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Recent deductive approaches to reasoning about action and chance allow us to 
model objects and methods in a deductive framework. In these approaches, inheritance 
of methods comes for free, whereas overriding of methods is unsupported. In this paper, 
we present an equational logic framework for objects, methods, inheritance and overriding 
of methods. Overriding is achieved via the concept of specificity, which states that more 
specific methods are preferred to less specific ones. Specificity is computed with the 
help of negation as failure. We specify equational logic programs and show that their 
completed versions behave as intended. Furthermore, we prove that SLDENF-resolution 
is complete if the equational theory is finitary, the completed programs are consistent 
and no derivation flounders or is infinite. Moreover, we give syntactic conditions which 
guarantee that no derivation flounders or is infinite. Finally, we discuss how the approach 
can be extended to reasoning about the past in the context of incompletely specified 
objects or situations. It will turn out that constructive negation is needed to solve these 
problems. 

1. Introduction 

Logic  plays an important  role for  human thinking. Especial ly the pioneers  in 

Artif icial  Intel l igence realized the importance of  logic and deduct ion for  their field. 
However ,  classical logic seems to lack some properties to adequately represent  human 

thinking. For  instance, the examinat ion of  the ability of  humans to reason about  

actions and change is one of  the major  parts of  interest in Intellectics, i.e. Artificial  
Intel l igence and Cognit ive Science [7]. A particular descript ion o f  the world consists 

o f  facts (or fluents) which are bel ieved to hold at a certain instant. An important  
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property of these facts is that they are time dependent, i.e. the truth value of a 
proposition may change in the course of time. In contrast, classical logic seems to 
have difficulties in modelling non-static logical values. For example, one may try to 
formalize the situation where a gun is unloaded by the negative literal -7 loaded and 
the execution of an action called load which loads the gun, by an implication like 
execute(load) --~ loaded. Then, unfortunately, classical logic tells us that the action 
load can never be executed since otherwise the world becomes inconsistent. 1) 

The problem of classical logic is that propositions are not treated as resources 
which could be produced and consumed in the course of time [24]. To overcome 
these difficulties, McCarthy and Hayes [39, 36] defined the situation calculus which 
mainly consists of using an additional argument to state that a particular fact only 
holds in a particular situation. In our example, this can be done by using the symbols 
s o and Sl to denote the situation where the gun is unloaded and the situation after 
executing the load action, respectively, i.e. --,loaded(s0) and execute(load) --> loaded(s1). 
Now, the action can be executed without causing an inconsistency problem. However, 
this formalization leads to the well-known technical frame problem. Suppose that in 
an old Asiatic antique shop a Chinese vase is standing on a table in situation so, 
formalized by on(chinese-vase, table, So). Does the Chinese vase still stand on the table 
after loading the gun? In the absence of any other information, we assume that it does. 
But our formalization does not reflect this since the proposition on(chinese-vase, table, sl) 
is not entailed by the axioms. 

In general, the technical frame problem is the question of how to express that 
a particular fact which is not affected by an action continues to hold after executing 
the action. McCarthy and Hayes [39] solved this problem by employing additional 
frame axioms, one for each action and each fact. The obvious problem with this 
solution is that the number of frame axioms rapidly increases when many actions and 
many facts occur. Kowalski reduced the number of frame axioms to become linear 
with respect to the number of different actions [32]. He introduced a special predicate 
named Holds(f, s), with the intended meaning that the reified fact f holds in the 
situation s. Some years later, it was again McCarthy who proposed the use of non- 
monotonic inference rules to tackle the frame problem [381. He used a default rule 
called law of inertia, which states that a proposition does not change its value when 
executing an action unless the contrary is known. Recently, Reiter presented another 
solution to the technical frame problem within the situation calculus by introducing 
a so-called successor state axiom for each fluent [41]. 

Over the last years, three new deductive approaches to deal with situations, 
actions, and change were proposed, each of them without the need to state frame 
axioms explicitly. The linear connection method restricts proofs such that each literal 
is connected at most once [6]. Thus, connecting a literal during the inference process 

1) One might suggest to use a literal like unloaded instead of the negation "-1loaded. However, after 
executing the load action, both literals unloaded and loaded are entailed, which is no improvement. 
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simulated consumption of the corresponding fact. Conversely, if the conditions of an 
implication are satisfied, then the conclusion can be used and, thus, the literals 
occurring in the conclusion are produced. This treatment of literals resembles the 
concept of resources. In a similar way, linear logic [18] can be used, which is a 
Gentzen-style proof system without weakening and contraction rules. In the multiplicative 
fragment of the linear logic, literals and formulas cannot be copied or erased, which 
also provides the idea of resources [35]. In the equational logic programming approach 
[25], facts about a situation are represented as multisets of facts on the term level. 
An action a with condition C and effect E is applicable in a situation S if C is 
contained in S, and, if a is applied in S, then C is deleted from S and E is added. 
Thus, planning in the equational logic approach is closely related to planning in 
STRIPS [14,33] except that multisets are used instead of sets and that planning is 
performed in a purely deductive system. As argued in [20], multisets represent resources 
more adequately than sets and, moreover, it is more efficient to compute with multisets 
instead of sets. Furthermore, the concept of resources and multisets are more adequate 
solutions to the frame problem [27]. 

The three recent approaches [6, 35, 25] are equivalent for planning problems, 
where the condition and effect of actions are multisets of facts [46, 19]. In [20], it 
is also shown that the equational logic approach can handle database transactions as 
well as objects and methods in much the same way as database transactions as well 
as objects and methods are handled in [42] and [1], respectively. It has turned out 
that the inheritance of methods comes for free in the approaches of [1] and [20], but 
that neither approach allows overriding of methods. As an example, consider a 
scenario with a top class of objects, its subclass of fragile objects, and a method drop. 
drop may be defined for objects belonging to the top class such that if an object is 
dropped, then it will be on the floor but, otherwise, remains as it was. This works 
perfectly well for objects representing silver bars. Chinese vases, however, have the 
additional property that they are fragile and, hence, are broken after they have been 
dropped. In an object-oriented framework, this is typically modelled by defining a 
(refined) method drop for the subclass of fragile objects which - as it is more 
specific - overrides the method drop inherited from the top class. Unfortunately, both 
approaches, [42] as well as [1], do not provide a mechanism to suppress the application 
of the less specific method and, hence, nothing can be concluded about the state of 
the vase after being dropped. 

In this paper, we extend the equational logic programming approach of [25, 20] 
such that the concept of overriding can be integrated. After a brief description of the 
basic notions and notations concerning unification, logic programs, and multisets in 
section 2, we formalize the notions of objects, hierarchies of classes, and inheriting 
as well as overriding methods in section 3. Furthermore, we define the concept of 
specificity and argue that the application o f -  possibly inherited or overridden - 
methods can be adequately modelled by the equational logic programming approach 
[25, 20] augmented by specificity. We also illustrate the approach by examples motivated 
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by the Broken Item and the Yale Shooting domain. Equational logic programs for 
computing change and specificity as well as their completion in the sense of [9] and 
[29,48] are presented in section 4. Section 5 focuses on models which interpret terms 
representing situations as multisets. We also show how these models are related to 
the intended meaning of causality and specificity. Section 6 introduces SLDENF- 
resolution as SLDNF-resolution extended by a unification algorithm for equational 
theories. In section 6, the soundness result of [48] for SLDENF-resolution is recapitulated 
and a completeness result for SLDENF-resolution is established, which can be applied 
to the equational logic programs specified in section 4. In section 7, we show how 
our approach can be used to perform backward reasoning, i.e. drawing conclusions 
about the past. This kind of use of our logic program does not fall into the class of 
programs for which SLDENF-resolution is complete, which is the reason for our 
suggestion in section 8 to use constructive negation to obtain answers in the case of 
non-ground negative goals. Finally, section 9 summarizes and discusses the results 
and outlines possible future extensions. 

2. Preliminaries 

We briefly review the notions and notations concerning logic programming 
and unification under an equational theory (see e.g. [3,49]). We also give a formal 
introduction to the concept of  multisets, which play an important role for our semantics 
of  actions, change, and specificity. 

Terms and substitutions 

A term alphabet is a pair (V, F )  of disjoint sets. The elements of V are 
variables and the elements of F are function symbols. Each function symbol has a 
unique arity which is a natural number or 0. A function symbol with arity 0 is also 
called a constant. A term is either a variable or an expression of the f o r m f ( q  ..... tn), 
where f E F  with arity n > 0 and t 1 ..... t n are terms. The set of variables occurring 
in a term t is denoted by Var(t).  A term which does not contain variables is called 
ground. Throughout this paper, capital letters such as Z, Y,... denote variables, lower 
case letters such as a, b .... constant, f, g,... function symbols, and s, t,... denote 
terms. 

A substitution is a mapping from the set of variables into the set of terms, 
which is equal to the identity almost everywhere. Hence, a substitution o- can be 
represented as the finite set of pairs {X1 ~ tl ..... X, ~ tn}, where Xi ~ ti. Substitutions 
are denoted by lower case Greek letters such as o-, 0, . . . .  The identity substitution 
is denoted by e. The application of a substitution to a term is defined by to"= o"(t) 
if t is a variable and to"=f(qo", .... tno") iff t = f (q , . . . ,  t~). This definition is extended 
to other syntactical objects like atoms, sets, or multisets in the usual way. The domain 
of o" -  written Dora(o") - is the set {XilXi E V and X i a r  The codomain of o- 
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- writ ten Cod(o-) - is the set {tilti= Xi0- and Xi ~ Dom(0-)}.  The variables in the 

codomain  of  o" are denoted by VCod(tr),  i.e. VCod(0-)= Uti~ Cod(cr)Var(ti). The 
composition of  two substitutions 0- and 0 is a substitution - written 0-0 - which is 
def ined by  X(0-O) = (X0-)O for  all variables X. 2) The restriction of  a substitution 0- to 

a set W of  variables is a substitution - written t r ] w -  which is def ined by X(0-]w) = Xt r  

i f X  ~ W a n d  Xo ' [w = X otherwise. Using the binary equality predicate =, a substitution 

0-= {X1 ~-4 tl . . . . .  Xn ~4 t~} has a corresponding formula  - written 0-_ - which is the 

conjunct ion XI = tl A ... A X n =tn,  and o'=[w means (0-[w)--. 

An equational theory E consists of  a set of  universal ly c losed expressions of  

the form s = t. Two terms s and t are called E-equivalent - written s =E t - if  they are 

equal  w.r.t E. I f  this relation is decidable for  any two terms s, t, then E is said to be 

decidable. Two substitutions 0-1 and 0"2 are called E-equivalent w.r.t, a set W of  

variables - writ ten o" 1 =e 0-21 w - iff  VX ~ W.  X0"1 =e Xo'2. A substitution 0" 1 is called 

more general than a substitution 0"2 w.r.t, a set W of  variables - written 0-1 <e 0-2[w - 

iff  there is a substitution 0 such that 0" 10 =e 0"2[ 3v. An equational  theory E is regular 
i f  Var(s)  = War(t) holds for  any equation s = t E E [49]. I f  E is regular, then s =E t 
implies Var(s)  = War(t) for  any two terms s, t. 

Logic programs 

An atom is an expression of  the form p(tl . . . .  , t,,), where p is an n-ary predicate  

symbol  (n > 0) and tl . . . . .  t ,  are terms. An atom is called ground i f  its arguments  are 

ground terms. A literal is ei ther an atom or a negated atom. A normal equational 
logic program (or normal E-program) is a pair (P, E), where E is an equational  

theory and P is a finite set of  clauses of  the form A ~-- Lt . . . . .  Ln, where  A is an a tom 

and L 1 ..... L n are literals (n > 0). A normal goal (or normal query) is a clause o f  the 

fo rm ~-- L1,... , Ln, where L1,... ,  Ln are again literals (n >_ 0), and in the case n = 0, the 
empty goal is also denoted by [Z]. 

Unification 

A substitution o" is called an E-unifier of  two terms s and t i f f  Dom(0-) C Var(s)  
U Var( t )  and so-= E to'. 3) An E-unification problem consists of  two terms s and t and 

is the problem whether  there exists an E-unif ier  o f  s and t. The  set o f  all E-unif iers  

for  two terms s and t is denoted by UE(S, t). A set cU~(s, t) is called a complete 
set o f  E -un i f i e r s  i f f  CUE(S, t) C_ UE(S, t) (cor rec tness )  and V0-1 ~ UE(S, t). 30-2 
~. CUE(S , t). 0-2 <--E 0-1lVar(t) (completeness).  A set #UE(S, t) is called a complete  and 
minimal set of  E-unifiers iff  it is complete and V0-1, 0"2 E ~Ue(s, t). 0"1 <e o'2]v,r(~ u Vat(t) 

0-1 = 0"2 (minimali ty).  

2) An equivalent definition is given by fro = {X ~-~ t ~ OIX ~ Dom(tr) } U {X ~ tOIX ~-~ t ~ tr and X ~ tO}. 
3)One should observe that the domain of an E-unifier is restricted to the variables occurring in s 

and t. This restriction is needed in definition 4. 
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The unification problem w.r.t, an equational theory E is called finitary if for 
all terms s and t a set #UE(s, t) exists which contains at most finitely many elements. 
It is called infinitary if for all terms s and t a set #UE(s, t) exists and there are two 
terms s and t such that there is no finite #Ue(s, t). 

An E-unification procedure is a procedure which takes two terms s and t as 
input and generates a subset of Ue(s, t). An E-unification procedure is complete iff 
it generates a complete set of unifiers. A complete E-unification procedure is minimal 
iff it generates a minimal set of  unifiers whenever this set exists. An equational 
theory E is said to be decidable iff the E-unification problem is decidable for each 
pair of  terms. 

The notions of  E-unifier, set of E-unifiers, etc. are extended to atoms in the 
obvious way. 

A matching problem consists of  two terms s and t and is the problem whether 
there exists a substitution o- such that s = to'. The notions of  a matcher, matching 
algorithm, etc., can be defined in analogy to the notions of  a unifier, unification 
algorithm, etc. 

Multisets 

A multiset is a collection of  elements where, in contrast to classical sets, 
elements may occur more than once. Multisets are depicted using the brackets ~..- ] .  
For instance, in M = [a ,  b, a ] ,  the element a occurs twice (written a ~2 M ) ,  whereas 
the element b occurs once (written b ~ I M ) ,  and the element c does not occur (written 
c E 0 M  or, equivalently, c ~ M) .  The union M U N ,  difference M - N ,  and subset 
M C_ N on multisets M and N are defined as follows: 

e E  m M A  e E n  N ~ e ~ k  M O  N A  k = m + n .  

m - n ,  
e E  m M A e E  n N ~ e ~ k  M - N A k =  0, 

M C" ~N c r Ve[e E m M A e E n N ~ n > m)]. 

if m > n, 

otherwise. 

Futhermore, M - N iff M C N and M ~ N ,  whereas M c N iffboth M C" N 
and M ~ N .  Throughout this paper, we use calligraphic letters such as M ,  N , . . .  to 
denote multisets. 

3. Objects and specificity 

In this section, we approach the main notions of  this paper, viz. objects and 
specificity. Let f be an n-ary function symbol and t i, 1 < i < n, be terms. In the 
terminology of  frame-based or production systems like OPS5 [13], f denotes a slot 
and the ti denote fillers. For example, when modelling a movable object we may wish 
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to specify its location with the help of a unary function symbol at such that at(3) 
denotes that the object is at location 3. When modelling a Chinese vase, we may wish 
to specify that it is fragile by the nullary function symbol fragile. 

DEFINITION 1 

An object is a multiset of facts of the form f (q  ..... tn), where the terms ti, 
1 > i < n, are ground. A class is a multiset of facts of the form f(tl , . . . ,  t,). An object 
0 belongs to a class C, in symbols O ~ C, iff qo.. Co" '-- O. A method named by the 
constant a for the class C consists of a multiset of facts E with Var (E)  C Var(C); 
it is written (C, a, E) .  The application of the method (C, a, E)  to an object O ~ C 

yields EO., where O. is a substitution such that CO. '-- O. 

For example, a green item at location 3 may be denoted by [at(3), color(green)] 4~, 
and a fragile and broken item is denoted by [fragile, broken ]. Let [at(X)] denote 
the class of movable items and [at(X), color(Y)] denote the class of colored movable 
items, then the object {{at(3), color(green)] belongs to the class [at(X), color(Y)]. 
For the class {{at(X)] of movable objects, a method move may be defined by the 
multiset [ at(X + 1) ]. Hence, the application of the method ~ [ at(X) ], move, { at(X + 1) ] ) 
to the object [ a t (3 ) ]  yields {{at(4)]. Observe that there might be several instances 
of one and the same method regarding a particular object since the matching problem 
CO. "-- O might admit more than one solution. 

DEFINITION 2 

A class C 1 is a subclass of class C 2 iff qo.. C t D C20.. If  C 1 is a subclass of 
C 2, then C 1 inherits each method for C 2. The application of an inherited method 
(C 2, a, E)  to an object O E C l yields (O - C20.) t3 EO., where C 1 is a subclass of 
C 2 and O. is a substitution such that O ~ C20.. 

For example, the class [at(X), color(Y)] of colored movable items is a subclass 
of the class [at(X)] of movable items. Thus, the method ({{at(X)], move, {at(X + 1)] ) 
is inherited by the former. The application of this inherited method to the object 
[at(3),  color(green)] yields the object [at(4),  color(green)]. One should observe 
that the application of a method as defined in definition 1 is subsumed by the 
definition of how to apply an inherited method. Henceforth, whenever talking about 
the application of a method we implicitly refer to the latter definition. 

Figure 1 shows the class hierarchy for the Broken Item domain, where fragile 
denotes that an item is fragile, broken denotes that an item is broken, and intact 
denotes that an item is intact. Intuitively, intact is the opposite of broken and, thus, 

4~ Throughout this paper, we distinguish between items and objects. Items are entities in the real world 
which are represented by objects. 
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( o ) 
I 

/ \ 

Fig. 1. A hierarchy of classes representing items [ ], fragile items [ fragile | ,  
intact items [ intact, fragile ], and broken items [ broken, fragile ]. 

an item cannot be broken and intact at the same time. Since we do not want to allow 
explicit negation in classes and objects, 5~ we have to explicitly specify inconsistencies 
for the domain of  discourse. For example, in the Broken Item domain and object O 
with [ intact, broken J C 0 does not represent an item in the real world and, hence, 
is called inconsistent. Furthermore, since we are dealing with multisets, we may want 
to consider the number of occurrences of  a fact in a multiset. For example, a single 
occurrence of broken may be interpreted as the fact that the item is broken into a few 
pieces, whereas several occurrences of broken may be interpreted as the fact that the 
item is shattered into many pieces. Thus, fuzziness may be expressed. On the other 
hand, if  we model quarters, nickels, and dimes, then it is quite adequate to represent 
the contents of  a purse as a multiset. However, for the sake of simplicity we assume 
for the Broken Item domain that no fact should occur more than once in a consistent 
object. Altogether, an object O is said to be inconsistent iff 

[broken, intact~ C_ 0 V 3X E {fragile, broken, intact}. IX, XD C_ O. (1) 

Having specified inconsistency and defining that an object is consistent iff it is not 
inconsistent, we can now concentrate on specificity and overriding. 

Following definition 2, methods are automatically inherited. However, one 
often might wish to refine the definition of  a method for a subclass and, then, the 
automatic inheritance should be suppressed. In other words, a definition of a method 
shall override the definition which belongs to some superclass. To this end, we 
formally introduce the notion of specificity. 

DEFINITION 3 

A method a t = (C1, a l ,  E 1) is more specific than a method a2 = (C2, a2, E2) 
(written a l  < a2) iff a 1 = a 2 and C1 is a subclass of C2. A method a = (C, a, E)  is 

5~ It is an interesting philosophical question whether rational agents have a general concept of negation 
comparable to the concept of negation in first-order logic. This was brought to our attention by J.A. 
Robinson. 
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applicable to an object O iff O belongs to C or a subclass of C and there is no more 
specific method applicable to O. 

In other words, more specific methods override less specific inherited ones. 
As an example, consider the method 6) 

(4 ], drop, { ] ) ,  (2) 

which is defined for the topmost class ~ ] of any class hierarchy and, hence, is 
inherited by all other classes. In particular, it is inherited by the class of fragile 
objects and, if applied to the object [ fragile ], yields again the object { fragile]. For 
the class of fragile objects, however, the more specific method 

( [ fragile }}, drop, { fragile, broken }}), (3) 

may have been defined. This method overrides the preceding one and is applicable 
to the object {{fragile]. In the sequel, we call a method most specific whenever it 
is applicable in the sense of definition 3. 

It is noteworthy that our definition allows more than one applicable description 
of one and the same method - a phenomenon which is usually called multiple 
inheritance. For instance, both ( |  fragile ], drop, [ broken } ) and ([ broken ], drop, [ broken } ) 
are applicable in {fragile, broken]. If applied, only the latter method description 
leads to a consistent situation (cf. (1)) and, thus, the former should not be considered. 
Ideally, if we do not consider indeterminism or uncertainty, i.e. the existence of 
alternative and coincidental effects, there should be a unique applicable description 
for a method to each consistent object leading to a consistent object. Such an ideal 
set of object descriptions can be obtained in the Broken Item domain (see also [52]): 
We have already considered the methods (2) and (3). These two methods, however, 
do not yet completely specify the Broken Item domain. For instance, (3) is inherited 
by the class of intact objects. Its application would lead to the inconsistency 
[ intact, fragile, broken ], where the represented item is intact and broken at the same 
time. To avoid such a behavior, we define the additional method 

( [ intact, fragile ], drop, ~ fragile, broken ]). (4) 

As (4) < (3), it will be preferred whenever the dropped item is known to be intact. 
Similarly, if the dropped item is already broken, i.e. if the object is { broken, fragile ], 
then the execution of (3) would lead to the inconsistency {broken, broken, fragile]. 
This can be avoided by defining a more specific method for the class of broken items: 

6) Later in this section, we argue that the application of methods to objects can be identified with 
reasoning about dynamically changing worlds. This is why we do not distinguish between a method 
drop which shall be applied to some object, and an action drop which shall be executed in some state 
of the world by a robot, say. 
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( ~ broken, fragile ~, drop, {{ fragile, broken ] ). (5) 

Altogether, we obtain a set of methods, viz. {(2), (3), (4), (5)}, such that whenever 
an applicable and most specific method is applied to a consistent object, then the 
resulting object is also consistent. A formal proof for this set of actions being consistency 
preserving is analogous to the respective proofs for the Blocksworld domain presented 
in [25] and can be extracted from a general result presented in [52]. 

So far, we have formally defined objects and methods. However, reasoning 
about change usually deals with situations and actions (e.g. [39]). It would be an 
interesting paper in itself to discuss the similarities and differences of situation-based 
planning and object-oriented programming. As far as this paper is concerned, the 
difference can be neglected. We will not distinguish between a green item at location 3 
and the situation where there is a green item at location 3. Similarly, we will not 
distinguish between a method which is applied to an object and an action which is 
executed in a certain situation. Rather, we will use the notions object and situation 
as well as methods and action interchangeably. 

As a second, more expressive example, we consider the famous Yake Shooting 
domain (cf. [21,4]). The Yale Shooting environment consists of a gun which is 
unloaded or loaded, a turkey which is alive or dead, and three actions, viz. loading 
the gun (load), shooting (shoot), and waiting (wait). Figure 2 depicts the hierarchical 

(1}, to~d, {0}) 
<{},,hoot, {,~1) 
(.{ ]-, wait, {].) 

( o ) 
('{0]', load, {0]') ~ - . " ~  ~"~- . . . . . .~  ('{,-,}, load, .IN].) 

~{0},,hoo,,~~ ,/ /  \ ----..~o},,hoo,,~o~> 
( ~ 0 } )  ( ~ , } ) f  ~,} ) (  ~o} ) 

(~0,,~) ( ~0,,} ) (~o,,}) ( ~o,,, ) 
(CO, �9 }, ,hoot, tu, t }) 

Fig. 2. The hierachy of classes for the consistent situation description 
in the Yale Shooting scenario together with all action descriptions of 
the three actions load, shoot, and wait, where 6 ,  u, V, and f represent 
the four symbols loaded, unloaded, alive, and dead, respectively. 

structure of all consistent situations in this domain (provided again that no fact is 
allowed to occur more than once). The topmost class represents the case where 
nothing is known about the gun or the turkey. A class C1 is a subclass of a class C2 
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iff it contains more information than C2. Moreover, in fig. 2, some of the classes are 
labelled with (different) action descriptions which are used to prevent inconsistencies 
as in the Broken Item domain. According to definition 3, the applicable action description 
of a certain action is given via the following criterion: The action description is either 
defined for this class or it is inherited from the nearest superclass which is labelled 
with an action description. Note that this defines a single description for each action 
and each situation, and that this corresponds exactly to the specificity criterion as 
described above. The reader is invited to verify that under this assumption the application 
of an action to a consistent situation always yields the expected result. For instance, 
{unloaded, alive} inherits the action description ( {unloaded}, load, { loaded} ), i.e. 
loading the gun transforms this situation into { loaded, alive}. 

The Yale Shooting example can be enriched in many directions using the 
expressive power of the concept of multisets. For instance, a double-barrelled gun 
can be modelled as having three different states. It is either unloaded ({unloaded}}), 
loaded with one ({ loaded}) or with two bullets ({ loaded, loaded}). Modelling such 
a gun requires to add several classes in the hierarchy depicted in fig. 2 and to modify 
the consistency criteria, which are analogous to (1), such that a situation S is inconsistent 
if loaded occurs more than twice in S. It also requires to modify the action descriptions 
of load and shoot in the obvious way, e.g. ({loaded}}, load, { loaded}) should no 
longer occur in the set of action descriptions. Rather, the description ({ }, load, { loaded} ) 
should be inherited in the case of { loaded}. The complete hierarchy representing this 
extension is illustrated in fig. 3. 

({}, z~4 {0}) 
(0, .hoot, {~}) 
(0, ~it, {}) 

( o )  
(t0t, ,hoot, { ~___.~(1~}, ,hoot, t~}) 

({0, ~, * }, ,hoo~, {~, t }) 

Fig. 3. The hierarchy of classes for the consistent situation 
descriptions in the extended Yale Shooting scenario together with 
all action descriptions of the three actions load, shoot, and wait. 
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4. Equational logic programs 

In the preceding section, we have considered objects (or situations) and specificity, 
but we have said nothing about a logical formalism to represent situations, to compute 
specificity, and to determine that the application of a sequence of actions to a given 
initial situation yields a certain goal situation. This will be the subject of this section. 
We will present a completed logic program in the sense of [9] together with a 
unification complete equational theory in the sense of [29] which can be used to 
represent objects or situations and to define actions, change, and specificity. 

Recall that a situation is a multiset of  facts. Facts themselves are represented 
by terms. In order to represent multisets, a binary function symbol o is introduced 
such that o is associative, commutative, and admits a unit element denoted by the 
constant 0. Hence, we need the following axioms of equality. 7) 

( X  o r )  o Z = X o ( y  o z )  

X o Y =  Y o X  

X o 0 = X  

X = X  

X= Y ~ Y = X  

X = Y A  Y = Z  --4 X = Z  

x = Y ~ (w[x] ~ w[Y]) 

(associativity) 

(commutativity) 

(unit element) 

(reflexivity) 

(symmetry) 

(transitivity) 

(substitutivity) 

(ACD 

Here, W[X] ~ W[Y] denotes the equivalence between a first-order formula W which 
contains an occurrence of the variable X and the formula which is obtained from W 
by replacing this occurrence with Y. 

The relation between these axioms and the concept of a multiset is as follows. 
Let si, 1 < i < n, be elementary terms, i.e. terms that are not built up from the special 
symbols o and 0. We can define two mappings .7 and .7-1 such that the following 
equations hold: 

o 7 =  U ]  

( s l  o . . .  o s n )  I = I S l ]  @ (s2 o .. .  o Sn)  7 

{ ] 7-1 = 0 

{S 1 . . . . .  Sn] 7-1 = S1 o I S  2 . . . . .  S n] 7-1 . 

One should observe that (sl) 7-1 =ACl s and ($7-1) 7 - S, where s is a term and S is a 
multiset. Moreover, s 7 - S iff s =ACl S 7-~- Henceforth, we will usually not distinguish 

7) All variables in the following formulas are implicitly universally quantified. 
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between terms built up from the function o and the corresponding multisets of elementary 
terms. As a consequence, we are allowed to identify, for instance, the expressions 
C o V a n d  C 0 V. 

Based on this representation, we can easily extend the equational logic approach 
of [25, 20] to capture specificity. Since each action or method (C, a, E) is defined 
by its condition C, its name a, and its effect E, we can specify these actions by a 
unit clause based on a ternary predicate as follows: 

action(C, a, E). (6) 

A predicate causes(S, [at ..... an], S') can be used to express that the sequence [al,..., an] 
of actions causes a situation S to become situation S'. This is expressed via the 
following two clauses. Note that the predicate = below denotes equality modulo our 
equational theory AC1. 8) 

causes(I, [ ], G) +-- I = G. 

causes(l,[A[P],G) +-- action(C,A,E), 

C o V = I, (7) 

--1 non_specific(A, C, V), 

causes(V o E, P, G). 

The intended interpretation of the first clause of (7) is that the empty sequence does 
not change anything. The second clause of (7) should be interpreted as follows. An 
action named A followed by a sequence of actions P transforms the situation I into 
the situation G if there is an action definition (C, A, E) with name A along with the 
condition C and effect E such that the condition C is contained in I = C o V, this 
particular action is the most specific one applicable to C o V, and the application of 
the sequence P to the new situation V o E - obtained from I by deleting C and adding 
E - yields G. We intend to determine whether the chosen action definition with name 
A is most specific in situation C o V via negation-as-failure, where C denotes the 
condition of the particular action definition. Informally, according to definition 3 
non_specific(A, C, V) shall be true if there is another action definition with condition 
C', name A, and effect E such that this definition is also applicable in C o V and C '  
is a super-multiset of  C. 

non_specific(A, C, V) e-- action(C', A, E'), 

C'o V ' = C o  V, 
(8) 

Co W = C ' ,  

W e 0 .  

8~As usual, [ ] and [HI T] denote the empty list and a list with head H and tail T, respectively. 
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One should note that we do not employ additional axioms for solving the technical 
frame problem since each elementary term which is not affected by an action is 
automatically contained in the resulting situation V o E after having applied the 
second clause of (7). 

Finally, since in our program equations occur in the bodies of some clauses, 
we have to add the axiom of reflexivity 

X = X, (9) 

(see [22]). Altogether, for each set of action descriptions A we obtain the normal E- 
program (PA, AC1) consisting of the clauses (7)-(9) along with all clauses of the 
form (6). 9) 

To deal with negation in the body of clauses, we will consider completed 
equational logic programs. In such a completion, we have to be able to prove inequalities 
like W # 0 occurring in (8). Unfortunately, the equational axioms (6) are insufficient 
for such a task. In the case of non-equational logic programs, Clark used some axiom 
schemata which allow for proving inequality of two terms whenever these are not 
unifiable [9]. In the case of equational theories, the original method has to be generalized 
by the concept of unification completeness. This concept was firstly used in [29] and 
improved in [48]. 

DEFINITION 4 

Let E be an equational theory. A consistent set of formulas E* is called unification 
complete w.r.t. E if it consists of the axioms in E, the standard equality axioms, and 
a number of equational formulas, i.e. formulas with = as the only predicate, such that 
for any two terms s and t with variables X" = Var(s) O Var(t) the following holds: 

(1) If s and t are not E-unifiable, then E* ~ ~3~' .  s = t. 

(2) If s and t are E-unifiable, then for each complete set of unifiers cUe(s, t) 

E* ~ V~'.(s = t --> V 3Y00.0=), (10) 
0 ~ cU~ (s,t) 

where Yo denotes the variables which occur in 0= but not in X. 

As pointed out in [48], the use of Yo, which was missing in [29], is necessary due 
to the fact that E-unifiers might introduce new variables. Note that in the case of 
infinitary equational theories, the disjunct in (10) may contain infinitely many elements. 

As we intend to compute with an equational theory E rather than with its 
completion E*, it suffices to know that there is a unification complete theory for E. 

9) Note that, for instance, (8) could be contracted to non_specific(A, C, W o V') +-- action(C o W, A, E'), 
W # 0. However, this would disguise the intended meaning of this clause, which is why we kept the 
more redundant formulations. 
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The following proposition 2 guarantees this property for the AC 1 theory considered 
in this paper, since this theory is decidable and a complete AC1 unification algorithm 
is known (see e.g. [3]). The proof of this proposition is based on the following observation 
which relates the notion of subsuming substitutions to a logical relation between their 
corresponding equational formulas. For instance, {X ~ a o Z} <ACl {X ~ a } [Ix) and, 
hence, (6) N VX (X = a ~ 3Z. X = a o Z). 1~ 

LEMMA 1 

Let E be an equational theory, (3" and 0 two substititions, and W D Dom(cr) U 
Dom(O) a set of variables. If o '< e 01w, then 

E vw(3 , o: cr:), 

where Ya and Yo denote sequences of variables which occur in o'= and O= but not in 

W,  respectively. 

Proof  

cr<e 0['w implies that we can find a substitution z such that XO=eXcrz  for 
each X E W. Let X E W and, then, t = XO and s = Xcr, which implies t =e s z; hence, 

m 

E ~ VX(3Yo.  X = t ---) 3Ycr. 3 Y , . X  = sz), (11) 
m 

where Y~ denotes a sequence of variables which occur in "r but neither in W nor in 
Y~. From (11), it follows that E ~ VX(3 Yo. X = t ~ 3 Ya. X = s). This holds for 
any X E W, which proves the claim. [] 

This lemma enables us to show that decidable equational theories admit a 
complete theory. 

PROPOSITION 2 

If E is a decidable equational theory and P is complete E-unification procedure, 
then there is a unification complete theory w.r.t.E. 

Proof  

E* can be constructed from the set of axioms in E and the standard equality 
axioms as follows. For each pair of terms s and t, do the following, where A" and 
Yo are as in definition 4: If s and t are not E-unifiable, then add - ,3 A'(s = t) to E ; 
otherwise, use P to compute a complete set cUe(s, t) of E-unifiers of s and t and add 
V X(s  = t ---) Vo~cuE(s,t)3 Yoo. O=) to E*. E* is consistent since it admits a model whose 

1~ holds since Z can be replaced by the constant 0. 
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universe consists of the congruence classes w.r.t.E. Furthermore, lemma 1 guarantees 
that condition (2) of definition 4 does not only hold for the partic~ular complete set 
of unifiers being computed, but also for arbitrary complete sets cU e (s, t)" For each 
0 ~ cUe(s, t) there is a more general tr ~ CUE (s, t) due to the completness of CUE (s, t). 
Hence, lemma 1 implies 

f 

l V 
~0 e cUE (s,t) 

where Ya 

V 3r,,.a= , 
aecUE(s,t) 

m 

denotes the variables occurring in tr but not in X. The claim follows 
immediately from the transitivity of the implication. [] 

Having defined the notion of a unification complete equational theory for 
AC1, we can now turn to the definition of a completed logic program for modelling 
actions and specificity. One should note that all equations in this completed logic 
program below are meant with respect to the unification complete theory ACI*. Let 
a i = ( C i ,  a i. T . i )  , 1 < i < n, be the actions considered in a given scenario. As usual 
(see [9]), the completion of a set of clauses of the form (6) is the formula 

VC, A, E[action(C, A, E) 1---> v n = I ( C  - C i A A = ai A E = Ti)]. (12) 

Analogously, the completed definition of causes is obtained from (7): 

~/I, P, G[causes(I, P, G) 1--> (P = [] A I = G) 

V 

3A, C, E, P' ,  V(P = [ALP'] A (13) 
action(C, A, E) A 

C o V = I A  

-nnon_specific(A, C, V) A 

causes(V o E, P' ,  G))]. 

Similarly, the completed definition of non_specific is obtained from (8): 

VA, C, V[non_specific(A, C, V) ~-~ 3C', E',  V', W(action(C', A, E') A 
C 'o  V ' = C  o V A 

(14) 
Co W = C "  A 

W r ~)]. 

Finally, let C be the conjunction of all clauses of the form 

Vxl , . . . ,  Xn. p(X  ..... X,). 

where p is an n-ary predicate symbol not occurring in { =, causes, non_specific, action }. 
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Let P* = (12) A (13) A (14) A C. Then, (P*, ACI*) is the completed equational 
logic program specifying actions and specificity. One should observe that various 
scenarios like the Broken Item or the Yale Shooting domain differ only in the definition 
of the predicate action. In what follows, we use (PA, ACI*) to denote this completed 
equational logic program encoding a particular set A of action definitions of the form 
( C , a , E ) .  

5. Models 

Completed equational logic programs of the form (P*, AC1 ~) differ from the 
equational programs considered in [29] since negative literals occur in clause bodies. 
They also differ from programs considered in e.g. [2], since they contain the equational 
theory AC1. Hence, we cannot simply apply the model theoretic semantics of [29] 
or [2]. As usual, we consider only Herbrand interpretations, i.e. interpretations of the 
form (U ', J '), where U '  is the set of ground terms. In this section, we show that we 
can restrict .7 such that AC 1 terms are interpretated as multiset expressions. Furthermore, 
we show that (PA, ACI*) is consistent and models actions, change, and specificity as 
intended. We use the notation (P*, E*) ~ F to denote that the formula F is a logical 
consequence of the set of formulas P* t.J E*. 

THEOREM 3 

Let A be a set of action descriptions; then (PA, AC 1') is consistent. 

Proof  

A model of (PA, ACI*) can be constructed as follows. From proposition 2 and 
from the fact that ACl-unification is decidable, we conclude that AC 1" is consistent. 
To be more precise, let 

MAC1, = {s = tlACI* ~ s = t  A {s, t} C_ U'} .  

where U '  is the set of all ground terms, then MACl, is a model of ACI*. Let 

Maction = MACl* U {action(c, a, e) EAI  

30, (C,a,  E) Ea . {c=C~- lc r ,  a = a , e = E ~ - l c r }  C MAC1,}, 

then Maction is a model of {(12)} t_J ACI*. Let 

Mnon_~peci~ c = Maction t.J {non_specific(a, c, v) l 

3c' ,  e" v',  w. {action(c',  a, e'),  c '  o v" = c o v,  c o w = c ' }  

Maction /k w = 0 ~ Maction } 

then Mnon_specifi c is a model of {(14), (12)} tO ACI*. Let 
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Mo =M.o~peci~c U {causes( i ,p ,  g)l {P = [], i = g} C Mno~peci~}, 

and for all k > 0 let 

Mk = Mk_~ U {causes( i ,p ,  g)l 

3a, c, e, p ' ,  v. {p  = [alp'] ,  action(c, a, e), c o v =  i, 

causes( v o e, p ' ,  g)} _ Mk-1 /X non_specific(a, c, v) ~ Mk_ 1 }. 

Then, by a straightforward induction on the length of the second argument of causes, 
we learn that M = ~Jk~ NoMk is a model of of (13) and, consequently, M is a model 
for PA U AC 1". [] 

It should be possible to develop a model and fixpoint theory for (P*, ACI*) 
in the spirit of [29] and [2] and, in particular, to show that (P*, ACI*) admits a least 
model. However, this is beyond the scope of this paper. One should observe that if 
we assign the level 0 to the predicate symbols = and action, 1 to non_specific, and 
2 to causes, then the program (PA, AC1) is stratified (see e.g. [34]) since the level 
of the predicate symbol of every positive literal occurring in the body of a clause is 
less than or equal to the level of the predicate symbol of the head of the clause, and 
the level of the predicate symbol of every negative literal occurring in the body of 
a clause is less than the level of the predicate symbol of the head of the clause. But 
(PA, AC1) is not hierarchical (see e.g. [34]) since causes is recursive. 

To prove that the completed logic program (P*, ACI*) models actions, change, 
and specificity as intended, we start with a formal justification of the already mentioned 
correspondence between the unification complete theory AC 1" and multiset equality. 

PROPOSITION 4 

Let (U ', Y) be a model of (P*, ACI*) and let (U, .I) be an interpretation such 
that 

(1) U = {sis is the ground instance o f  an elementary term} t.J 

{~ ]} U {~tb. . . , tn}}l t l  o ... o t n E U '  }. 

(2) .I is as Y except that O I = ~ ~ a n d ( s o t )  ~ = s ~ O t ~. 

Then, (U, .I) is also a model of (P*, ACI*) and for any two ground terms s and t, 
we find that 

A C l * ~ s = t  iff s t -  t ~ 
and 

A C l * ~ s ~ t  iff s ~ t ~ 

Proof  

(U ', .I) and (U, .I) differ only in the interpretation of the constant 0 and the 
binary function symbol o such that each element of the AC 1-congruence class of an 
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AC1 term tl o ... o tn in U '  is mapped to [t l  .... , t , ]  ~ U .  Hence, we find for two AC1 
terms s and t that s ~" = t I' iff s ~ - t I. The proposition follows immediately. [] 

We now proceed by showing that specificity and causality are interpreted by 
the models of (P*, ACI*) as intended. The following lemma is concerned with specificity. 
One should observe that the literal ~non_specific(A, C, V) occurs in (14) in conjunction 
with the literal action(C, A, E). Hence, the condition of the following lemma is 
always satisfied whenever it is applied in the context of (14). 

LEMMA 5 

If A is a set of action descriptions and (C, a, E) EA, then 

(PA, ACI*) ~ non_specific(a, C, V)  

iff (C, a, E) is not a most specific action description inA w.r.t, the situation C 0 V.  

Proof 
Following clause (14), the formula non_specific(a, c, v) is entailed by (PA, ACI*) 

iff we can find terms C',  E ' ,  V ' ,  W such that 

action(C', a, E ' )  A C ' o  V ' =  C o V A C o W =  C'  A W ; ~ 0  

is entailed. This conjunction is entailed iff all its literals are entailed. Following 
proposition 4, this is true iff (C',  a, E ' )  EA (due to clause (12)), C '  t] V '  -:- C t] V ,  
C '  t] W -" C', and W & { }}. Hence, (PA, ACI*) ~ non_specific(a, C, V )  iff we can 
find a (C' ,  a, E ' )  EA which is applicable in C t] V and for which C '  D C holds, 
which is equivalent to (C, a, E) not being a most specific description. [] 

We now consider the interpretation of the predicate causes. 

PROPOSITION 6 

If A is a set of action descriptions, then 

(PA, ACI*) ~ causes(l, [al ..... an], G) 

iffthere are multisets So .... ,Sn such that Sj - (Sj_l - Cj) t.) E i, where (C i, aj, Ej) EA 
is a most specific action description of aj w.r.t. Sj_I (1 < j  < n), and :/ --" So and 
G - S,, and n > 0 .  

Proof 

The proof is by induction on the length n of the sequence of actions. 
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In the case n = 0, the formula causes(l ,  [ ], G) is entailed iff the disjunction on 
the right-hand side of (13) is entailed. The second part of this disjunction contains 
the subformula [] = [AlP'I ,  which is false in any model of (PA, ACI*) due to the 
unification completeness of  ACI*. Consequently, causes(I,  [], G) is entailed iff 
[ ] = [ ] A I = G is entailed. Using proposition 4, this is true iff I and G denote that 
same multiset. 

Turning to the induction step n > 0, we assume that the result holds for all 
instances of the causes predicate with an action sequence of length <n. As above, 
causes(f ,  [a 1 .... ,an], G) is entailed iff the disjunction on the right-hand side of (13) 
is entailed. The first part of this disjunction contains the subformula [al .... .  an] = [ ], 
which is false in any model  of (PA, ACI*) due to the unification completeness of 
ACI*. Consequently,  causes( l ,  [al .... ,an], G) is entailed iff we can find terms 
a, C, E, p ' ,  V such that 

[al,...,an] = [a lp ' ]  A action(C, a, E) A C o V =  I / x  

-~non_specific(a, C, V )  A causes (V  o E, p ' ,  G) 

is entailed. This conjunction is entailed iff all its literals are entailed. Following 
proposition 4, this is true iff a = a I, p '  = [a 2 .... .  an], (C, al, E) EA (due to clause 
(12)), C t3 V -" I, (C, a l, E)  is most specific w.r.t. 7 (due to the preceding lemma 5) 
and c a u s e s ( V  o E, [a2,...,an], G) is entailed. Using the induction hypothesis, the 
latter is true iff there are multisets S 1 ..... S,~ such that Sj - (Sj_I - Cj) CA Ej, where 
(Cj, aj, Ej) CA is the most  specific action description o fa j  w.r.t. Sj_I (2 < j  < n) and 
V t A  E "- S 1 and G - S n .  The result follows immediately. [] 

The completeness of (P*, ACI*) ensures that the analogous proposition concerning 
negative statements about causality holds in the very same way. 

PROPOSITION 7 

If  A is a set of action descriptions, then 

(PA, ACI*) ~ ~causesgl ,  [aa .... ,an], G) 

iffthere are no multisets S O ..... Sn such that Sj - ( Sj_ 1 - Cj) CA Ej, where ( Cj, aj, Ej) E A 
is a most  specific action description w.r.t. Sj_I (1 < j  < n) and ~/=' S O and G - Sn. 

Proof  
The proof  follows from the completeness of (PA, ACI*) and is again straight- 

forward by induction on n. [] 

The last two propositions ensure that causes behaves as intended. We can now 
turn to the question of how to compute answers to queries posed to equational logic 
programs of the form (P, AC1), for which we will use SLDNF-resolution extended 
by a complete and minimal ACl-unificat ion algorithm. 
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6. SLDENF-resolution 

Proving with completed logic programs is known to be quite inefficient. We 
therefore do not want to compute with (PA, ACI*), rather we would like to compute 
with (PA, AC1), i.e. the if-halves of the definitions in P* only and to use negation- 
as-failure for deriving negative information. 

SLDENF-resolution is like SLDNF-resolution [9] but standard unification is 
replaced by an appropriate E-unification procedure. We follow the idea of [29] and 
adopt the definition used in [48]. The selection rule is constrained such that negative 
literals are only selected if they are ground. If the selected literal is positive, then 
the derivation step is done as for SLDE-resolution [29, 15,23]. If the selected literal 
is negative and if the SLDENF-evaluation of the corresponding positive literal succeeds, 
then the derivation fails; otherwise, the derivation continues with the selected literals 
removed from the actual set of goal literals. The following two definitions are similar 
to the definitions given in [48] and extend the various definitions concerning SLDNF- 
resolution which can be found in [34]. 

DEFINITION 5 

If  (P, E) is a normal E-program and G a normal goal, then an SLDENF- 
refutation of rank 0 for P U { G } consists of a sequence Go .....  Gn of normal goals 
such that G = Go and Gn = [] and for each i = 1,.. . ,n, the selected literal Lk of 
G i _ l ,  which is the goal e--L1,...,L~ . . . . .  Lm,  is positive and there is a new variant 
A ~-- B 1 .....  BI of a program clause such that Lk E-unifies with A using the E-unifier 
0 and G i is the goal ~-(L 1 ..... Lk_I, B I . . . . .  B l, Lk+ 1 . . . . .  Lm)O. The number n is called 
the length of the refutation. The composition of the substitutions 01 .....  On restricted 
to the variables in the first goal, i.e. (01... On)lVar~a) is called computed answer 
substitution. 11) 

A finitely failed SLDENF-tree of rank 0 for P tA { G } via a selection function 
R is a finite tree such that 

(1) Each node is labelled with a non-empty normal goal and the root is labelled 
with G. 

(2) For each node, R selects a positive literal. 

(3) For each leaf node <----L t ..... L m, the selected literal Lk does not E-unify with 
the head of  a new variant of any program clause. 

(4) If  ~ L 1  .....  Lk .... ,Lm is an inner node such that Lk is selected, then for each 
program clause let A ~--B1,...,BI be a new variant and let cUe(Lk, A) be a 
complete set of E-unifiers of Lk and A. Then, for each 0 ~ cUe(L~, A), the node 
labelled with the goal e--L1 ..... Lk-1, B1 ..... Bl, Lk+l  . . . . .  Lm)O is a child of this 
inner node. 

ll)'~Zar( ~--L1 ..... Lm) := U i : I  .... Var(Li). 
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As usual, the depth of an SLDENF-tree is defined as the length of the longest path 
from the root node to a leaf. 

DEFINITION 6 

An SLDENF-refutation of  rank r (r > 1) for P t_/ {G} consists of  a sequence 
Go ..... Gn of normal goals such that G = Go and Gn = [] and for each i = 1 ..... n 

(1) If the selected literal Lk of G i_l is positive, then there is a new variant of a 
program clause such that Lk E-unifies with the head of this clause and G i is 
the resulting goal (which is constructed as in definition 5). 

(2) If the selected literal L k of Gi_ 1 is a negative ground literal ~A, then there 
exists a finitely failed SLDENF-tree of rank less than r for P U { <---A } and G i 

is a s  Gi_ 1 except that it does not contain L k. 

A finitely failed SLDENF-tree of  rank r (r > 1) for P O {G} via a selection 
function R is a finite tree such that 

(1) Each node is labelled with a non-empty normal goal and the root is labelled 
with G. 

(2) For each leaf node +--Ll .... L,,, such that L k is the selected literal 

(a) If  Lk is a positive literal, then it does not E-unify with the head of a new 
variant of  any program clause. 

(b) If L k is a negative ground literal --,A, then there exists an SLDENF- 
refutation of rank less than r for P tO {<---A} via R. 

(3) If +--L1 ..... Lk ..... L,, is an inner node such that L k is selected, then 

(a) If Lk is a positive literal, then for each program clause let A ~ BI, . . . ,B t 
be a new variant and let cUe(L k, A) be a complete and minimal set of E- 
unifiers of  Lk and A. Then, for each 0 E cUE(L k, A), the node labelled with 
the goal 4-- L1 ..... Lk- 1, B1 .... , Bt, Lk + 1 ..... Lm) 0 is a child of this inner node. 

(b) If Lk is a negative ground literal ~A, then there exists a finitely failed 
SLDENF-tree of rank less than r for P U { <---A } via R and the only child 
of the inner node is labelled with the goal 4--LI ..... Lk_l, Lk+l ... . .  Lm. 

The length of a refutation, the computed answer substitution, and the depth of a tree 
are defined as above. 

It is noteworthy that all SLDENF-refutations and finitely failed SLDENF-trees 
of rank r are at the same time of rank greater than r. As for the selection function, 
we assume that it is fair, i.e. that each literal occurring in a goal is selected after 
finitely many steps. As usual, a derivation is said to flounder if the derivation yields 
a goal which contains only non-ground negative literals [34]. 
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non_specific (drop, fragile, O) 

{ A  ~ drop, .--* fragile,  ~-~ 0} C V 

.-- acZion(C', drop, E'),  C' o V'  = fragile o O, fragile o W = C', W ~ 0 

{c' ~ o, E ' -  a ) / / / ~ ~  

O o V'  = fragile o O, fragile o W = O, W # 0 
I 

I 

fragile o W = O, W ~ 0 

C '  ~ fi 'agile, b r o k e n }  E t ~ ]raaile o 

,-- fragile o V'  = fragile o O, fragile o W = fragile, W ~ 0 

I {v, ~ o} 

+- fraoile o W = fragile, W ~ 0 

I OV ~-, o} 

~-0#0 

Fig. 4. A finitely failed SLDENF-tree of rank 1 for PA U { ~ non~pecific(drop,fragile, O) }, 
where A consists of the two action descriptions (2) and (3). The last node of the leftmost 
branch being a leaf is justified by the fact that there is no ACl-unifier of fragile o W and 
0, whereas the last node in the rightmost branch is justified to be a leaf by the existence 

of an SLDENF-refutation of rank 0 for PA tO { ~ 0  = 0}. 

To illustrate these definitions, fig. 4 shows a finitely failed SLDENF- t ree  of  
rank 1 for PA U { ~--nonspeci f ic (drop,  fragile,  0)}, where A = { (2), (3)}, i.e. the action 
definit ion ( [ f rag i l e  ], drop, ~ fragi le ,  broken ] ) is indeed the most  specific one w.r.t. 
the situation f rag i l e  o g =ACl f ragi le .  Figure 5 shows an SLDENF-refuta t ion  of  rank 2 
for PA U { <---causes(fragile, [drop], X)} which uses the SLDENF- t ree  of  fig. 4 and 
yields the computed  answer  substitution {X ~ f rag i le  o broken}.  In both examples ,  
subgoals  are selected from left to right and unifiers are computed under the equational  
theory AC1. 

Recently,  Shepherdson could prove the soundness of  SLDENF-resolu t ion  w.r.t. 
the complet ion semantics [48]: 

THEOREM 8 

Let  (P, E) be a normal E-program and G a normal goal ( - - - - L  1 . . . . .  L m. 

(1) If  there is an SLDENF-refutation for P U { G} with computed answer substitution 
/9, then (P*, E * ) #  V((L1 A ... A Lm)O). 

(2) I f P  U {G} has a finitely failed SLDENF-tree, then (P*, E*) ~ -~9(L1 A ... A L m ) .  
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causes (fragile, [drop], X )  

{ I  ~ lragilr A ~-~ drop, P H [], G *-.-* X }  

action(C, drop, E ), C o V = yragile, -mort_specific(drop, C, V), causes ( E o V, [],X) 

{C ~ lrayile, *--* lragile o broken} E 

~ -  l~agite o v = l~agite, ~,~on_,peci fic( drop, ~ g i t e ,  V ), ca~,,e, (#agit~ o broken o V, [], X)  

, -  -~non-~ci~c(d~op,/,'~gile, ~), Ca~,,~, (#agile o b~ken o ~, [], X)  

I 
. -  ~a,~e~(/~gile o brok~,~ o ~, [], X)  

i { t  ~ .h'aoile o broken, X ~ lvaoile o broken} 

[] 

Fig. 5. An SLDENF-refutation of rank 2 for PA t.J { e--causes(fragile, [drop], X)}, 
where A consists of the two action descriptions (2) and (3). The fourth derivation 
step is justified by the exitence of a finitely failed SLDENF-tree of rank I for 

PA U { e--non.specific(drop, fragile, 0)} (see fig. 4). 

The question whether SLDENF-resolution is complete is more difficult to 
answer. Negation-as-failure is incomplete in general [9], i.e. completeness results for 
SLDNF-resolution, where no equational theory is considered, are obtained only for 
restricted classes of programs. For instance, it is complete for definite programs and 
normal ground goals [28] and for hierarchical normal programs and normal goals, 
if they are allowed [28, 47]. In the latter case, the conditions attached to programs 
and goals ensure that the SLDNF-tree of a program and a goal exists and is finite, 
and that a derivation of a goal with respect to a program never flounders. 

We need similar conditions for the E-programs considered in this paper. But 
there is an additional difficulty. As the axioms of equality are built into the unification 
computation and E-unification problems may be infinitary, a node occurring in an 
SLDENF-tree may have infinitely many successor nodes. Consider, for instance, the 
normal E-program (P, E) which consists of  the clauses 

p(b). 

q( X,  X) ~-- p(  X). 

r ~-- q (a .  Y , Y .  a). 

(15) 

along with the law of associativity for the binary function �9 Clearly, the completion 
of this program is consistent, each derivation of P LJ { e-- r } is finite, and no derivation 
of P t2 { e--r} flounders. --1 r is a consequence of the completion of (P, E) since q is 
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# - - - r  

.--q(a y,Y.a) 

/ 
6- p(a. a) *.- p(a. a.  a) 

Fig. 6. An infinite SLDENF-tree for P U { ~ r}, where P 
consists of the clauses (15) and. is an associative function. 

true just in the case of q(b, b). Searching for an SLDENF-refutation for the goal +-- r 
using any most general E-unifier of q(a .  Y, Y .  a) and q(X, X) leads to a binding of 
the form {X ~ a �9 ... - a} and, hence, to a subgoal of the form p(a �9 ... �9 a) after two 
steps which fails to unify with p(b). Thus, every derivation of r fails within exactly 
three steps. However, there is no finitely failed SLDENF-tree for P U { +--r} since 
there is an infinite number of most general E-unifiers of q(a �9 Y, Y .  a) and q(X, X) 
w.r.t, associativity (see fig. 6). This phenomenon cannot be observed in the case of 
finitary equational theories - provided the employed unification algorithm always 
computes a finite set - w h i c h  leads to the following completeness result. 

THEOREM 9 

Let (P, E) be a normal E-program, where E is finitary and (P*, E*) is consistent, 
and G be a normal goal +--L 1 .... ,L,n such that no SLDENF-derivation of P U {G} 
flounders or is infinite. If (P*, E*) ~ 3(L 1 A ... A Lm), then there exists an SLDENF- 
refutation for P U {G}. 

Proof  

The proof is by contradiction. Assume that (P*, E*) ~ 3(L 1 A ... ALm) and 
there does not exist an SLDENF-refutation for P U {G}. Since no derivation of 
P U {G} is infinite and because E is finitary, we find that the SLDENF-tree of 
P U {G} is finite. Since no derivation of P U {G} flounders, this tree is finitely failed. 
By theorem 8(2), we learn that in this case (P*, E*) ~ ~3 (L  1 A ... ALm). [] 

The previous theorem is based on the premise that no derivation of P U { G} 
flounders or is infinite. We would like to have a syntactical condition which guarantees 
this premise. Unfortunately, as already mentioned in section 5, the E-programs (P~, AC1) 
are not hierarchical as causes is recursive. The number of recursive calls to causes 
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depends on the second argument of causes, which is a list. If  the length of this list 
is known in advance, then each derivation of a query of the form <---causes(i, p, g) 
is finite, where i and g are (possibly uninstantiated) AC1 terms denoting the initial 
and goal situation, respectively, and p is a (possibly uninstantiated) list of a given 
length, e.g. p = [A1,...,An], where Aj, 1 < j  < n, are variables. Hence, if the program 
(PA, AC1) is applied to generate a plan, i.e. sequence of actions, for transforming an 
initial situation i into a goal situation g and completeness is important, then the 
number  of actions in the plan have to be fixed in advance. If such a plan does not 
exist, then a kind of iterative deepening procedure should be applied which seeks for 
a longer plan. 

However, knowing the length of the plan does not guarantee that an SLDENF- 
derivation does not flounder. In what follows, we prove the claim that no derivation 
of some ~--causes(i, p, g) flounders if the initial situation i is ground. These two 
observations regarding finiteness and non-floundering, respectively, are combined in 
the following proposition, which allows us to apply theorem 9 to our program. In the 
sequel, let (PA, AC1) be an equational logic program encoding a set A of action 
definitions. Consequently, SLDENF-derivations are computed w.r.t, the equational 
theory AC1. 

PROPOSITION 10 

Let G be the goal ~--causes(i, [al . . . . .  an], g), where i is ground and al .... .  an, g 
are arbitrary terms (n > 0). Then, no SLDENF-derivation of PA tA { G } flounders or 
is infinite. 

Proof 

The proof is by induction on n. 
In the case n = 0, causes(i, [ ], g) can only be ACl-unif ied with the first clause 

of (7) and only if i and g are ACl-unifiable.  Hence, either we obtain the empty 
clause, or the derivation fails immediately. 

The the case n > 0, G can only be ACl-unif ied with the head of the second 
clause of (7). Applying an SLDENF-resolution step yields the goal 

~--action(C, a 1, E), C o V= i, -~non_specific(a 1, C, V), causes(E o V, [a2,...,an], g). 

Without loss of generality, it is assumed that the literals are selected from left to right. 
Note that the third literal cannot be selected until its arguments are instantiated to 
ground terms. If the leftmost literal is selected, then either the derivation finitely 
fails, or the literal can be solved using a new variant action(c, a, e) of one of the 
clauses (6), yielding a substitution 01 such that CO 1 -~ COl, a 1 01 = aO1, and E01 = e01. 
According to definition 1, we know that a is a constant and, hence, Var(a 01) = Vat(a)  
= 0, and Var(e01) C_ Var(cO1). The resulting goal is 
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(---- COl o V - -  i, -~non_specific(a, CO1, V), causes(e o V, [a2 ..... an], g)01. 

Now, if again the leftmost literal is selected, then either the derivation finitely fails 
or the literal can be solved via ACl-unification, i.e. by applying clauses (9), with 
substitution 02. Note that (c01 o V)02 and a02 = a as well as (e o V)01 02 are necessarily 
ground because i is a ground term and the equational theory AC1 is regular. Then, 
the remaining goal is 

~-- ~non_specific(a, c, V)01 02, causes(e o V, [a 2 ..... an] , g)OlO 2. 

According to the preceding discussion, the negative literal can now be selected. The 
following 1emma l l  proves that the corresponding SLDENF-tree is finite. Thus, 
either the derivation finitely fails, or continues with 

~-- causes(e o V, [a2,...,an], g)OlO2. 

Due to the fact that 02 is a ground substitution for cO1 and V, and since Var(e01) 
C Var(cOa), it follows that the first argument of the remaining literal is ground. 
Hence, we can apply the induction hypothesis to show that the derivation neither 
flounders nor is infinite. [] 

LEMMA 11 

Let G be the goal +--non_specific(a, c, v), where c, a, v are ground terms; then 
no SLDENF-derivation of PA U {G} flounders or is infinite. 

Proof  

There is only one possibility to start the derivation, namely to apply clause (8), 
which yields 

+--act ion(C' ,a ,E') ,  C 'o  V ' = c o  v, co W= C', W~O.  

Without loss of generality, it is assumed that the literals are selected from left to right. 
Note that the rightmost literal cannot be selected until W is instantiated to a ground 
term. If the leftmost literal is selected, then either the derivation finitely fails, or the 
literal can be solved using one of the clauses (6), yielding a substitution 01 such that 
C'01 = c'01 and E'O 1 = e'O1 for some terms c',  e' .  The resulting goal is 

6---C'01 o V ' = c o  I), co W=c'Ol ,  Wr  

Now, if the two leftmost literals are selected, then either the derivation finitely fails 
or they can be solved via AC 1-unification, i.e. by applying clause (9), with substitutions 
02 and 03, respectively. Note that c o v being ground implies, as in the preceding 
proof, c'O1 0203 being ground, which therefore holds for W0203 as well. Hence, the 
remaining goal 

~- W 0 2 0 3 ~  

does not flounder and either fails or reduces to the empty goal. [] 
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Requiring the initial situation to be fully instantiated is acceptable in the case 
of modelling the application of methods to given objects, or in the case of planning 
problems. On the other hand, our approach is also suitable for more general kinds 
of reasoning about actions and change. This is illustrated in the following section, 
where it is also argued that, to this end, it is necessary to consider incompletely 
specified, i.e. only partially instantiated, initial situations. A solution which allows 
one to overcome the restriction given via proposition 10 is then briefly discussed in 
section 8. 

7. Reasoning about the past 

Beside temporal projections, which is to predict what happens given an initial 
situation or object and a sequence of actions or methods, and planning, which is to 
find an appropriate sequence of actions which transforms a given initial situation into 
a given goal situation, one is often interested in reasoning about situations in the past, 
depending on what can be observed in the actual situation. This causes no problems 
in the original equational logic programming approach [25], but is more difficult for 
actions and specificity since negative literals occur in clause bodies and incomplete 
information about former situations is modelled via partially instantiated situations 
which may lead to uninstantiated negative subgoals. These problems are investigated 
in this and the following section. 

As an example, recall the Broken Item domain from section 3 in a variant which 
we call Broken Item Mystery. Assume that a previously intact item is broken after the 
execution of a drop action. In this case, we want to conclude that the item must have 
been fragile at the beginning. Can we derive such a conclusion with our method? 

The Broken Item Mystery is as the Broken Item domain discussed in section 3, 
except that a new fluent, solid, is introduced. We will see later on that a fundamental 
operation for reasoning about the past is the decision whether a situation or a collection 
of situations is consistent. The new fluent causes a reformulation of the inconsistency 
criterion (1): A situation S in the Broken Item Mystery domain is defined to be 
inconsistent iff 

~broken,  intact~ C_ S V {{solid, f rag i le~  C_ S V 
(16) 

3 X  ~ {broken, intact, solid, f ragi le} .  [X ,  X J  C S. 

As a completed clause, this can be formalized for the Broken Item domain by 

VX[  inconsistent( X )  <--> 

V 

V 

V 

V 

V 

3E broken o intact o Y = X 

3E solid o fragi le  o y = X 

3E broken o broken o Y = X 

3 E  intact o intact o Y = X 

3Y. solid o solid o y = X 

3Y. fragi le  o fragi le  o Y = X]. 

(17) 
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Recall that the actions or methods were defined such that their application to 
a consistent situation yields again a consistent situation (see section 3). Since in the 
temporal projection problems considered so far, the initial - and presumably consistent - 
situation was given, there was no need to test the consistency of derived situations. 
Reasoning about the past, however, is mainly based on finding consistent explanations 
for observations, and the initial as well as the final situation are only partially 
defined. For example, in the Broken Item Mystery, one might ask whether the formula 

3V, W[causes(intact o V, [drop], broken o W)] (18) 

is entailed by the completed program. Since the initial situation intact o V as well as 
the final situation broken o W contains a variable, we have to check the consistency 
of the situations as soon as the variables are instantiated. Fortunately, however, since 
the application of an action preserves the consistency of a situation, we have to 
perform a consistency check only once. Hence, it suffices to add to the query (18) 
a single consistency check: 

3V, W[causes(intact o V, [drop], broken o W) A -~inconsistent(intact o V)]. (19) 

In other words, can we find a consistent initial situation 7 ~ ~ intact}} such that the 
sequence of  actions [drop] transforms ~/into a situation G such that ~ "_ Rbroken}}? 
It should be observed that requiring consistency is inevitably necessary since otherwise 
a simple solution to (18) would consist of the bindings {V~-~ broken, Wv--) intact}. 

Expression (19) is in fact entailed, yielding e.g. the bindings V~--)fragile and 
W w-~fragile. Thus, it is consistent to assume that the object was fragile. However, 
this result is not sufficient if we want to be ensured that the object must have been 
fragile. To test whether fragile holds necessarily in the initial situation, we should 
ask whether it is impossible to assume the contrary, i.e. to assume that the object was 
solid. This could be achieved by the additional question whether the formula 

-~ 3V', W'[causes(intact  o solid o V', [drop], broken o W')  A 

-~ inconsistent(intact o solid o V')] 
(20) 

is entailed, which should be interpreted as there is no way to satisfy the observation 
that the item is broken provided it was intact and solid at the beginning. Expression (20) 
is indeed entailed. Informally, the only possibility for unifying the goal situation 
broken o W" with the result of applying an action description of drop to the initial 
situation intact o solid o V" requires V' to be substituted by a term like fragile o Z. 
This, however, can be shown to be inconsistent for any Z since solid and fragile must 
not occur in a situation due to the consistency criterion (17). Thus, the consistency 
check and the completeness of AC 1" provide the desired (negative) answer. Obviously, 
such conclusions are mainly based on the unification completeness of AC 1". Otherwise, 
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it is impossible to find proofs for statements as, for example, VZ[intact  o solid o V = Z 
---) (VZ ' . f rag i l e  o Z" ~ Z) V inconsistent(Z)], i.e. if situation Z contains the fluents 
intact and solid, then it either does not contain the fluent fragile or it is inconsistent. 

The final proposition is a justification of the method described above. Whenever 
backward reasoning should be performed, then we start with searching for fluents 
which are consistent to assume by investigating the various instances which make 
formulas as e.g. (19) true. Then, to test whether these fluents must have been true 
at the beginning, we try to assume the contrary of each fluent separately using 
formulas as e.g. (20). The following proposition claims that whenever there are no 
two multisets V and W such that the consistent initial situation i ~ t3 V can be 
transformed into the goal situation gl t.) W via the sequence [al,...,an] w.r.t, a set 
of action descriptions A, then the formula -~ 3V, W[causes(i  o V, [al .... ,an], g o W) A 

inconsistent(i o V)] is entailed by (PA, ACI*). 

PROPOSITION 12 

If A is a set of action descriptions, then 

(P~, ACI*) ~ ~ q v ,  W[causes(i o V, [al .... ,an], g ~ V) A ~inconsistent( i  o V)] 

iff there are no consistent multisets So,..., S n such that Sj "- (Sj_ 1 - Cj) (A Ej, where 
(Cj, aj, Ej) E A  is a most specific action description of aj w.r.t. Sj_ 1 (1 < j  < n) and 
i ~C_" S O a n d g I C S  n. 

Proof  

The claim follows from propositions 7 and 4. [] 

A semantics for methods to reason about actions and change was recently 
proposed by Gelfond and Lifschitz [17]. Their Action Description Language A 
allows the specification of simple action scenarios and is capable of performing the 
kind of reasoning described here, i.e. reasoning about the past and handling partially 
specified situations are supported. As the above analysis already indicates, our equational 
logic programming based approach includes the expressiveness of the Action Description 
Language. The formal soundness and completeness result of a formalization in terms 
of equational programs including the concept of specificity w.r.t, the semantics of A 
is established in [52]. This result shows that our method is provably equivalent to 
a variety of other systems designed for reasoning about actions and change, most of 
them based on the situation calculus, which were also related to A recently, such as 
Baker's method [5] based on circumscription [37], Pednault's [40] and Reiter's [41] 
approach based on classical logic (all three adequateness result regarding A were 
established in [31]), or the application of abductive logic programming ([12] and, 
independently, [11]). 

Moreover, in [51], the Action Description Language is related to Sandewall's 
so-called Ego-World-Semantics [43,44], which provides another semantical framework 
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to reason about dynamically changing worlds. The equivalence of a slightly restricted 
version of A to a particular ontological problem class in Sandewall's methodology 
has been proved. This justifies the claim that our approach forms just as well a sound 
and complete encoding of this problem class within the frame of the Ego-World- 
Semantics. 

8. Constructive negation 

A problem arises when trying to solve goals of the form used in the 
previous section as, for example, (18) with SLDENF-resolution. The problem is a 
consequence of the fact that a derivation flounders if the actual set of subgoals 
contains only negative non-ground literals. Consider, for instance, the formula 
3 V [  causes (  in tact  o V, [], in tact  o V)  A -~ incons i s ten t ( in tac t  o V)]. Clearly, this is entailed 
by the completed clauses (13) and (17) by using the binding {V~--> 0}, say. But as 
a goal to the logic E-program defined by (13) and (17), there is no refutation because 
this requires to solve the goal e-  -~ incons i s ten t ( in tac t  o V) ,  which flounders immediately. 

To solve this problem, we suggest to use the idea of constructive negation [8]. 
Informally, constructive negation handles negative non-ground literals in the way that 
a complete set of answer substitutions to the corresponding positive literals is computed, 
and afterwards these answers are used to define restrictions on the variables occurring 
in the original negative goal literal. A special case occurs when the disjunction of 
these answers evaluates to true - t h e n  the negative goat fails. For instance, the set 
of answers to the positive goal <---inconsistent(intact o V)  determined by clause (17) 
is 

{ V = b r o k e n  o y ,  

V =  so l id  o f r a g i l e  o Z A Y =  in tac t  o Z,  

V =  b r o k e n  o b r o k e n  o Z A Y =  in tac t  o Z,  (21) 
V = in tact  o y ,  

V = so l id  o so l id  o Z A Y = in tac t  o Z,  

V = f r a g i l e  ~  o Z A Y =  in tac t  o Z } .  

Thus, the constructive answer to the negative goal e-- ~ i n c o n s i s t e n t ( i n t a c t  o V)  is the 
conjunction 

V ~ b r o k e n  o Y A V r so l id  o f r a g i l e  o Z A V ~e b r o k e n  o b r o k e n  o Z A 

V ~ in tac t  o y / x  V r so l id  o so l id  o Z A V c f r a g i l e  ~  o Z,  (22) 

which is satisfiable via, for example, V = 0. Note that the restrictions to the variable 
Y in (21) do not occur in (22) since Y was not a free variable in the goal literal 
-7 i n c o n s i s t e n t ( i n t a c t  o V) .  

What happens in the case of a formula like e.g. 3V. ~ i n c o n s i s t e n t ( i n t a c t  o 

b r o k e n  o V) ,  which should be unsatisfiable? The answer set to the positive goal 
i n c o n s i s t e n t ( i n t a c t  o b r o k e n  o V)  is 
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{ V = Y ,  

V = s o l i d  o f r a g i l e  o Z / ~  Y = i n t a c t  o b r o k e n  o Z ,  

V = b r o k e n  o Z A Y = i n t a c t  o Z ,  

V = i n t a c t  o Z A Y = b r o k e n  o Z ,  

V = s o l i d  o s o l i d  o Z A Y = i n t a c t  o b r o k e n  o Z ,  

V = f r a g i l e  o f r a g i l e  o Z A Y =  i n t a c t  o b r o k e n  o Z } .  

(23) 

This set, which is interpreted as a disjunction of the elements, evaluates to true due 
to the first element. Thus, the goal --1 i n c o n s i s t e n t ( i n t a c t  o b r o k e n  o V )  fails, which is 
exactly the desired behavior. 

Constructive negation is known to be sound and complete w.r.t, the completed 
program in the case of finite derivation trees (cf. [8]) if the standard equational theory 
is assumed. Whether this also holds in the case of an additional equation theory 
- which is finitary - is an open problem. If this question can be positively answered, 
then we are able to solve goals of the form determined by formulas as, for example, 
(18) or (20). 

9. Discussion 

In this paper, we have presented an equational logic approach to reasoning 
about situations, actions, and change, where situations are multisets of facts and an 
action is applied to a situation S by deleting its condition from and adding its effect 
to S. In particular, we have focused on specificity such that more specific action 
descriptions are preferred. This solves an open problem in the approaches of [1,20] 
or [42]. 

The specificity relation is computed syntactically by comparing the conditions 
of different action descriptions for the same action and preferring the description 
whose condition is a superset of the conditions of the other descriptions. At first 
glance, this seems to be a weaker criterion compared to the definition of specificity 
in non-monotonic logics such as conditional logics as given in [10] or [16]. In these 
logics, specificity is not only defined w.r.t, the antecedent of conditional implications 
(i.e. defaults), but also w.r.t, a set of strict formulae. We believe that our approach 
can be extended to consider such a set of strict formulae as well. However, only a 
rigorous comparison between the various approaches to handle specificity will show 
whether they are really identical. 

The equational logic programs considered in this paper are normal programs 
together with an equational theory. Such programs are queried by normal goals. As 
mentioned before, this class of problems is a combination of the class of problems 
considered in [29] consisting of definite programs with equality and normal goals and 
the class of problems considered in [2] consisting of normal programs and normal 
goals, but without a general equational theory. We have shown that the models for 
the equational logic programs considered herein interpret causality and specificity as 
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intended. However, we have not yet investigated the class of normal programs with 
equality and normal goals in general. We believe that the model intersection property 

holds also for this class and that a fixpoint theory can be developed which relates 
least fixpoints and least models. The question which of the various results concerning 
consistency and completeness of SLDNF-resolution such as [45, 30, 50] can be extended 
to SLDENF-resolution as well is part of future work. 

We have mainly restricted our presentation to actions, whose conditions and 
effects are ground, and to situations, which are ground as well. However, as already 
discussed at the end of section 6, we may lift this restriction and allow variables to 
occur in situations as well as in the conditions and effects of actions. This causes no 
problems as long as we focus on the completed equational logic program and lift the 

definition of specificity as well. It causes also no problems as long as negative literals 
do not occur in clause bodies (cf. [20]). However, as soon as negative literals in 
clause bodies are allowed and negation-as-failure is applied, we have to be more 
careful. Currently, we must ensure that negative subgoals are fully instantiated before 
they are called. However, this condition seems to be too strong. For the particular 
application in mind, viz. specifying actions, causality and specificity, we hope to find 
weaker conditions. For instance, a subgoal of the form W ~: 0 can be decided iff W 
is either instantiated to 0 or to a term of the form s 1 o ... o sn, where n > 1 and si, 

1 < i < n are elementary terms. We could go even one step further and use constructive 
negation as indicated in section 8. Such an extension would greatly enhance the 

expressive power of our system, as the example given in section 7 shows. 
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