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Abstract. FLUX is a declarative, CLP-based programming method for
the design of agents that reason logically about their actions and sensor
information in the presence of incomplete knowledge. The mathematical
foundations of FLUX are given by the fluent calculus, which provides a
solution to the fundamental frame problem in classical logic. We show
how FLUX can be readily used as a platform for specifying and run-
ning a system of cooperating FLUX agents for solving the Gold Mining
Problem.

1 Introduction

Research in Cognitive Robotics [1] addresses the problem of how to endow agents
with the high-level cognitive capability of reasoning. Intelligent agents rely on
this ability when they draw inferences from sensor data acquired over time, when
they act under incomplete information, and when they exhibit plan-oriented be-
havior. For this purpose, a mental model of the environment is formed, which
an agent constantly updates to reflect the changes it has effected and the sensor
information it has acquired. The fluent calculus [2] is a knowledge representa-
tion language for actions that extends the classical situation calculus [3, 4] by
the concept of a state, which provides an effective solution to the fundamen-
tal frame problem [5]. FLUX [6, 7] has recently been developed as a high-level
programming method for the design of intelligent agents that reason about their
actions on the basis of the fluent calculus. In this paper, we show how FLUX can
be readily used as a platform for specifying and running a system of cooperating
agents for solving the Gold Mining Problem.

Based on constraint logic programmin, FLUX comprises a method for encod-
ing incomplete states along with a technique of updating these states according
to a declarative specification of the elementary actions and sensing capabilities of
an agent. Incomplete states are represented by lists (of fluents) with variable tail,
and negative and disjunctive state knowledge is encoded by constraints. FLUX
programs consist of three parts: a kernel , which provides the general reasoning
facilities by means of an encoding of the foundational axioms in the fluent calcu-
lus; a domain-specific background theory, which contains the formal specification
of the environment, including effect axioms for the actions of the agent; and a



Name Type Meaning

At N× N 7→ fluent position of the agent
Depot N× N 7→ fluent location of the depot
Obstacle N× N 7→ fluent cells containing a static obstacle
CarriesGold fluent agent carries gold

Fig. 1. The fluents for the Gold Mining domain.

strategy, which specifies the intended behavior of an agent. We present the spec-
ification of a system of multiple FLUX agents which use identical background
knowledge but act autonomously using individual strategies.

2 A Fluent Calculus Specification of the Gold Mining
Domain

The fluent calculus is a method for representing knowledge of actions and change
in classical logic. The calculus provides the formal foundation for agents to main-
tain an internal, symbolic model of their environment and to reason about the
effects of their actions.

2.1 Fluents and states

In the fluent calculus, the various states of the environment of an agent are ax-
iomatized on the basis of atomic components, called fluents . These are formally
defined as functions into the pre-defined sort fluent. The table in Figure 1 lists
the fluents used by each individual agent in the Gold Mining domain. We assume
uniqueness-of-names for all fluents F = {At ,Depot ,Obstacle,CarriesGold},
that is, ∧

F, G ∈ F
F 6= G

F (x) 6= G(y) ∧
∧

F∈F

F (x) = F (y) ⊃ x = y

A distinctive feature of the fluent calculus is that it provides an explicit
representation of states . Informally speaking, a state is a complete collection of
fluents that are true. Formally, every term of sort fluent is also of the special
sort state, representing a singleton state in which just this fluent holds. The
special function ◦ : state × state 7→ state is used to compose sub-states
into a state in which each fluent from either of the sub-states holds. The special
constant ∅ : state denotes the empty state.

A fluent is then defined to hold in a state just in case the latter contains it:1

Holds(f : fluent, z : state)
def

= (∃z′) z = f ◦ z′ (1)

1 Throughout the paper, variables of sort fluent and state will be denoted by the
letters f and z , respectively, possibly with sub- or superscript.



This definition is accompanied by the foundational axioms of the fluent calculus,
by which, essentially, states are characterized as non-nested sets of fluents. In
the following, free variables are assumed to be universally quantified.

1. Associativity and commutativity,

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) z1 ◦ z2 = z2 ◦ z1

2. Empty state axiom,
¬Holds(f, ∅)

3. Irreducibility and decomposition,

Holds(f1, f) ⊃ f1 = f

Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨ Holds(f, z2)

4. State existence,
(∀P )(∃z)(∀f) (Holds(f, z) ≡ P (f))

where P is a second-order predicate variable of sort fluent.

This very last axiom guarantees the existence of a state term for all combinations
of fluents. Note, however, that this does not imply that any combinations of
fluents may correspond to a physically possible state. For example, in the Gold
Mining domain a state containing At(1, 1)◦At(1, 2) as sub-state will be defined
as impossible; see Section 2.2.

Semantically, a state always describes a complete state of affairs, since fluents
not contained in a state are false by the definition of Holds (cf. (1)). On the
other hand, the rigorous axiomatic definition allows for specifying incomplete
state knowledge. As an example, let Z0 denote the initial state, then the agent
may know the following:

(∃ax, ay) (Holds(At(ax, ay), Z0) ∧ ¬Holds(Obstacle(ax, ay), Z0))
(∃dx, dy) (Holds(Depot(dx, dy), Z0) ∧ ¬Holds(Obstacle(dx, dy), Z0))
¬Holds(CarriesGold , Z0)

With the help of the foundation axioms, along with uniqueness-of-names, this
specification can be rewritten to

(∃z)(∃ax, ay, dx, dy) (Z0 = At(ax, ay) ◦ Depot(dx, dy) ◦ z ∧
¬Holds(Obstacle(ax, ay), z) ∧
¬Holds(Obstacle(dx, dy), z) ∧
¬Holds(CarriesGold , z) )

(2)

2.2 Actions and situations

Adopted from the situation calculus [3, 4], actions are modeled in the fluent
calculus by functions into the pre-defined sort action. The actions of each
individual agent in the Gold Mining domain are defined in Figure 2. Action



Name Type Meaning

Skip action do nothing
Move {East , . . . ,South} 7→ action move to the neighboring cell
Pick action pick up gold
Drop action drop gold
Mark marking 7→ action mark a cell
Unmark marking 7→ action unmark a cell

Fig. 2. The actions for the Gold Mining domain.

Mark allows to place a marker at the current location. Markers provide a simple
form of communication because they can be read by other agents upon entering
the cell. Our agents, however, do not use this functionality because markers can
also be set, read, and erased (via action Unmark ) by the opponents.

Sequences of actions are represented by so-called situations , which are axiom-
atized as terms of the special sort sit. The constant S0 : sit denotes the initial
situation, and the function Do : action × sit 7→ sit denotes the successor
situation reached by performing an action in a situation.

Situations and states are related by the pre-defined function State : sit 7→
state. This allows to extend the Holds -expression to situation arguments:2

Holds(f : fluent, s : sit)
def

= Holds(f,State(s))

This allows to define so-called domain constraints , which restrict the set of all
states to those that can actually occur. The Gold Mining domain is characterized
by the following domain constraints:

(∀s) (∃ax, ay) (Holds(At(ax, ay), s) ∧ ¬Holds(Obstacle(ax, ay), s))
(∀s) (∀ax, ay, a

′
x, a′

y) (Holds(At(ax, ay), s) ∧ Holds(At(a′
x, a′

y), s) ⊃
ax = a′

x ∧ ay = a′
y)

(∀s) (∃dx, dy) (Holds(Depot(dx, dy), s) ∧ ¬Holds(Obstacle(dx, dy), s))
(∀s) (∀dx, dy, d′x, d′y) (Holds(Depot(dx, dy), s) ∧ Holds(Depot(d′x, d′y), s) ⊃

dx = d′x ∧ dy = d′y)

(3)

Put in words, the agent is always at a unique location, which cannot contain a
static obstacle; and there is a unique location for the team’s depot, which too is
free of an obstacle.

2.3 Preconditions and state update axioms

Similar to the classical situation calculus, the executabilty of actions is axioma-
tized with the help of the predicate Poss : action× state. In the Gold Mining

2 Throughout the paper, variables of sort action and sit will be denoted by the
letters a and s, respectively, possibly with sub- or superscript.



domain, we have the following precondition axioms, where the auxiliary predi-
cate Adjacent(ax, ay, d, a′

x, a′
y) defines (a′

x, a′
y) to be adjacent to cell (ax, ay)

in direction d.

Poss(Skip, z) ≡ ⊤
Poss(Move(d), z) ≡ (∃ax, ay, a

′
x, a′

y) (Holds(At(ax, ay), z)∧
Adjacent(ax, ay, d, a′

x, a′
y)∧

¬Holds(Obstacle(a′
x, a′

y), z) )
Poss(Pick , z) ≡ ⊤
Poss(Drop, z) ≡ Holds(CarriesGold , z)
Poss(Mark , z) ≡ ⊤

Poss(Unmark , z) ≡ ⊤

(4)

Note that picking up gold is always possible by definition; if the respective cell
does not contain gold, the action will have no effect (see below).

Effects of actions are specified in the fluent calculus on the basis of two
macros defining the removal and addition of fluents:

z1 − f = z2

def

= (z2 = z1 ∨ z2 ◦ f = z1) ∧ ¬Holds(f, z2)

z1 + f = z2

def

= z2 = z1 ◦ f

These macros generalize to removal and addition of finitely many fluents in a
straightforward way. The hauptsatz of the fluent calculus says that these two
functions provide an effective solution to the frame problem (see, e.g., [7]):

Theorem 1. The foundational axioms of the fluent calculus entail

z2 = z1 − f1 − . . . − fm + g1 + . . . + gn ⊃
[Holds(f, z2) ≡

∨
i(f = gi) ∨ [Holds(f, z1) ∧

∧
j(f 6= fj)] ]

On this basis, so-called state update axioms define the effects of an action a in
a situation s as the difference between the current State(s) and its successor
State(Do(a, s)). The state update axioms in the Gold Mining domain are as
follows:

Poss(Skip, s) ⊃ State(Do(Skip, s)) = State(s)

Poss(Move(d), s) ⊃
(∃ax, ay, a

′
x, a′

y) (Holds(At(ax, ay), s) ∧ Adjacent(ax, ay, d, a′
x, a′

y)∧
State(Do(Move(d), s)) = State(s) − At(ax, ay) + At(a′

x, a′
y) )

Poss(Pick , s) ⊃ State(Do(Pick , s)) = State(s) + CarriesGold

∨State(Do(Pick , s)) = State(s)

Poss(Drop, s) ⊃ State(Do(Drop, s)) = State(s) − CarriesGold

Poss(Mark , s) ⊃ State(Do(Mark , s)) = State(s)

Poss(Unmark , s) ⊃ State(Do(Unmark , s)) = State(s)

(5)



Note that the state update axioms for action Pick is nondeterministic, that
is, it does not entail whether the agent will actually be successful in trying to
pick up gold. By its control strategy, however, an agent will only attempt this
action in a situation where it has sensed the presence of gold in its current cell.
Furthermore, the sensor information received immediately after such an action
will inform the agent about its success. Since our agents do not make use of
markers, these are not represented in their world model and, hence, the two
actions Mark and Unmark do not change the state.

Sensor information provides additional knowledge of the environment. We
represent the result of sensing in the Gold Mining domain with the help of
situation-dependent predicates like ObstacleSensed : N × sit such that an in-
stance ObstacleSensed(d, s) is true if an obstacle has been sensed in direction d

(where d encodes the eight directions north, north-east, . . .). For the sake of
simplicity, and in accordance with the specification of the Gold Mining chal-
lenge, we assume that knowledge of the sensing predicates is given to the agent
after any of its actions.3 Thus, if the agent is informed about an obstacle in
its vicinity, then this provides additional knowledge of the state at the current
situation:

ObstacleSensed(s) ≡ (∃x, y, x′, y′, d) (Holds(At(x, y), s)∧
Adjacent(x, y, d, x′, y′)∧
Holds(Obstacle(x′, y′), s) )

3 A Multi-Agent FLUX System

FLUX [6, 7] is a high-level programming method for the design of intelligent
agents that reason about their actions on the basis of the fluent calculus. Using
the paradigm of constraint logic programming, FLUX comprises a method for
encoding incomplete states along with a technique of updating these states via
a declarative specification of the elementary actions and sensing capabilities of
an agent.

Figure 3 depicts the general architecture of a FLUX control program. The
kernel Pkernel , which endows agents with general reasoning facilities, is the same
for all programs. It has been formally verified against the foundational axioms
of the fluent calculus. The second part, Pdomain , of a FLUX agent program
contains encodings of the axiomatization of a particular application domain.
In our system of agents for the Gold Mining domain, all agents use the same
background theory. On top of this, the intended behavior of an individual agent
is defined via a control program Pstrategy .

3 This is conceptually simpler than the use of an extension of the fluent calculus
which is based on an explicit model of the knowledge of an agent and which allows
to explicitly reason about the effects of sensing actions [8].



Pstrategy

←→ domain axiomsPdomain

Pkernel ←→ foundational axioms

Fig. 3. The three components of a FLUX program.

3.1 State encoding

Incomplete states are represented by lists of (possibly non-ground) fluents and a
variable tail, that is, Z = [F1,...,Fk | _ ]. It is assumed that the arguments
of fluents are encoded by integers or symbolic constants, which enables the use
of a standard arithmetic solver for constraints on partially known arguments.
Further state knowledge is expressed by the following state constraints [6, 9]:

constraint semantics
not_holds(F,Z) ¬Holds(f, z)
not_holds_all(F,Z) (∀x)¬Holds(f, z) , x variables in f

or_holds([F1,...,Fn],Z)
∨n

i=1
Holds(fi, z)

if_then_holds(F,G,Z) Holds(f, z) ⊃ Holds(g, z)
all_holds(F,Z) (∀x)Holds(f, z) , x variables in f

These state constraints have been carefully designed so as to be sufficiently
expressive while allowing for efficient constraint solving. As an example, the
following clause encodes the specification of state Z0 of Section 2.1 (cf. (2))
along with additional knowledge that follows from domain constraints (cf. (3)):

init(Z0) :- Z0 = [at(AX,AY),depot(DX,DY) | Z],

not_holds_all(at(_,_), Z),

not_holds_all(depot(_,_), Z),

not_holds(obstacle(AX,AY), Z),

not_holds(obstacle(DX,DY), Z),

not_holds(carries_gold, Z).

The FLUX kernel includes an efficient solver for the various state constraints
using Constraint Handling Rules [10], which have been formally verified against
the fluent calculus [6, 9].

3.2 State update in FLUX

The second part, Pdomain , of a FLUX agent program contains encodings of the
domain axioms. These include action precondition axioms, which are straightfor-
ward encodings of the corresponding fluent calculus axioms (cf. (4)), and state



update axioms. For encoding the latter, the FLUX kernel provides the definition
of a predicate update(Z1,[G1,...,Gn],[F1,...,Fm],Z2), which encodes the
equation z2 = z1 − f1 − . . . − fm + g1 + . . . + gn of the fluent calculus.

Interaction with the environment

The physical effects of actions are straightforwardly specified in FLUX in ac-
cordance with the state update axioms. In addition, the update of the world
model requires to account for the interaction of an agent with its environ-
ment, possibly including communication with other agents. To this end, ef-
fects of actions are encoded in FLUX by clauses which define the predicate
state_update(Z1,A,Z2,Y) in such a way that performing action a in state z1

and receiving sensor information y yields updated state z2 . The following en-
coding shows how the physical effects (cf. axioms (5) in Section 2.3) as well as the
interaction with the environment can be specified for the Gold Mining agents:

state_update(Z, skip, Z, []).

state_update(Z1, move(D), Z2, [Obst]) :-

holds(at(AX,AY), Z1), adjacent(AX, AY, D, AX1, AY1),

update(Z1, [at(AX1,AY1)], [at(AX,AY)], Z2),

obstacles_sensed(Obst, Z2).

state_update(Z1, pick, Z2, [Gold]) :-

Gold = true, update(Z1, [carriesGold], [], Z2)

; Gold = false, Z1 = Z2.

state_update(Z1, drop, Z2, []) :-

update(Z1, [], [carriesGold], Z2).

state_update(Z, mark, Z, []).

state_update(Z, unmark, Z, []).

According to this definition, the execution of the action Move(d) is assumed to
return a sensing vector Obst of binary values indicating which of the surrounding
cells house a static obstacle. Auxiliary predicate obstacles_sensed(Obst,Z2)

is then defined in such a way as to extend the incomplete state z2 with this
knowledge. The execution of action Pick is assumed to return a sensing value
indicating whether picking up the gold was actually successfully. This allows to
resolve the nondeterminism in the corresponding state update axiom.4 In the
same fashion, information received through communication can be added to the
specification of state updates in FLUX [11].

4 The specification of the Gold Mining challenge says that a Move(d) action, too,
may fail with a small likelihood. This can be incorporated into the corresponding
state update axiom in a similar way.



3.3 FLUX Strategies

While the FLUX agents for the Gold Mining problem share the same background
theory, each one of them acts according to its individual strategy, depending on
the role it plays. The agents communicate acquired knowledge of the obstacles in
the environment. As a high-level programming language, FLUX allows to define
complex strategies by which the agents systematically explore the environment
and cooperate in transporting collected gold items to their depot.

The basic strategy of each agent is defined by the following clause, which
defines the next action of an agent based on the current state z:

getNextAction(Action, Z) :-

holds(at(X, Y), Z), holds(depot(DepotX, DepotY), Z),

( holds(carries_gold, Z) ->

( (X = DepotX, Y = DepotY) -> Action = drop

;

direction(X, Y, DepotX, DepotY, Z, Action) )

;

( holds(gold(X,Y),Z) -> Action = pick

;

gotoNextGold(X, Y, Z, Action) ) ).

First the agent determines its own and the depot’s position. Which action to
take depends on whether the agent carries gold or not. If the agent carries a gold
item and is currently at the depot then the obvious action to take is dropping the
gold. In case the agent is not at the depot it determines the direction it has to
take to reach the depot. This might involve path planning to avoid obstacles and
other agents and also to explore unknown territory on the way to the destination
in order to find new gold. For the exploration of the environment, the agents
also maintain a list of choicepoints along with the current path in order to be
able to backtrack if necessary.

In case the agent does not carry gold at the moment it goes to a location that
contains a gold item and picks up gold there. This involves deciding which known
gold location to go to or which unknown territory to explore to find new gold.
Our agents usually head for the nearest gold item unless another agent, which
is also aiming at this cell, is closer. This condition makes sure that teammates
do not compete but cooperate in collecting gold items. If there is no known gold
item nearby, or all known gold items will be taken by the other agents, the agent
heads to the nearest unexplored location.

For efficient calculation of the agents’ actions, any plan that an agents devises
is stored in the state and followed unless new knowledge is obtained which makes
replanning necessary or favorable. Depending on the plan this can include failure
of actions; previously unknown obstacles, or other agents, blocking the way;
discovery of new gold; or teammates taking the gold the agent is heading for.



4 Discussion

The purpose of this study was to demonstrate that FLUX can be readily used
for the high-level control of multiple cooperating agents in a competitive envi-
ronment. Unfortunately, the team of FLUX agents did not perform very well at
the actual CLIMA-06 competition. The problem, however, was entirely due to a
suboptimal strategy and did not show up in any of our preceding experiments
with smaller environments.

The closest work related to FLUX is the programming language GOLOG [1]
for dynamic domains, which is based on successor state axioms as a solution
to the frame problem. The main differences are, first, that with its underlying
constraint solver, FLUX provides a natural way of representing and reasoning
with incomplete states as well as nondeterministic actions. Second, the logic
programs for GOLOG described in the literature all apply the principle of re-

gression to evaluate conditions in agent programs, whereas FLUX is based on
the progression of states. While the former is efficient for short action sequences,
the computational effort increases with the number of performed actions. With
the progression principle, FLUX programs scale up well to the control of agents
over extended periods.

For future work, we intend to develop a formal model of cooperation and
competition in multiagent settings based on the fluent calculus and FLUX.
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