stanford Artif. Intell.
Project, Memo 2, Stanford University, CA (1963)

3. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intell. 4 (1969) 463–502

4. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell. 2 (1971) 189–208

5. Reiter, R.: On knowledge-based programming with sensing in the situation calcu-
lus. ACM Transactions on Computational Logic 2 (2001) 433–457

6. Shanahan, M., Witkowski, M.: High-level robot control through logic. In Castel-
franchi, C., Lespérance, Y., eds.: Proc. of the Internat. Workshop on Agent Theories
Architectures and Languages. Vol. 1986 of LNCS, Springer (2000) 104–121

7. Thielscher, M.: Pushing the envelope: programming reasoning agents. In Baral,
C., ed.: AAAI Workshop on Cognitive Robotics. AAAI Press (2002) 110–117

8. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming (2005). Available at: www.fluxagent.org

9. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37 (1998) 95–138

10. Thielscher, M.: From situation calculus to fluent calculus: State update axioms as
a solution to the inferential frame problem. Artif. Intell. 111 (1999) 277–299

11. Thielscher, M.: Reasoning about actions with CHRs and finite domain constraints.
In Stuckey, P., ed.: Proc. of ICLP. Vol. 2401 of LNCS, Springer (2002) 70–84

12. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press
(1989)

