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Abstract. A new equational foundation is presented for the Fluent Cal-
culus, an established predicate calculus formalism for reasoning about
actions. We discuss limitations of the existing axiomatizations of both
equality of states and what it means for a fluent to hold in a state. Our
new and conceptually even simpler theory is shown to overcome the re-
strictions of the existing approach. We prove that the correctness of the
Fluent Calculus as a solution to the Frame Problem still holds under
the new foundation. Furthermore, we extend our theory by an induction
axiom needed for reasoning about integer-valued resources.
Stream: Knowledge Representation and Non-monotonic Reasoning.

1 Introduction

Research in Cognitive Robotics aims at explaining and modeling high-level intel-
ligent agents acting in a complex dynamic world. Among the established predi-
cate calculus formalisms for reasoning about actions, the Fluent Calculus stands
out in offering a solution not only to the representational but also the inferen-
tial [3] aspect of the fundamental Frame Problem. The basic solution has proven
its versatility by allowing extensions regarding a variety of aspects, such as non-
deterministic actions, resource-sensitivity, concurrency, ramifications, natural ac-
tions in combination with continuous change, sensing actions, and recursive and
conditional plans [13, 7, 14, 15]. An implementation of the fluent calculus by
means of binary decision diagrams is under way [8].

Central to the Fluent Calculus, which is a many-sorted first-order language, is
the representation technique of reification [6]: Terms are used instead of atomic
formulas as formal denotations for fluents, i.e., the atomic properties of the
world state whose truth-values may change in the course of actions. In the Fluent
Calculus these ‘atomic’ fluent terms are composed to state descriptions by means
of a binary function, written as “◦”. More precisely, any term of sort fluent is
also of sort state , and if z1 and z2 are of sort state then so is z1 ◦ z2 . For
example, if the term Occupied(x) is of sort fluent , representing the (temporary)
property of a room x to be occupied, and if variable z is of sort state , then
the term

(Occupied(AMT-101) ◦ Occupied(AMT-206)) ◦ z (1)
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describes a world state in which the two rooms AMT-101 and AMT-206 are
occupied and in which other fluents z hold.1

Based on the concept of state terms, the fundamental Frame Problem is
solved in the Fluent Calculus by so-called state update axioms, which specify
how the states of the world before and after an action are related [13]: From the
Situation Calculus, we adopt the concept of a situation as a history of the actions
that have been performed [10]. Let the expression State(s) be a denotation of
the world state in situation s, let Do(a, s) denote the situation reached after
performing action a in situation s, and let the atom Poss(a, s) denote that
action a is possible in situation s. Then a state update axiom for an action A
with parameters x is of the form,

Poss(A(x), s) ⊃ (∆(x, s) ⊃ ΓA,∆[State(Do(A(x), s)), State(s)] ) (2)

where ∆( x , s) is a first-order formula which describes the conditions on x and
situation s under which the two states prior and after the action are related
in the way specified by ΓA,∆. In the simple case, ΓA,∆ is a mere equational
relation between the states:

(∃y)State(Do(A(x), s)) ◦ ϑ−(x, y) = State(s) ◦ ϑ+(x, y) (3)

where the sub-terms ϑ− and ϑ+ , which are of sort state , contain, respectively,
the negative and positive effects of action A under condition ∆.

Consider, for example, the action denoted by Move(x, y) of sending everyone
from room x to room y. Suppose that this action has the effect of x no longer
being occupied and of room y becoming occupied instead. Suppose further that
the action be possible if x is currently occupied and y is not. The following
two axioms are a suitable encoding of this specification in the Fluent Calculus:

Poss(Move(x, y), s) ⊃
State(Do(Move(x, y), s)) ◦ Occupied(x) = State(s) ◦ Occupied(y) (4)

Poss(Move(x, y), s) ≡ Holds(Occupied(x), s) ∧ ¬Holds(Occupied(y), s) (5)

where Holds(f, s) means that fluent f holds in situation s.
In order that axioms like these entail reasonable conclusions, an axiomatic

account of two properties of states is required:

1 A word on the notation: Predicate and function symbols, including constants,
start with a capital letter whereas variables are in lower case, sometimes with
sub- or superscripts. Free variables in formulas are assumed universally quantified.
Throughout the paper, action variables are denoted by the letter a, situation
variables by the letter s, fluent variables by the letter f , and state variables by
the letter z , all possibly with sub- or superscript. Multisets, i.e. collections, that
can contain elements more than once, are written as {̇f1, . . . , fn}̇, and multiset
operations are marked by a dot above the operation symbol.
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1. What makes two states equal, and what makes them unequal?
2. When does a fluent hold in a state associated to a situation, and when does

it not?

An answer to the first question is crucial for solving the representational and in-
ferential Frame Problem by state update axioms whose consequences are
equations of the form (3): If a fluent is contained in State(s) and is not among
the negative effects ϑ−( x , y ), then the fluent should be contained in
State(Do(A( x ), s)); and if a fluent is not contained in State(s), then it should
also not be contained in State(Do(A( x ), s)) as long as it is not among the pos-
itive effects ϑ+( x , y ).2 An answer to the second question is needed to evaluate
both action preconditions and the condition part of state update axioms, and in
general to draw any interesting conclusions concerning the values of fluents in
situations.

The existing equational foundation of the Fluent Calculus, developed in [9],
gives an answer to the two questions based on the equational theory of a com-
mutative monoid along with the notion of unification completeness [12]. In the
following section we show the limitations of this approach when it comes to incor-
porating domain-specific equalities or the definition of functions among domain
entities. In Section 3, a new and conceptually simpler equational foundation is
developed, which is shown to overcome the restrictions of the existing account.
In Section 4, we prove some fundamental properties of the new axiomatiza-
tion, which in particular ensure that the Fluent Calculus solution to the Frame
Problem still is correct under the new foundation. In Section 5, a second-order
extension of our theory is presented to enable reasoning about the consumption
and production of integer-valued resources. This extension is proved to axiomat-
ically characterize the sort state as the finite multisets over the sort fluent . We
conclude in Section 6.

2 Unification Completeness and Its Limitations

The Fluent Calculus uses classical logic with equality, that is, where the equality
relation is assumed to be interpreted as real equality among domain elements.
On this basis, the existing equational foundation of the Fluent Calculus consists
of the following axioms:

– Equational theory AC1,

(z1 ◦ z2) ◦ z3 =z1 ◦ (z2 ◦ z3)
z1 ◦ z2 =z2 ◦ z1

z ◦ ∅=z
(AC1)

(where ∅ is a constant of sort state , denoting the empty collection of flu-
ents);

– An AC1-unification complete theory AC1∗ (details given below).

2 We assume throughout the paper that ϑ+ and ϑ− are disjunct and do not contain
any fluent more than once.
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Theory AC1 essentially says that the order in which the fluent terms occur in
repeated applications of ◦ is irrelevant, so that, say, Occupied(AMT-206) ◦ (z ◦
Occupied(AMT-101)) and (1) denote the very same state. (Justified by the law
of associativity, we will omit parentheses in nested applications of ◦ in the rest
of the paper.) Based on the equational foundation, the notion of fluents holding
in states and situations, resp., is defined via two macros which stand for pure
equality sentences:

Holds(f, z)
def≡ (∃z′) z = f ◦ z′ (Holds)

Holds(f, s)
def≡ Holds(f, State(s))

That is, a fluent holds in a state or a situation, resp., if it is contained in the
respective state terms.

Negating the left and right hand sides of definition (Holds), a fluent f does
not hold in a state z if for all z′ we have z 6= f ◦ z′. Deriving inequalities of
this kind requires to axiomatize that states not composed of the same fluents are
unequal. The AC1-unification complete theory AC1∗ serves this purpose [9]. Its
definition relies on a complete AC1-unification algorithm, and it comprises an
infinite set of axioms which contains the following axiom for any pair of terms
t1, t2 of sort state and without occurrence of function State :

t1 = t2 ⊃
∨

θ∈ΘAC1(t1,t2)

θ= (6)

where ΘAC1(t1, t2) is a complete [1] set of AC1-unifiers of t1, t2 and where θ=

is the equational formula x1 = r1 ∧ . . . ∧ xn = rn if θ = {x1/r1, . . . , xn/rn}.
In particular, if two terms are not AC1-unifiable, then the disjunction evaluates
to falsity, hence the implication simplifies to t1 6= t2 . Inequalities of state terms
can thus be derived from their not being AC1-unifiable.

The rigorousness of unification completeness, however, has the important
limitation of making it impossible to add simple domain-specific equalities or to
define functions among domain entities.

Observation 1. Consider a Fluent Calculus signature with the two constants
AMT-101 and MainLectureHall of the domain sort room and with function
Occupied : room 7→ fluent . Then

MainLectureHall = AMT-101 (7)

and AC1∗ are inconsistent.

Proof. By the standard interpretation of equality and (7) it follows

Occupied(MainLectureHall) = Occupied(AMT-101)

But the terms Occupied(MainLectureHall) and Occupied(AMT-101) of sort
state are not AC1-unifiable; hence, (6) entails

Occupied(MainLectureHall) 6= Occupied(AMT-101) ut
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Observation 2. Consider a Fluent Calculus signature with constant AMT-206
of domain sort room , constant Peter of domain sort person , and functions
RoomOf : person 7→ room and Occupied : room 7→ fluent . Then

RoomOf (Peter) = AMT-206 (8)

and AC1∗ are inconsistent.

Proof. As above. ut
The only way of incorporating domain-dependent equalities or definitions of

functions without sacrificing the idea of unification completeness is to use an
E -unification complete theory instead of simply AC1∗ where E consists of the
axioms AC1 plus all domain-dependent equations. This approach, however, has
severe drawbacks: First, the foundational axioms on equality of state terms are
domain-dependent so that they need to be adapted to any additional equation
or inequality. Second, if the equational theory E is not finitary [1], then the cor-
responding unification complete theory includes axioms with an infinite number
of disjuncts. Finally and most importantly, the definition of an E -unification
complete theory appeals to complete sets of E -unifiers so that the existence
of such a set for any two terms needs to be proved for any particular domain
axiomatization in order that the definition is not rendered meaningless.

The equational foundation for the Fluent Calculus is accompanied by the
following foundational axiom, which stipulates non-multiplicity of fluents in state
terms that are associated with a situation:

State(s) 6= f ◦ f ◦ z (NonMult)

Assuming non-multiplicity instead of stipulating idempotency of ◦ is crucial in
order not to annul the solution to the Frame Problem offered by state update
axioms. To see why, suppose State(s) = f ◦ z for some f, s, z, and consider the
equation State(Do(a, s)) ◦ f = State(s), where f is specified as negative effect.
However, neither idempotency of ◦ would allow to conclude that f does not
occur in State(Do(a, s)), nor would this follow without axiom (NonMult).

3 A New Equational Foundation

The limitations of the existing equational foundation for the Fluents Calculus can
be overcome by a paradigm shift away from the inference-oriented viewpoint of
unification completeness towards a more semantic-oriented view. Intuitively, two
state terms shall be equal only if they contain equal fluents. Indeed, a simple,
finite first-order axiomatization of this intuition is possible under which the
Fluents Calculus solution to the Frame Problem is still valid.3

3 In a later section, we will show that it is moreover possible to give a finite but
second-order extension of these axioms so as to obtain a characterization of equality
of state terms precisely up to the ordering of the fluent sub-terms—in other
words, where in every interpretation the sort state is isomorphic to the finite
multisets over the sort fluent .
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Fig. 1. The Levi axiom: If some state (symbolized by a square) can be partitioned
into z1, z2 as well as into z3, z4 , it can be partitioned into za, zb, zc, zd such
that the same areas denote equal (wrt. (AC1)) parts of the terms.

Definition 1. The new equational foundation for the Fluent Calculus comprises
the following axioms:

– Equational theory AC1;
– an axiom which specifies that a fluent is an irreducible (wrt. ◦) element of

state:

z = f ⊃ z 6= ∅ ∧ [z = z′◦z′′ ⊃ z′ = ∅ ∨ z′′ = ∅] (Irred)

– the so-called Levi-axiom:4

z1◦z2 = z3◦z4 ⊃ (∃za, zb, zc, zd)
(

z1 = za◦zb ∧ z3 = za◦zc ∧
z2 = zc◦zd ∧ z4 = zb◦zd

)
(Levi)

Fig. 1 gives a graphical interpretation of this axiom.5

These axioms are domain-independent. By EUNA we denote their union along
with a set of domain-dependent unique names-axioms UNA.

To demonstrate the gained expressiveness of the new foundation, recall the
observations made in Section 2. Suppose given the initial state

State(S0) = Occupied(AMT-206) (9)

4 The axiom postulated here is proven as a lemma called Levi’s lemma in trace
theory [4]. Since the set of finite multisets with multiset union as an operation is
isomorphic to a trace monoid over the same set where all symbols are independent,
we turn its role around and postulate this property as an axiom characterizing
multisets.

5 It should be noted that the picture may be a bit misleading: In case z1, z2, z3, z4

contain multiple occurrences of sub-terms, the states za, zb, zc, zd are not necessar-
ily uniquely determined, as the reader may verify with the example (a◦a)◦(a◦a) =
a◦(a◦a◦a).
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along with the axioms UNA[Occupied ], UNA[AMT-101, AMT-206],6 and

MainLectureHall = AMT-101 (10)

Note that this equation does not contradict the axioms of Def. 1, as opposed
to the old foundation of the Fluent Calculus (c.f. Observation 1). Suppose fur-
ther we want to move the current lecture from room AMT-206 to the main
lecture hall since the former is too small. This action leads from situation S0

to Do(Move(AMT-206, MainLectureHall), S0). By applying (AC1) and (Irred)
to (5) and (9) it follows that Poss(Move(AMT-206, MainLectureHall), S0). Thus,
from (4) and (9) we conclude that

State(Do(Move(AMT-206, MainLectureHall), S0))◦Occupied(AMT-206) =
Occupied(AMT-206)◦Occupied(MainLectureHall) (11)

While axioms (AC1) and (10) suffice to show that (11) is satisfied by

State(Do(Move(AMT-206, MainLectureHall), S0)) = Occupied(AMT-101) (12)

our new axioms are needed to prove that (12) holds: Applying (10) to (11) we
get

State(Do(Move(AMT-206, MainLectureHall), S0))◦Occupied(AMT-206) =
Occupied(AMT-206)◦Occupied(AMT-101) (13)

According to (Levi) we find za, zb, zc, zd such that

State(Do(Move(AMT-206, MainLectureHall), S0)) = za◦zb (14)
Occupied(AMT-206) = zc◦zd (15)
Occupied(AMT-206) = za◦zc (16)
Occupied(AMT-101) = zb◦zd (17)

Employing (Irred), we apply case distinction to (15). The case zc = ∅ and
zd = Occupied(AMT-206) contradicts equation (17) in view of UNA[Occupied ],
UNA[AMT-101, AMT-206], and (Irred). In case zc = Occupied(AMT-206) and
zd = ∅, from (17) and (AC1) it follows that zb = Occupied(AMT-101); further-
more, from (16) we get za = ∅ according to (Irred). Hence, (15) and (AC1)
entail the desired conclusion (12).

The example derivation shows that the new equational foundation success-
fully handles the domain-dependent equality (10). In a similar fashion we can

6 For domain dependent assumptions of unique names we adopt from [2] the standard
notation UNA[h1, . . . , hn] as an abbreviation for the formula

^

i6=j

hi(x) 6= hj(y) ∧
^

i

(hi(x) = hi(y) ⊃ x = y)



740 Hans-Peter Störr and Michael Thielscher

now introduce functions among domain entities by equations like (8) without
producing inconsistency. Admittedly, calculating with pure (Levi) and (Irred)
looks rather cumbersome. However, in the next section we will derive two com-
putation rules as logical consequences of our axiomatization, which are of great
help when calculating state equations. One of the two rules, for instance, leads
directly from (13) to (12).

4 Results

We have seen that our new foundation for the Fluent Calculus allows the in-
corporation of domain-dependent equations and inequalities. In this section, we
prove the crucial result that state update axioms solve the Frame Problem also
under the new axioms. More specifically, we prove that the core of a state update
axiom, an equation of the form

(∃y)State(Do(A(x), s)) ◦ ϑ−(x, y) = State(s) ◦ ϑ+(x, y) (18)

satisfies the following:

1. All fluents in ϑ+( x , y ) (the positive effects of the action) do hold in the
successor state State(Do(A( x ), s));

2. all fluents in ϑ−( x , y ) (the negative effects of the action) do not hold in
the successor state State(Do(A( x ), s));

3. all fluents not contained in ϑ+ or ϑ− hold in State(Do(A( x ), s)) if and
only if they hold in State(s);

4. the equation is consistent with foundational axiom (NonMult).

The proof is based on two computation rules, the Cancelation Rule and the
Distribution Rule. Both are logical consequences of our axiomatization, and they
are of great practical value when it comes to calculating with state equations.

Proposition 1. (Cancelation Rule) In all models of EUNA we have

f◦z = f◦z′ ⊃ z = z′ (Cancel)

Proof. Assume f◦z = f◦z′. By (Levi) we find za, zb, zc, zd such that

f = za◦zb ∧ z = zc◦zd ∧ f = za◦zc ∧ z′ = zb◦zd

By (Irred) we distinguish two cases:
If za = ∅, then (AC1) implies f = zb = zc , thus z = f◦zd and z′ = f◦zd ,

and hence by symmetry and transitivity of equality, z = z′.
If zb = ∅, then f = za by (AC1). Applying (Irred) we conclude f 6= ∅;

therefore, f = za◦zc implies zc = ∅, again by (Irred). Hence, z = ∅ ◦ zd = z′.
ut

The Cancelation Rule allows to cancel out equal fluent terms on both sides
of a state equation. Note, for instance, that by this rule the rather complicated
derivation of (12) from (13) of the preceding section follows directly.
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Proposition 2. (Distribution Rule) In all models of EUNA we have

f1 6= f2 ⊃ f1◦z1 = f2◦z2 ⊃ Holds(f1, z2) (Distrib)

Proof. Assume f1 6= f2 and f1◦z1 = f2◦z2 . Following (Irred) we find
za, zb, zc, zd such that

f1 = za◦zb ∧ z1 = zc◦zd ∧ f2 = za◦zc ∧ z2 = zb◦zd

By (Irred) we conclude that either za = ∅ ∧ zb = f1 or za = f1 ∧ zb = ∅.
The latter case would imply f2 = f1◦zc, which contradicts (Irred) given that
f1 6= f2 . Thus, za = ∅ ∧ zb = f1 , hence z2 = f1◦zd , hence Holds(f1, z2). ut

The Distribution Rule in combination with Cancelation allows to rewrite
state equations so as to project onto a particular sub-term. A typical application
is to rewrite the equation State(Do(a, s))◦f− = State(s)◦f+ to (∃z) (State(s) =
f− ◦ z ∧ State(Do(a, s)) ◦ f− = f− ◦ z ◦ f+), and then to apply the Cancelation
Rule to obtain the projection (∃z) (State(Do(a, s)) = z◦f+ ∧ State(s) = f−◦z).

We are now in a position to prove the abovementioned main result. As in [13]
we make the following assumption of consistency: State update axioms are de-
signed in such a way that if an equation (18) is entailed, then the positive and
negative effects, ϑ+ and ϑ−, do not share a fluent, contain no fluent more
than once and no fluent is specified as positive effect via ϑ+ if it holds in
State(s) itself. From (NonMult) we furthermore know that no fluent occurs
twice in State(s).

Theorem 3. Consider a set UNA of unique names-axioms and let the terms
ϑ− = f−

1 ◦ . . . ◦ f−
m and ϑ+ = f+

1 ◦ . . . ◦ f+
n be finite, possibly empty sequences

of fluent terms joined together with ◦ such that UNA |= f+
i 6= f+

− for all i, j ,
and UNA |= f−

i 6= f−
j as well as UNA |= f+

i 6= f+
j for all i 6= j . Then in all

models for EUNA we have that

z1 ◦ ϑ− = z2 ◦ ϑ+ ∧
∧

j=1...n

¬Holds(f+
j , z2) ∧ (∀f)¬Holds(f ◦ f, z2) 7

implies each of the following.

1. Holds(f+
j , z1) (for all j = 1, . . . , n);

2. ¬Holds(f−
i , z1) (for all i = 1, . . . , m);

3. (∀f) (¬Holds (f, ϑ− ◦ϑ+) ⊃ [Holds(f, z1) ≡ Holds(f, z2)]);
4. (∀f)¬Holds(f◦f, z1) .

Proof.

1. Follows from UNA |= f−
i 6= f+

j for all f−
i in ϑ− by repeated application

of the Distribution Rule.

7 where Holds(z̄, z)
def≡ (∃z′) z = z̄ ◦ z′
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2. If z1 = f−
i ◦ z′ for some f−

i in ϑ− and some z′ , then

f−
i ◦ z′ ◦ f−

1 ◦ . . . ◦ f−
i ◦ . . . ◦ f−

m = z2 ◦ ϑ+ (19)

From UNA |= f−
i 6= f+

j for all f+
j in ϑ+ and by n-fold application of the

Distribution Rule it follows that (∃z′′) z2 = f−
i ◦ z′′; hence, (19) implies,

using the Cancelation Rule,

(∃z′′) z′ ◦ f−
1 ◦ . . . ◦ f−

i ◦ . . . ◦ f−
m = z′′ ◦ ϑ+

With a similar argument we conclude that (∃z′′′) z′′ = f−
i ◦z′′′ ; consequently,

(∃z′′′) z2 = f−
i ◦ f−

i ◦ z′′′ , which contradicts (∀f)¬Holds(f ◦ f, z2).
3. Follows by repeated application of the Distribution Rule.
4. Follows from (∀f)¬Holds(f ◦ f, z2) and

∧
j=1...n ¬Holds(f+

j , z2) with a
similar argument as used in the proof of item 2. ut

5 An Induction Axiom

While our new equational foundation for the Fluent Calculus does not affect the
solution to the basic Frame Problem, the axiomatization presented so far is lim-
ited when it comes to modeling resources. Generally, the Fluent Calculus offers a
very natural way of reasoning about the production and consumption of integer-
valued resources, namely, by simply not letting foundational axiom (NonMult)
apply to resources. A state may then contain multiple occurrences of a resource.
For example, given that wheels (of a certain diameter) and axles (of a certain
length) are different things, i.e., UNA[Wheel , Axle], axioms EUNA entail that
Wheel(6′′) ◦Wheel (6′′) ◦Axle(3.5′) 6= Wheel(6′′) ◦ Axle(3.5′) ◦ Axle(3.5′), read:
having available two wheels and one axle is different from holding just one wheel
but two axles. An example for a state update axiom talking about resources is
the following, which specifies the action Assemble(l, d) of assembling a chassis
of length l and with two wheels of diameter d:8

Holds(Axle(l) ◦ Wheel (d) ◦ Wheel (d), s) ⊃
State(Do(Assemble(l, d), s)) ◦ Axle(l) ◦ Wheel (d) ◦ Wheel(d)

= State(s) ◦ Chassis(l, d)

For an adequate treatment of resources, our axiomatization of Section 3 is
insufficient because it admits models in which equations like z◦f = z are true:

Observation 4. EUNA ∪ {z ◦ f = z} is satisfiable.

Proof. We construct a model as follows. Let the domain for sort state be the
natural numbers IN (incl. 0) augmented by the element ω. The only domain
element of sort fluent shall be 1. Let ∅ be interpreted by 0 and ◦ by the
function

λm, n.

{
m + n if m 6= ω and n 6= ω

ω otherwise
8 Below, Holds(z̄, s)

def≡ (∃z′)State(s) = z̄ ◦ z′.
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This function is associative, commutative, and has 0 as unit element; hence,
(AC1) holds in the model. Furthermore, 1 6= 0, and if 1 = m + n then either
m = 0 or n = 0; hence, (Irred) holds. Finally, if n1 +n2 = n3 +n4 , then (Levi)
is satisfied by

na = min(n1, n3) nc = n2 − nd

nb = n1 − na nd = min(n2, n4)

in case n1 + n2 6= ω. In case n1 + n2 = n3 + n4 = ω, let us assume without
loss of generality that n1 = n3 = ω. If none of n2, n4 equals ω, then (Levi) is
satisfied by

na = ω nc = n2 − nd

nb = max(0, n4 − n2) nd = min(n2, n4)

else if one and only one of n2, n4 equals ω, say n2 , then (Levi) is satisfied by

na = ω ∧ nb = n4 ∧ nc = ω ∧ nd = 0

else if n2 = n4 = ω, then (Levi) is satisfied by na = nb = nc = nd = ω.
Having proved that we have constructed a model for EUNA, the claim follows
by interpreting z by ω and f by 1, because ω + 1 = ω. ut
The reader may note that this observation does not contradict the Cancelation
Rule, which allows only fluents to be canceled out. The observation is to be
contrasted to the old foundation of the Fluent Calculus, where the unification
complete theory AC1∗ includes the axiom z ◦ f 6= z since the two terms are not
AC1-unifiable.

Observation 4 is unproblematic in the non-resource case, because the equa-
tion State(s) ◦ f = State(s) is unsatisfiable in view of foundational axiom
(NonMult).9 But if we remove the non-multiplicity condition in order to deal
with resources, then we need means to prevent such unintended models.

In this section, we introduce two additional axioms through which this prob-
lem is solved. Speaking algebraically, we extend EUNA in such a way that in
every model M of that extension we have that the sort stateM is isomorphic
to the set of finite multisets over the sort fluentM, where ∅ represents the
empty multiset and ◦ the union of multisets. The additional axioms are, first,
an induction axiom, which says that the sort state contains exactly the terms
which can be constructed by applying ◦ to ∅ and elements of sort fluent ; and
second, an axiom which specifies that ∅ has no proper divisor:

(∀P ) [P (∅) ∧ (∀f, z) (P (z) ⊃ P (f◦z)) ⊃ (∀z)P (z)] (Ind)

z◦z′ = ∅ ⊃ z = ∅ (ZeroDiv)

EUNA augmented by (Ind) and (ZeroDiv) (we call this theory EUNA + ) is
consistent:

9 Repeated application of the Distribution Rule to State(s)◦f = State(s) yields
(∃z)State(s) = f◦f◦z .
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Proposition 3. Axioms EUNA + are satisfiable.

Proof. We can construct a model for EUNA + as follows: Let the domain for the
sort fluent be a set of singleton multisets

{{̇a}̇ : a ∈ A
}
, and let the domain

for the sort state be the set of finite multisets over A. It is easy to verify that
(AC1), (Irred), and (ZeroDiv) are true. Furthermore, any instance of (Levi) is
satisfied by setting

za = z1 ∩̇ z3 zc = z2 \̇ zd

zb = z1 \̇ za zd = z2 ∩̇ z4 .

The proof for (Ind) is straightforward by well-founded induction over the set of
finite multisets over fluent with the ordering relation ⊂̇ . ut

In the following, we prove stepwise that for each model of EUNA + , the
following function % is an isomorphism. The function is a mapping from finite
multisets of fluents onto fluent terms:

%
(
{̇ f1, . . . , f1︸ ︷︷ ︸

k1 times

, . . . , fn, . . . , fn︸ ︷︷ ︸
kn times

}̇
)

= ∅ ◦ f1 ◦ · · · ◦ f1︸ ︷︷ ︸
k1 times

◦ · · · ◦ fn ◦ · · · ◦ fn︸ ︷︷ ︸
kn times

(20)

Terms which are constructed by applying ◦ to ∅ and terms of sort fluent , like
the one on the right side of this equation, are called constructor state terms.

First, we prove that % is a homomorphism, that is, every equation using
∅̇ and ∪̇ which holds between multisets of fluents, also holds after trans-
forming the operands into the Fluent Calculus via % and where ∅ and ◦ replace
∅̇ and ∪̇ .

Proposition 4. In every model of (AC1), % is a homomorphism from

〈Mfin(fluent ); ∅̇; ∪̇ 〉
into 〈state; ∅; ◦〉, where Mfin(fluent ) is the set of finite multisets over fluent .

The proof is straightforward using the fact that both ∪̇ and ◦ are associative
and commutative and that ∅̇ and ∅ are the respective unit elements.

Splitting a constructor state term with ◦ into two parts, the parts are con-
structor state terms themselves:

Proposition 5. In every model of EUNA ∪ {(ZeroDiv)}, for every multiset ż
of fluents we have

% (ż) = z1◦z2 ⊃ (∃ż1, ż2) [ z1 = % (ż1) ∧ z2 = % (ż2) ∧ ż = ż1 ∪̇ ż2 ] (21)

Proof. The proof is by induction over the well-founded set of finite multisets with
⊂̇ as ordering relation. If ż = ∅̇ then (21) is trivially satisfied by ż1 = ż2 = ∅̇ due
to (ZeroDiv). If ż 6= ∅̇ then we can find some f and ż′ such that ż = {̇f }̇ ∪̇ ż′.
Assume % (ż) = z1◦z2 , hence f◦% (ż′) = z1◦z2 . We can then apply (Levi) and
construct ż1 and ż2 using the induction hypothesis for ż′. ut
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Proposition 5 lays the foundation for proving that % is an injective homomor-
phism, that is, which maps different multisets onto different elements of state :

Proposition 6. In every model of EUNA ∪ {(ZeroDiv)} we have

ż 6= ż′ ⊃ % (ż) 6= % (ż′) (22)

Proof. The proof is by induction over the sum s = |ż|+ |ż′| of the cardinalities
of ż and ż′. We distinguish three cases. The case of both ż and ż′ being
empty is trivial. If just one of them is empty, say ż′ = ∅̇, we choose f∈̇ż and
obtain % (ż) = f◦%(ż \̇ {̇f }̇); and by (ZeroDiv) and (Irred) it follows % (ż) 6= ∅ =
% (ż′), hence (22). In case ż 6= ∅ ∧ ż′ 6= ∅ we find f, f ′ such that f∈̇ż and
f ′∈̇ż′. Suppose that % (ż) = % (ż′). Then we can apply (Levi) to f◦%(ż \̇ {̇f }̇) =
f ′◦%(ż′ \̇ {̇f ′ }̇) and prove ż = ż′ by case distinction and repeated application
of (Irred), Proposition 6, and the induction hypothesis. ut

We are almost done. What remains to be shown is that every element of
state corresponds to a finite multiset over fluent :

Theorem 5. EUNA + specifies that the elements of the sort state correspond
to multisets of elements of sort fluent.

Proof. In addition to Proposition 3 we have to prove that % is an isomorphism.
Since we know that it is an injective homomorphism (Propositions 4 and 6), it
remains to be shown that % is surjective as well, that is, for every element z of
state there is some ż such that % (ż) = z. Let P be a monadic relation over
state such that P (z) holds iff there is some ż such that % (ż) = z. Then P (∅),
and if P (z) then P (f◦z) holds as well since f◦z = %

(
ż ∪̇ {̇f }̇

)
. Thus, by (Ind)

P holds for all elements of the sort state . ut

6 Conclusion

We have presented a new, conceptually simpler equational foundation for the
Fluent Calculus which allows for incorporating domain-dependent equations,
inequalities, and function definitions. In so doing we have overcome an impor-
tant limitation of the Fluent Calculus in comparison with the Situation Calculus
of [10]. The new axiomatization already proved invaluable for a case study where
we have successfully applied the Fluent Calculus to the Traffic World, a complex
dynamic domain which has recently been posed as a challenge to the scientific
community [11] and which involves actions with ramifications in nondeterminis-
tic, concurrent, and continuous domains [5, 14].

We have presented two variants of our new equational foundation. The basic
axiomatization of Section 3 has been shown sufficient for guaranteeing that the
Frame Problem is still solved by state update axioms. In Section 5, we have
presented the extended theory EUNA + , which additionally allows for modeling
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the concept of resources and by which the sort representing states is made iso-
morphic to the set of finite multisets of fluents. Theory EUNA + proved useful
as the theoretical foundation for the ongoing implementation of planning with
resources in the Fluent Calculus by means of BDDs [8].
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