
Annals of Mathematics and Artificial Intelligence t4(1995)99-133 99

Computing change and specificity
with equational logic programs

Steffen H611dobler

Wissensverarbeitung, Informatik, TU Dresden,
01062 Dresden, Germany

e-mail: sh@inf.tu-dresden.de

Michael Thielscher

Intellektik, Informatik, TH Darmstadt, Alexanderstrasse 10,
64283 Darmstadt, Germany

e-mail: mit @intellektik.informatik.th-darmstadt.de

Recent deductive approaches to reasoning about action and chance allow us to
model objects and methods in a deductive framework. In these approaches, inheritance
of methods comes for free, whereas overriding of methods is unsupported. In this paper,
we present an equational logic framework for objects, methods, inheritance and overriding
of methods. Overriding is achieved via the concept of specificity, which states that more
specific methods are preferred to less specific ones. Specificity is computed with the
help of negation as failure. We specify equational logic programs and show that their
completed versions behave as intended. Furthermore, we prove that SLDENF-resolution
is complete if the equational theory is finitary, the completed programs are consistent
and no derivation flounders or is infinite. Moreover, we give syntactic conditions which
guarantee that no derivation flounders or is infinite. Finally, we discuss how the approach
can be extended to reasoning about the past in the context of incompletely specified
objects or situations. It will turn out that constructive negation is needed to solve these
problems.

1. Introduction

Logic plays an important role for human thinking. Especial ly the pioneers in

Artif icial Intel l igence realized the importance of logic and deduct ion for their field.
However , classical logic seems to lack some properties to adequately represent human

thinking. For instance, the examinat ion of the ability of humans to reason about

actions and change is one of the major parts of interest in Intellectics, i.e. Artificial
Intel l igence and Cognit ive Science [7]. A particular descript ion o f the world consists

o f facts (or fluents) which are bel ieved to hold at a certain instant. An important

�9 J.C. Baltzer AG, Science Publishers

100 S. HOlldobler, M. Thielscher, Equational logic programs

property of these facts is that they are time dependent, i.e. the truth value of a
proposition may change in the course of time. In contrast, classical logic seems to
have difficulties in modelling non-static logical values. For example, one may try to
formalize the situation where a gun is unloaded by the negative literal -7 loaded and
the execution of an action called load which loads the gun, by an implication like
execute(load) --~ loaded. Then, unfortunately, classical logic tells us that the action
load can never be executed since otherwise the world becomes inconsistent. 1)

The problem of classical logic is that propositions are not treated as resources
which could be produced and consumed in the course of time [24]. To overcome
these difficulties, McCarthy and Hayes [39, 36] defined the situation calculus which
mainly consists of using an additional argument to state that a particular fact only
holds in a particular situation. In our example, this can be done by using the symbols
s o and Sl to denote the situation where the gun is unloaded and the situation after
executing the load action, respectively, i.e. --,loaded(s0) and execute(load) --> loaded(s1).
Now, the action can be executed without causing an inconsistency problem. However,
this formalization leads to the well-known technical frame problem. Suppose that in
an old Asiatic antique shop a Chinese vase is standing on a table in situation so,
formalized by on(chinese-vase, table, So). Does the Chinese vase still stand on the table
after loading the gun? In the absence of any other information, we assume that it does.
But our formalization does not reflect this since the proposition on(chinese-vase, table, sl)
is not entailed by the axioms.

In general, the technical frame problem is the question of how to express that
a particular fact which is not affected by an action continues to hold after executing
the action. McCarthy and Hayes [39] solved this problem by employing additional
frame axioms, one for each action and each fact. The obvious problem with this
solution is that the number of frame axioms rapidly increases when many actions and
many facts occur. Kowalski reduced the number of frame axioms to become linear
with respect to the number of different actions [32]. He introduced a special predicate
named Holds(f, s), with the intended meaning that the reified fact f holds in the
situation s. Some years later, it was again McCarthy who proposed the use of non-
monotonic inference rules to tackle the frame problem [381. He used a default rule
called law of inertia, which states that a proposition does not change its value when
executing an action unless the contrary is known. Recently, Reiter presented another
solution to the technical frame problem within the situation calculus by introducing
a so-called successor state axiom for each fluent [41].

Over the last years, three new deductive approaches to deal with situations,
actions, and change were proposed, each of them without the need to state frame
axioms explicitly. The linear connection method restricts proofs such that each literal
is connected at most once [6]. Thus, connecting a literal during the inference process

1) One might suggest to use a literal like unloaded instead of the negation "-1loaded. However, after
executing the load action, both literals unloaded and loaded are entailed, which is no improvement.

S. Hi~lldobler, M. Thielscher, Equational logic programs 101

simulated consumption of the corresponding fact. Conversely, if the conditions of an
implication are satisfied, then the conclusion can be used and, thus, the literals
occurring in the conclusion are produced. This treatment of literals resembles the
concept of resources. In a similar way, linear logic [18] can be used, which is a
Gentzen-style proof system without weakening and contraction rules. In the multiplicative
fragment of the linear logic, literals and formulas cannot be copied or erased, which
also provides the idea of resources [35]. In the equational logic programming approach
[25], facts about a situation are represented as multisets of facts on the term level.
An action a with condition C and effect E is applicable in a situation S if C is
contained in S, and, if a is applied in S, then C is deleted from S and E is added.
Thus, planning in the equational logic approach is closely related to planning in
STRIPS [14,33] except that multisets are used instead of sets and that planning is
performed in a purely deductive system. As argued in [20], multisets represent resources
more adequately than sets and, moreover, it is more efficient to compute with multisets
instead of sets. Furthermore, the concept of resources and multisets are more adequate
solutions to the frame problem [27].

The three recent approaches [6, 35, 25] are equivalent for planning problems,
where the condition and effect of actions are multisets of facts [46, 19]. In [20], it
is also shown that the equational logic approach can handle database transactions as
well as objects and methods in much the same way as database transactions as well
as objects and methods are handled in [42] and [1], respectively. It has turned out
that the inheritance of methods comes for free in the approaches of [1] and [20], but
that neither approach allows overriding of methods. As an example, consider a
scenario with a top class of objects, its subclass of fragile objects, and a method drop.
drop may be defined for objects belonging to the top class such that if an object is
dropped, then it will be on the floor but, otherwise, remains as it was. This works
perfectly well for objects representing silver bars. Chinese vases, however, have the
additional property that they are fragile and, hence, are broken after they have been
dropped. In an object-oriented framework, this is typically modelled by defining a
(refined) method drop for the subclass of fragile objects which - as it is more
specific - overrides the method drop inherited from the top class. Unfortunately, both
approaches, [42] as well as [1], do not provide a mechanism to suppress the application
of the less specific method and, hence, nothing can be concluded about the state of
the vase after being dropped.

In this paper, we extend the equational logic programming approach of [25, 20]
such that the concept of overriding can be integrated. After a brief description of the
basic notions and notations concerning unification, logic programs, and multisets in
section 2, we formalize the notions of objects, hierarchies of classes, and inheriting
as well as overriding methods in section 3. Furthermore, we define the concept of
specificity and argue that the application o f - possibly inherited or overridden -
methods can be adequately modelled by the equational logic programming approach
[25, 20] augmented by specificity. We also illustrate the approach by examples motivated

102 S. H6lldobler, M. Thielscher, Equational logic programs

by the Broken Item and the Yale Shooting domain. Equational logic programs for
computing change and specificity as well as their completion in the sense of [9] and
[29,48] are presented in section 4. Section 5 focuses on models which interpret terms
representing situations as multisets. We also show how these models are related to
the intended meaning of causality and specificity. Section 6 introduces SLDENF-
resolution as SLDNF-resolution extended by a unification algorithm for equational
theories. In section 6, the soundness result of [48] for SLDENF-resolution is recapitulated
and a completeness result for SLDENF-resolution is established, which can be applied
to the equational logic programs specified in section 4. In section 7, we show how
our approach can be used to perform backward reasoning, i.e. drawing conclusions
about the past. This kind of use of our logic program does not fall into the class of
programs for which SLDENF-resolution is complete, which is the reason for our
suggestion in section 8 to use constructive negation to obtain answers in the case of
non-ground negative goals. Finally, section 9 summarizes and discusses the results
and outlines possible future extensions.

2. Preliminaries

We briefly review the notions and notations concerning logic programming
and unification under an equational theory (see e.g. [3,49]). We also give a formal
introduction to the concept of multisets, which play an important role for our semantics
of actions, change, and specificity.

Terms and substitutions

A term alphabet is a pair (V, F) of disjoint sets. The elements of V are
variables and the elements of F are function symbols. Each function symbol has a
unique arity which is a natural number or 0. A function symbol with arity 0 is also
called a constant. A term is either a variable or an expression of the f o r m f (q tn),
where f E F with arity n > 0 and t 1 t n are terms. The set of variables occurring
in a term t is denoted by Var(t). A term which does not contain variables is called
ground. Throughout this paper, capital letters such as Z, Y,... denote variables, lower
case letters such as a, b constant, f, g,... function symbols, and s, t,... denote
terms.

A substitution is a mapping from the set of variables into the set of terms,
which is equal to the identity almost everywhere. Hence, a substitution o- can be
represented as the finite set of pairs {X1 ~ tl X, ~ tn}, where Xi ~ ti. Substitutions
are denoted by lower case Greek letters such as o-, 0, The identity substitution
is denoted by e. The application of a substitution to a term is defined by to"= o"(t)
if t is a variable and to"=f(qo", tno") iff t = f (q , . . . , t~). This definition is extended
to other syntactical objects like atoms, sets, or multisets in the usual way. The domain
of o" - written Dora(o") - is the set {XilXi E V and X i a r The codomain of o-

S. HOlldobler, M. Thielscher, Equational logic programs 103

- writ ten Cod(o-) - is the set {tilti= Xi0- and Xi ~ Dom(0-)}. The variables in the

codomain of o" are denoted by VCod(tr), i.e. VCod(0-)= Uti~ Cod(cr)Var(ti). The
composition of two substitutions 0- and 0 is a substitution - written 0-0 - which is
def ined by X(0-O) = (X0-)O for all variables X. 2) The restriction of a substitution 0- to

a set W of variables is a substitution - written t r] w - which is def ined by X(0-]w) = Xt r

i f X ~ W a n d Xo ' [w = X otherwise. Using the binary equality predicate =, a substitution

0-= {X1 ~-4 tl Xn ~4 t~} has a corresponding formula - written 0-_ - which is the

conjunct ion XI = tl A ... A X n =tn, and o'=[w means (0-[w)--.

An equational theory E consists of a set of universal ly c losed expressions of

the form s = t. Two terms s and t are called E-equivalent - written s =E t - if they are

equal w.r.t E. I f this relation is decidable for any two terms s, t, then E is said to be

decidable. Two substitutions 0-1 and 0"2 are called E-equivalent w.r.t, a set W of

variables - writ ten o" 1 =e 0-21 w - iff VX ~ W. X0"1 =e Xo'2. A substitution 0" 1 is called

more general than a substitution 0"2 w.r.t, a set W of variables - written 0-1 <e 0-2[w -

iff there is a substitution 0 such that 0" 10 =e 0"2[3v. An equational theory E is regular
i f Var(s) = War(t) holds for any equation s = t E E [49]. I f E is regular, then s =E t
implies Var(s) = War(t) for any two terms s, t.

Logic programs

An atom is an expression of the form p(tl , t,,), where p is an n-ary predicate

symbol (n > 0) and tl t , are terms. An atom is called ground i f its arguments are

ground terms. A literal is ei ther an atom or a negated atom. A normal equational
logic program (or normal E-program) is a pair (P, E), where E is an equational

theory and P is a finite set of clauses of the form A ~-- Lt Ln, where A is an a tom

and L 1 L n are literals (n > 0). A normal goal (or normal query) is a clause o f the

fo rm ~-- L1,... , Ln, where L1,... , Ln are again literals (n >_ 0), and in the case n = 0, the
empty goal is also denoted by [Z].

Unification

A substitution o" is called an E-unifier of two terms s and t i f f Dom(0-) C Var(s)
U Var(t) and so-= E to'. 3) An E-unification problem consists of two terms s and t and

is the problem whether there exists an E-unif ier o f s and t. The set o f all E-unif iers

for two terms s and t is denoted by UE(S, t). A set cU~(s, t) is called a complete
set o f E -un i f i e r s i f f CUE(S, t) C_ UE(S, t) (cor rec tness) and V0-1 ~ UE(S, t). 30-2
~. CUE(S , t). 0-2 <--E 0-1lVar(t) (completeness). A set #UE(S, t) is called a complete and
minimal set of E-unifiers iff it is complete and V0-1, 0"2 E ~Ue(s, t). 0"1 <e o'2]v,r(~ u Vat(t)

0-1 = 0"2 (minimali ty).

2) An equivalent definition is given by fro = {X ~-~ t ~ OIX ~ Dom(tr) } U {X ~ tOIX ~-~ t ~ tr and X ~ tO}.
3)One should observe that the domain of an E-unifier is restricted to the variables occurring in s

and t. This restriction is needed in definition 4.

104 S. HOlldobler, M. Thielscher, Equational logic programs

The unification problem w.r.t, an equational theory E is called finitary if for
all terms s and t a set #UE(s, t) exists which contains at most finitely many elements.
It is called infinitary if for all terms s and t a set #UE(s, t) exists and there are two
terms s and t such that there is no finite #Ue(s, t).

An E-unification procedure is a procedure which takes two terms s and t as
input and generates a subset of Ue(s, t). An E-unification procedure is complete iff
it generates a complete set of unifiers. A complete E-unification procedure is minimal
iff it generates a minimal set of unifiers whenever this set exists. An equational
theory E is said to be decidable iff the E-unification problem is decidable for each
pair of terms.

The notions of E-unifier, set of E-unifiers, etc. are extended to atoms in the
obvious way.

A matching problem consists of two terms s and t and is the problem whether
there exists a substitution o- such that s = to'. The notions of a matcher, matching
algorithm, etc., can be defined in analogy to the notions of a unifier, unification
algorithm, etc.

Multisets

A multiset is a collection of elements where, in contrast to classical sets,
elements may occur more than once. Multisets are depicted using the brackets ~..-] .
For instance, in M = [a , b, a] , the element a occurs twice (written a ~2 M) , whereas
the element b occurs once (written b ~ I M) , and the element c does not occur (written
c E 0 M or, equivalently, c ~ M) . The union M U N , difference M - N , and subset
M C_ N on multisets M and N are defined as follows:

e E m M A e E n N ~ e ~ k M O N A k = m + n .

m - n ,
e E m M A e E n N ~ e ~ k M - N A k = 0,

M C" ~N c r Ve[e E m M A e E n N ~ n > m)].

if m > n,

otherwise.

Futhermore, M - N iff M C N and M ~ N , whereas M c N iffboth M C" N
and M ~ N . Throughout this paper, we use calligraphic letters such as M , N , . . . to
denote multisets.

3. Objects and specificity

In this section, we approach the main notions of this paper, viz. objects and
specificity. Let f be an n-ary function symbol and t i, 1 < i < n, be terms. In the
terminology of frame-based or production systems like OPS5 [13], f denotes a slot
and the ti denote fillers. For example, when modelling a movable object we may wish

S. HOlldobler, M. Thielscher, Equational logic programs 105

to specify its location with the help of a unary function symbol at such that at(3)
denotes that the object is at location 3. When modelling a Chinese vase, we may wish
to specify that it is fragile by the nullary function symbol fragile.

DEFINITION 1

An object is a multiset of facts of the form f (q tn), where the terms ti,
1 > i < n, are ground. A class is a multiset of facts of the form f(tl , . . . , t,). An object
0 belongs to a class C, in symbols O ~ C, iff qo.. Co" '-- O. A method named by the
constant a for the class C consists of a multiset of facts E with Var (E) C Var(C);
it is written (C, a, E) . The application of the method (C, a, E) to an object O ~ C

yields EO., where O. is a substitution such that CO. '-- O.

For example, a green item at location 3 may be denoted by [at(3), color(green)] 4~,
and a fragile and broken item is denoted by [fragile, broken]. Let [at(X)] denote
the class of movable items and [at(X), color(Y)] denote the class of colored movable
items, then the object {{at(3), color(green)] belongs to the class [at(X), color(Y)].
For the class {{at(X)] of movable objects, a method move may be defined by the
multiset [at(X + 1)]. Hence, the application of the method ~ [at(X)], move, { at(X + 1)])
to the object [a t (3)] yields {{at(4)]. Observe that there might be several instances
of one and the same method regarding a particular object since the matching problem
CO. "-- O might admit more than one solution.

DEFINITION 2

A class C 1 is a subclass of class C 2 iff qo.. C t D C20.. If C 1 is a subclass of
C 2, then C 1 inherits each method for C 2. The application of an inherited method
(C 2, a, E) to an object O E C l yields (O - C20.) t3 EO., where C 1 is a subclass of
C 2 and O. is a substitution such that O ~ C20..

For example, the class [at(X), color(Y)] of colored movable items is a subclass
of the class [at(X)] of movable items. Thus, the method ({{at(X)], move, {at(X + 1)])
is inherited by the former. The application of this inherited method to the object
[at(3), color(green)] yields the object [at(4), color(green)]. One should observe
that the application of a method as defined in definition 1 is subsumed by the
definition of how to apply an inherited method. Henceforth, whenever talking about
the application of a method we implicitly refer to the latter definition.

Figure 1 shows the class hierarchy for the Broken Item domain, where fragile
denotes that an item is fragile, broken denotes that an item is broken, and intact
denotes that an item is intact. Intuitively, intact is the opposite of broken and, thus,

4~ Throughout this paper, we distinguish between items and objects. Items are entities in the real world
which are represented by objects.

106 S. HOlldobler, M. Thielscher, Equational logic programs

(o)
I

/ \

Fig. 1. A hierarchy of classes representing items [], fragile items [fragile | ,
intact items [intact, fragile], and broken items [broken, fragile].

an item cannot be broken and intact at the same time. Since we do not want to allow
explicit negation in classes and objects, 5~ we have to explicitly specify inconsistencies
for the domain of discourse. For example, in the Broken Item domain and object O
with [intact, broken J C 0 does not represent an item in the real world and, hence,
is called inconsistent. Furthermore, since we are dealing with multisets, we may want
to consider the number of occurrences of a fact in a multiset. For example, a single
occurrence of broken may be interpreted as the fact that the item is broken into a few
pieces, whereas several occurrences of broken may be interpreted as the fact that the
item is shattered into many pieces. Thus, fuzziness may be expressed. On the other
hand, if we model quarters, nickels, and dimes, then it is quite adequate to represent
the contents of a purse as a multiset. However, for the sake of simplicity we assume
for the Broken Item domain that no fact should occur more than once in a consistent
object. Altogether, an object O is said to be inconsistent iff

[broken, intact~ C_ 0 V 3X E {fragile, broken, intact}. IX, XD C_ O. (1)

Having specified inconsistency and defining that an object is consistent iff it is not
inconsistent, we can now concentrate on specificity and overriding.

Following definition 2, methods are automatically inherited. However, one
often might wish to refine the definition of a method for a subclass and, then, the
automatic inheritance should be suppressed. In other words, a definition of a method
shall override the definition which belongs to some superclass. To this end, we
formally introduce the notion of specificity.

DEFINITION 3

A method a t = (C1, a l , E 1) is more specific than a method a2 = (C2, a2, E2)
(written a l < a2) iff a 1 = a 2 and C1 is a subclass of C2. A method a = (C, a, E) is

5~ It is an interesting philosophical question whether rational agents have a general concept of negation
comparable to the concept of negation in first-order logic. This was brought to our attention by J.A.
Robinson.

S. HOlldobler, M. Thielscher, Equational logic programs 107

applicable to an object O iff O belongs to C or a subclass of C and there is no more
specific method applicable to O.

In other words, more specific methods override less specific inherited ones.
As an example, consider the method 6)

(4], drop, {]) , (2)

which is defined for the topmost class ~] of any class hierarchy and, hence, is
inherited by all other classes. In particular, it is inherited by the class of fragile
objects and, if applied to the object [fragile], yields again the object { fragile]. For
the class of fragile objects, however, the more specific method

([fragile }}, drop, { fragile, broken }}), (3)

may have been defined. This method overrides the preceding one and is applicable
to the object {{fragile]. In the sequel, we call a method most specific whenever it
is applicable in the sense of definition 3.

It is noteworthy that our definition allows more than one applicable description
of one and the same method - a phenomenon which is usually called multiple
inheritance. For instance, both (| fragile], drop, [broken }) and ([broken], drop, [broken })
are applicable in {fragile, broken]. If applied, only the latter method description
leads to a consistent situation (cf. (1)) and, thus, the former should not be considered.
Ideally, if we do not consider indeterminism or uncertainty, i.e. the existence of
alternative and coincidental effects, there should be a unique applicable description
for a method to each consistent object leading to a consistent object. Such an ideal
set of object descriptions can be obtained in the Broken Item domain (see also [52]):
We have already considered the methods (2) and (3). These two methods, however,
do not yet completely specify the Broken Item domain. For instance, (3) is inherited
by the class of intact objects. Its application would lead to the inconsistency
[intact, fragile, broken], where the represented item is intact and broken at the same
time. To avoid such a behavior, we define the additional method

([intact, fragile], drop, ~ fragile, broken]). (4)

As (4) < (3), it will be preferred whenever the dropped item is known to be intact.
Similarly, if the dropped item is already broken, i.e. if the object is { broken, fragile],
then the execution of (3) would lead to the inconsistency {broken, broken, fragile].
This can be avoided by defining a more specific method for the class of broken items:

6) Later in this section, we argue that the application of methods to objects can be identified with
reasoning about dynamically changing worlds. This is why we do not distinguish between a method
drop which shall be applied to some object, and an action drop which shall be executed in some state
of the world by a robot, say.

108 S. H6lldobler, M. Thielscher, Equational logic programs

(~ broken, fragile ~, drop, {{ fragile, broken]). (5)

Altogether, we obtain a set of methods, viz. {(2), (3), (4), (5)}, such that whenever
an applicable and most specific method is applied to a consistent object, then the
resulting object is also consistent. A formal proof for this set of actions being consistency
preserving is analogous to the respective proofs for the Blocksworld domain presented
in [25] and can be extracted from a general result presented in [52].

So far, we have formally defined objects and methods. However, reasoning
about change usually deals with situations and actions (e.g. [39]). It would be an
interesting paper in itself to discuss the similarities and differences of situation-based
planning and object-oriented programming. As far as this paper is concerned, the
difference can be neglected. We will not distinguish between a green item at location 3
and the situation where there is a green item at location 3. Similarly, we will not
distinguish between a method which is applied to an object and an action which is
executed in a certain situation. Rather, we will use the notions object and situation
as well as methods and action interchangeably.

As a second, more expressive example, we consider the famous Yake Shooting
domain (cf. [21,4]). The Yale Shooting environment consists of a gun which is
unloaded or loaded, a turkey which is alive or dead, and three actions, viz. loading
the gun (load), shooting (shoot), and waiting (wait). Figure 2 depicts the hierarchical

(1}, to~d, {0})
<{},,hoot, {,~1)
(.{]-, wait, {].)

(o)
('{0]', load, {0]') ~ - . " ~ ~"~-~ ('{,-,}, load, .IN].)

~{0},,hoo,,~~ ,/ / \ ----..~o},,hoo,,~o~>
(~ 0 }) (~ , }) f ~,}) (~o})

(~0,,~) (~0,,}) (~o,,}) (~o,,,)
(CO, �9 }, ,hoot, tu, t })

Fig. 2. The hierachy of classes for the consistent situation description
in the Yale Shooting scenario together with all action descriptions of
the three actions load, shoot, and wait, where 6 , u, V, and f represent
the four symbols loaded, unloaded, alive, and dead, respectively.

structure of all consistent situations in this domain (provided again that no fact is
allowed to occur more than once). The topmost class represents the case where
nothing is known about the gun or the turkey. A class C1 is a subclass of a class C2

S. Hrlldobler, M. Thielscher, Equational logic programs 109

iff it contains more information than C2. Moreover, in fig. 2, some of the classes are
labelled with (different) action descriptions which are used to prevent inconsistencies
as in the Broken Item domain. According to definition 3, the applicable action description
of a certain action is given via the following criterion: The action description is either
defined for this class or it is inherited from the nearest superclass which is labelled
with an action description. Note that this defines a single description for each action
and each situation, and that this corresponds exactly to the specificity criterion as
described above. The reader is invited to verify that under this assumption the application
of an action to a consistent situation always yields the expected result. For instance,
{unloaded, alive} inherits the action description ({unloaded}, load, { loaded}), i.e.
loading the gun transforms this situation into { loaded, alive}.

The Yale Shooting example can be enriched in many directions using the
expressive power of the concept of multisets. For instance, a double-barrelled gun
can be modelled as having three different states. It is either unloaded ({unloaded}}),
loaded with one ({ loaded}) or with two bullets ({ loaded, loaded}). Modelling such
a gun requires to add several classes in the hierarchy depicted in fig. 2 and to modify
the consistency criteria, which are analogous to (1), such that a situation S is inconsistent
if loaded occurs more than twice in S. It also requires to modify the action descriptions
of load and shoot in the obvious way, e.g. ({loaded}}, load, { loaded}) should no
longer occur in the set of action descriptions. Rather, the description ({ }, load, { loaded})
should be inherited in the case of { loaded}. The complete hierarchy representing this
extension is illustrated in fig. 3.

({}, z~4 {0})
(0, .hoot, {~})
(0, ~it, {})

(o)
(t0t, ,hoot, { ~___.~(1~}, ,hoot, t~})

({0, ~, * }, ,hoo~, {~, t })

Fig. 3. The hierarchy of classes for the consistent situation
descriptions in the extended Yale Shooting scenario together with
all action descriptions of the three actions load, shoot, and wait.

110 S. Hiilldobler, M. Thielscher, Equational logic programs

4. Equational logic programs

In the preceding section, we have considered objects (or situations) and specificity,
but we have said nothing about a logical formalism to represent situations, to compute
specificity, and to determine that the application of a sequence of actions to a given
initial situation yields a certain goal situation. This will be the subject of this section.
We will present a completed logic program in the sense of [9] together with a
unification complete equational theory in the sense of [29] which can be used to
represent objects or situations and to define actions, change, and specificity.

Recall that a situation is a multiset of facts. Facts themselves are represented
by terms. In order to represent multisets, a binary function symbol o is introduced
such that o is associative, commutative, and admits a unit element denoted by the
constant 0. Hence, we need the following axioms of equality. 7)

(X o r) o Z = X o (y o z)

X o Y = Y o X

X o 0 = X

X = X

X= Y ~ Y = X

X = Y A Y = Z --4 X = Z

x = Y ~ (w[x] ~ w[Y])

(associativity)

(commutativity)

(unit element)

(reflexivity)

(symmetry)

(transitivity)

(substitutivity)

(ACD

Here, W[X] ~ W[Y] denotes the equivalence between a first-order formula W which
contains an occurrence of the variable X and the formula which is obtained from W
by replacing this occurrence with Y.

The relation between these axioms and the concept of a multiset is as follows.
Let si, 1 < i < n, be elementary terms, i.e. terms that are not built up from the special
symbols o and 0. We can define two mappings .7 and .7-1 such that the following
equations hold:

o 7 = U]

(s l o . . . o s n) I = I S l] @ (s2 o .. . o Sn) 7

{] 7-1 = 0

{S 1 Sn] 7-1 = S1 o I S 2 S n] 7-1 .

One should observe that (sl) 7-1 =ACl s and ($7-1) 7 - S, where s is a term and S is a
multiset. Moreover, s 7 - S iff s =ACl S 7-~- Henceforth, we will usually not distinguish

7) All variables in the following formulas are implicitly universally quantified.

S. HOlldobler, M. Thielscher, Equational logic programs 111

between terms built up from the function o and the corresponding multisets of elementary
terms. As a consequence, we are allowed to identify, for instance, the expressions
C o V a n d C 0 V.

Based on this representation, we can easily extend the equational logic approach
of [25, 20] to capture specificity. Since each action or method (C, a, E) is defined
by its condition C, its name a, and its effect E, we can specify these actions by a
unit clause based on a ternary predicate as follows:

action(C, a, E). (6)

A predicate causes(S, [at an], S') can be used to express that the sequence [al,..., an]
of actions causes a situation S to become situation S'. This is expressed via the
following two clauses. Note that the predicate = below denotes equality modulo our
equational theory AC1. 8)

causes(I, [], G) +-- I = G.

causes(l,[A[P],G) +-- action(C,A,E),

C o V = I, (7)

--1 non_specific(A, C, V),

causes(V o E, P, G).

The intended interpretation of the first clause of (7) is that the empty sequence does
not change anything. The second clause of (7) should be interpreted as follows. An
action named A followed by a sequence of actions P transforms the situation I into
the situation G if there is an action definition (C, A, E) with name A along with the
condition C and effect E such that the condition C is contained in I = C o V, this
particular action is the most specific one applicable to C o V, and the application of
the sequence P to the new situation V o E - obtained from I by deleting C and adding
E - yields G. We intend to determine whether the chosen action definition with name
A is most specific in situation C o V via negation-as-failure, where C denotes the
condition of the particular action definition. Informally, according to definition 3
non_specific(A, C, V) shall be true if there is another action definition with condition
C', name A, and effect E such that this definition is also applicable in C o V and C '
is a super-multiset of C.

non_specific(A, C, V) e-- action(C', A, E'),

C'o V ' = C o V,
(8)

Co W = C ' ,

W e 0 .

8~As usual, [] and [HI T] denote the empty list and a list with head H and tail T, respectively.

112 S. Hrlldobler, M. Thielscher, Equational logic programs

One should note that we do not employ additional axioms for solving the technical
frame problem since each elementary term which is not affected by an action is
automatically contained in the resulting situation V o E after having applied the
second clause of (7).

Finally, since in our program equations occur in the bodies of some clauses,
we have to add the axiom of reflexivity

X = X, (9)

(see [22]). Altogether, for each set of action descriptions A we obtain the normal E-
program (PA, AC1) consisting of the clauses (7)-(9) along with all clauses of the
form (6). 9)

To deal with negation in the body of clauses, we will consider completed
equational logic programs. In such a completion, we have to be able to prove inequalities
like W # 0 occurring in (8). Unfortunately, the equational axioms (6) are insufficient
for such a task. In the case of non-equational logic programs, Clark used some axiom
schemata which allow for proving inequality of two terms whenever these are not
unifiable [9]. In the case of equational theories, the original method has to be generalized
by the concept of unification completeness. This concept was firstly used in [29] and
improved in [48].

DEFINITION 4

Let E be an equational theory. A consistent set of formulas E* is called unification
complete w.r.t. E if it consists of the axioms in E, the standard equality axioms, and
a number of equational formulas, i.e. formulas with = as the only predicate, such that
for any two terms s and t with variables X" = Var(s) O Var(t) the following holds:

(1) If s and t are not E-unifiable, then E* ~ ~3~' . s = t.

(2) If s and t are E-unifiable, then for each complete set of unifiers cUe(s, t)

E* ~ V~'.(s = t --> V 3Y00.0=), (10)
0 ~ cU~ (s,t)

where Yo denotes the variables which occur in 0= but not in X.

As pointed out in [48], the use of Yo, which was missing in [29], is necessary due
to the fact that E-unifiers might introduce new variables. Note that in the case of
infinitary equational theories, the disjunct in (10) may contain infinitely many elements.

As we intend to compute with an equational theory E rather than with its
completion E*, it suffices to know that there is a unification complete theory for E.

9) Note that, for instance, (8) could be contracted to non_specific(A, C, W o V') +-- action(C o W, A, E'),
W # 0. However, this would disguise the intended meaning of this clause, which is why we kept the
more redundant formulations.

S. HOlldobler, M. Thielscher, Equational logic programs 113

The following proposition 2 guarantees this property for the AC 1 theory considered
in this paper, since this theory is decidable and a complete AC1 unification algorithm
is known (see e.g. [3]). The proof of this proposition is based on the following observation
which relates the notion of subsuming substitutions to a logical relation between their
corresponding equational formulas. For instance, {X ~ a o Z} <ACl {X ~ a } [Ix) and,
hence, (6) N VX (X = a ~ 3Z. X = a o Z). 1~

LEMMA 1

Let E be an equational theory, (3" and 0 two substititions, and W D Dom(cr) U
Dom(O) a set of variables. If o '< e 01w, then

E vw(3 , o: cr:),

where Ya and Yo denote sequences of variables which occur in o'= and O= but not in

W, respectively.

Proof

cr<e 0['w implies that we can find a substitution z such that XO=eXcrz for
each X E W. Let X E W and, then, t = XO and s = Xcr, which implies t =e s z; hence,

m

E ~ VX(3Yo. X = t ---) 3Ycr. 3 Y , . X = sz), (11)
m

where Y~ denotes a sequence of variables which occur in "r but neither in W nor in
Y~. From (11), it follows that E ~ VX(3 Yo. X = t ~ 3 Ya. X = s). This holds for
any X E W, which proves the claim. []

This lemma enables us to show that decidable equational theories admit a
complete theory.

PROPOSITION 2

If E is a decidable equational theory and P is complete E-unification procedure,
then there is a unification complete theory w.r.t.E.

Proof

E* can be constructed from the set of axioms in E and the standard equality
axioms as follows. For each pair of terms s and t, do the following, where A" and
Yo are as in definition 4: If s and t are not E-unifiable, then add - ,3 A'(s = t) to E ;
otherwise, use P to compute a complete set cUe(s, t) of E-unifiers of s and t and add
V X(s = t ---) Vo~cuE(s,t)3 Yoo. O=) to E*. E* is consistent since it admits a model whose

1~ holds since Z can be replaced by the constant 0.

114 S. Hi~IIdobIer, M. Thietscher, Equational logic programs

universe consists of the congruence classes w.r.t.E. Furthermore, lemma 1 guarantees
that condition (2) of definition 4 does not only hold for the partic~ular complete set
of unifiers being computed, but also for arbitrary complete sets cU e (s, t)" For each
0 ~ cUe(s, t) there is a more general tr ~ CUE (s, t) due to the completness of CUE (s, t).
Hence, lemma 1 implies

f

l V
~0 e cUE (s,t)

where Ya

V 3r,,.a= ,
aecUE(s,t)

m

denotes the variables occurring in tr but not in X. The claim follows
immediately from the transitivity of the implication. []

Having defined the notion of a unification complete equational theory for
AC1, we can now turn to the definition of a completed logic program for modelling
actions and specificity. One should note that all equations in this completed logic
program below are meant with respect to the unification complete theory ACI*. Let
a i = (C i , a i. T . i) , 1 < i < n, be the actions considered in a given scenario. As usual
(see [9]), the completion of a set of clauses of the form (6) is the formula

VC, A, E[action(C, A, E) 1---> v n = I (C - C i A A = ai A E = Ti)]. (12)

Analogously, the completed definition of causes is obtained from (7):

~/I, P, G[causes(I, P, G) 1--> (P = [] A I = G)

V

3A, C, E, P' , V(P = [ALP'] A (13)
action(C, A, E) A

C o V = I A

-nnon_specific(A, C, V) A

causes(V o E, P' , G))].

Similarly, the completed definition of non_specific is obtained from (8):

VA, C, V[non_specific(A, C, V) ~-~ 3C', E', V', W(action(C', A, E') A
C 'o V ' = C o V A

(14)
Co W = C " A

W r ~)].

Finally, let C be the conjunction of all clauses of the form

Vxl , . . . , Xn. p(X X,).

where p is an n-ary predicate symbol not occurring in { =, causes, non_specific, action }.

S. H6lldobler, M. Thielscher, Equational logic programs 115

Let P* = (12) A (13) A (14) A C. Then, (P*, ACI*) is the completed equational
logic program specifying actions and specificity. One should observe that various
scenarios like the Broken Item or the Yale Shooting domain differ only in the definition
of the predicate action. In what follows, we use (PA, ACI*) to denote this completed
equational logic program encoding a particular set A of action definitions of the form
(C , a , E) .

5. Models

Completed equational logic programs of the form (P*, AC1 ~) differ from the
equational programs considered in [29] since negative literals occur in clause bodies.
They also differ from programs considered in e.g. [2], since they contain the equational
theory AC1. Hence, we cannot simply apply the model theoretic semantics of [29]
or [2]. As usual, we consider only Herbrand interpretations, i.e. interpretations of the
form (U ', J '), where U ' is the set of ground terms. In this section, we show that we
can restrict .7 such that AC 1 terms are interpretated as multiset expressions. Furthermore,
we show that (PA, ACI*) is consistent and models actions, change, and specificity as
intended. We use the notation (P*, E*) ~ F to denote that the formula F is a logical
consequence of the set of formulas P* t.J E*.

THEOREM 3

Let A be a set of action descriptions; then (PA, AC 1') is consistent.

Proof

A model of (PA, ACI*) can be constructed as follows. From proposition 2 and
from the fact that ACl-unification is decidable, we conclude that AC 1" is consistent.
To be more precise, let

MAC1, = {s = tlACI* ~ s = t A {s, t} C_ U'} .

where U ' is the set of all ground terms, then MACl, is a model of ACI*. Let

Maction = MACl* U {action(c, a, e) EAI

30, (C,a, E) Ea . {c=C~- lc r , a = a , e = E ~ - l c r } C MAC1,},

then Maction is a model of {(12)} t_J ACI*. Let

Mnon_~peci~ c = Maction t.J {non_specific(a, c, v) l

3c' , e" v', w. {action(c', a, e'), c ' o v" = c o v, c o w = c ' }

Maction /k w = 0 ~ Maction }

then Mnon_specifi c is a model of {(14), (12)} tO ACI*. Let

116 S. HOlldobler, M. Thielscher, Equational logic programs

Mo =M.o~peci~c U {causes(i ,p , g)l {P = [], i = g} C Mno~peci~},

and for all k > 0 let

Mk = Mk_~ U {causes(i ,p , g)l

3a, c, e, p ' , v. {p = [alp'] , action(c, a, e), c o v = i,

causes(v o e, p ' , g)} _ Mk-1 /X non_specific(a, c, v) ~ Mk_ 1 }.

Then, by a straightforward induction on the length of the second argument of causes,
we learn that M = ~Jk~ NoMk is a model of of (13) and, consequently, M is a model
for PA U AC 1". []

It should be possible to develop a model and fixpoint theory for (P*, ACI*)
in the spirit of [29] and [2] and, in particular, to show that (P*, ACI*) admits a least
model. However, this is beyond the scope of this paper. One should observe that if
we assign the level 0 to the predicate symbols = and action, 1 to non_specific, and
2 to causes, then the program (PA, AC1) is stratified (see e.g. [34]) since the level
of the predicate symbol of every positive literal occurring in the body of a clause is
less than or equal to the level of the predicate symbol of the head of the clause, and
the level of the predicate symbol of every negative literal occurring in the body of
a clause is less than the level of the predicate symbol of the head of the clause. But
(PA, AC1) is not hierarchical (see e.g. [34]) since causes is recursive.

To prove that the completed logic program (P*, ACI*) models actions, change,
and specificity as intended, we start with a formal justification of the already mentioned
correspondence between the unification complete theory AC 1" and multiset equality.

PROPOSITION 4

Let (U ', Y) be a model of (P*, ACI*) and let (U, .I) be an interpretation such
that

(1) U = {sis is the ground instance o f an elementary term} t.J

{~]} U {~tb. . . , tn}}l t l o ... o t n E U ' }.

(2) .I is as Y except that O I = ~ ~ a n d (s o t) ~ = s ~ O t ~.

Then, (U, .I) is also a model of (P*, ACI*) and for any two ground terms s and t,
we find that

A C l * ~ s = t iff s t - t ~
and

A C l * ~ s ~ t iff s ~ t ~

Proof

(U ', .I) and (U, .I) differ only in the interpretation of the constant 0 and the
binary function symbol o such that each element of the AC 1-congruence class of an

S. H611dobler, M. Thielscher, Equational logic programs 117

AC1 term tl o ... o tn in U ' is mapped to [t l , t ,] ~ U . Hence, we find for two AC1
terms s and t that s ~" = t I' iff s ~ - t I. The proposition follows immediately. []

We now proceed by showing that specificity and causality are interpreted by
the models of (P*, ACI*) as intended. The following lemma is concerned with specificity.
One should observe that the literal ~non_specific(A, C, V) occurs in (14) in conjunction
with the literal action(C, A, E). Hence, the condition of the following lemma is
always satisfied whenever it is applied in the context of (14).

LEMMA 5

If A is a set of action descriptions and (C, a, E) EA, then

(PA, ACI*) ~ non_specific(a, C, V)

iff (C, a, E) is not a most specific action description inA w.r.t, the situation C 0 V.

Proof
Following clause (14), the formula non_specific(a, c, v) is entailed by (PA, ACI*)

iff we can find terms C', E ' , V ' , W such that

action(C', a, E ') A C ' o V ' = C o V A C o W = C' A W ; ~ 0

is entailed. This conjunction is entailed iff all its literals are entailed. Following
proposition 4, this is true iff (C', a, E ') EA (due to clause (12)), C ' t] V ' -:- C t] V ,
C ' t] W -" C', and W & { }}. Hence, (PA, ACI*) ~ non_specific(a, C, V) iff we can
find a (C' , a, E ') EA which is applicable in C t] V and for which C ' D C holds,
which is equivalent to (C, a, E) not being a most specific description. []

We now consider the interpretation of the predicate causes.

PROPOSITION 6

If A is a set of action descriptions, then

(PA, ACI*) ~ causes(l, [al an], G)

iffthere are multisets So ,Sn such that Sj - (Sj_l - Cj) t.) E i, where (C i, aj, Ej) EA
is a most specific action description of aj w.r.t. Sj_I (1 < j < n), and :/ --" So and
G - S,, and n > 0 .

Proof

The proof is by induction on the length n of the sequence of actions.

118 S. HOlldobler, M. Thielscher, Equational logic programs

In the case n = 0, the formula causes(l , [], G) is entailed iff the disjunction on
the right-hand side of (13) is entailed. The second part of this disjunction contains
the subformula [] = [AlP'I , which is false in any model of (PA, ACI*) due to the
unification completeness of ACI*. Consequently, causes(I, [], G) is entailed iff
[] = [] A I = G is entailed. Using proposition 4, this is true iff I and G denote that
same multiset.

Turning to the induction step n > 0, we assume that the result holds for all
instances of the causes predicate with an action sequence of length <n. As above,
causes(f , [a 1 ,an], G) is entailed iff the disjunction on the right-hand side of (13)
is entailed. The first part of this disjunction contains the subformula [al an] = [],
which is false in any model of (PA, ACI*) due to the unification completeness of
ACI*. Consequently, causes(l , [al ,an], G) is entailed iff we can find terms
a, C, E, p ' , V such that

[al,...,an] = [a lp '] A action(C, a, E) A C o V = I / x

-~non_specific(a, C, V) A causes (V o E, p ' , G)

is entailed. This conjunction is entailed iff all its literals are entailed. Following
proposition 4, this is true iff a = a I, p ' = [a 2 an], (C, al, E) EA (due to clause
(12)), C t3 V -" I, (C, a l, E) is most specific w.r.t. 7 (due to the preceding lemma 5)
and c a u s e s (V o E, [a2,...,an], G) is entailed. Using the induction hypothesis, the
latter is true iff there are multisets S 1 S,~ such that Sj - (Sj_I - Cj) CA Ej, where
(Cj, aj, Ej) CA is the most specific action description o fa j w.r.t. Sj_I (2 < j < n) and
V t A E "- S 1 and G - S n . The result follows immediately. []

The completeness of (P*, ACI*) ensures that the analogous proposition concerning
negative statements about causality holds in the very same way.

PROPOSITION 7

If A is a set of action descriptions, then

(PA, ACI*) ~ ~causesgl , [aa ,an], G)

iffthere are no multisets S O Sn such that Sj - (Sj_ 1 - Cj) CA Ej, where (Cj, aj, Ej) E A
is a most specific action description w.r.t. Sj_I (1 < j < n) and ~/=' S O and G - Sn.

Proof
The proof follows from the completeness of (PA, ACI*) and is again straight-

forward by induction on n. []

The last two propositions ensure that causes behaves as intended. We can now
turn to the question of how to compute answers to queries posed to equational logic
programs of the form (P, AC1), for which we will use SLDNF-resolution extended
by a complete and minimal ACl-unificat ion algorithm.

S. HOlldobler, M. Thielscher, Equational logic programs 119

6. SLDENF-resolution

Proving with completed logic programs is known to be quite inefficient. We
therefore do not want to compute with (PA, ACI*), rather we would like to compute
with (PA, AC1), i.e. the if-halves of the definitions in P* only and to use negation-
as-failure for deriving negative information.

SLDENF-resolution is like SLDNF-resolution [9] but standard unification is
replaced by an appropriate E-unification procedure. We follow the idea of [29] and
adopt the definition used in [48]. The selection rule is constrained such that negative
literals are only selected if they are ground. If the selected literal is positive, then
the derivation step is done as for SLDE-resolution [29, 15,23]. If the selected literal
is negative and if the SLDENF-evaluation of the corresponding positive literal succeeds,
then the derivation fails; otherwise, the derivation continues with the selected literals
removed from the actual set of goal literals. The following two definitions are similar
to the definitions given in [48] and extend the various definitions concerning SLDNF-
resolution which can be found in [34].

DEFINITION 5

If (P, E) is a normal E-program and G a normal goal, then an SLDENF-
refutation of rank 0 for P U { G } consists of a sequence Go Gn of normal goals
such that G = Go and Gn = [] and for each i = 1,.. . ,n, the selected literal Lk of
G i _ l , which is the goal e--L1,...,L~ Lm, is positive and there is a new variant
A ~-- B 1 BI of a program clause such that Lk E-unifies with A using the E-unifier
0 and G i is the goal ~-(L 1 Lk_I, B I B l, Lk+ 1 Lm)O. The number n is called
the length of the refutation. The composition of the substitutions 01 On restricted
to the variables in the first goal, i.e. (01... On)lVar~a) is called computed answer
substitution. 11)

A finitely failed SLDENF-tree of rank 0 for P tA { G } via a selection function
R is a finite tree such that

(1) Each node is labelled with a non-empty normal goal and the root is labelled
with G.

(2) For each node, R selects a positive literal.

(3) For each leaf node <----L t L m, the selected literal Lk does not E-unify with
the head of a new variant of any program clause.

(4) If ~ L 1 Lk ,Lm is an inner node such that Lk is selected, then for each
program clause let A ~--B1,...,BI be a new variant and let cUe(Lk, A) be a
complete set of E-unifiers of Lk and A. Then, for each 0 ~ cUe(L~, A), the node
labelled with the goal e--L1 Lk-1, B1 Bl, Lk+l Lm)O is a child of this
inner node.

ll)'~Zar(~--L1 Lm) := U i : I Var(Li).

120 S. H6lldobler, M. Thielscher, Equational logic programs

As usual, the depth of an SLDENF-tree is defined as the length of the longest path
from the root node to a leaf.

DEFINITION 6

An SLDENF-refutation of rank r (r > 1) for P t_/ {G} consists of a sequence
Go Gn of normal goals such that G = Go and Gn = [] and for each i = 1 n

(1) If the selected literal Lk of G i_l is positive, then there is a new variant of a
program clause such that Lk E-unifies with the head of this clause and G i is
the resulting goal (which is constructed as in definition 5).

(2) If the selected literal L k of Gi_ 1 is a negative ground literal ~A, then there
exists a finitely failed SLDENF-tree of rank less than r for P U { <---A } and G i

is a s Gi_ 1 except that it does not contain L k.

A finitely failed SLDENF-tree of rank r (r > 1) for P O {G} via a selection
function R is a finite tree such that

(1) Each node is labelled with a non-empty normal goal and the root is labelled
with G.

(2) For each leaf node +--Ll L,,, such that L k is the selected literal

(a) If Lk is a positive literal, then it does not E-unify with the head of a new
variant of any program clause.

(b) If L k is a negative ground literal --,A, then there exists an SLDENF-
refutation of rank less than r for P tO {<---A} via R.

(3) If +--L1 Lk L,, is an inner node such that L k is selected, then

(a) If Lk is a positive literal, then for each program clause let A ~ BI, . . . ,B t
be a new variant and let cUe(L k, A) be a complete and minimal set of E-
unifiers of Lk and A. Then, for each 0 E cUE(L k, A), the node labelled with
the goal 4-- L1 Lk- 1, B1 , Bt, Lk + 1 Lm) 0 is a child of this inner node.

(b) If Lk is a negative ground literal ~A, then there exists a finitely failed
SLDENF-tree of rank less than r for P U { <---A } via R and the only child
of the inner node is labelled with the goal 4--LI Lk_l, Lk+l Lm.

The length of a refutation, the computed answer substitution, and the depth of a tree
are defined as above.

It is noteworthy that all SLDENF-refutations and finitely failed SLDENF-trees
of rank r are at the same time of rank greater than r. As for the selection function,
we assume that it is fair, i.e. that each literal occurring in a goal is selected after
finitely many steps. As usual, a derivation is said to flounder if the derivation yields
a goal which contains only non-ground negative literals [34].

S. HOlldobler, M. Thielscher, Equational logic programs 121

non_specific (drop, fragile, O)

{ A ~ drop, .--* fragile, ~-~ 0} C V

.-- acZion(C', drop, E'), C' o V' = fragile o O, fragile o W = C', W ~ 0

{c' ~ o, E ' - a) / / / ~ ~

O o V' = fragile o O, fragile o W = O, W # 0
I

I

fragile o W = O, W ~ 0

C ' ~ fi 'agile, b r o k e n } E t ~]raaile o

,-- fragile o V' = fragile o O, fragile o W = fragile, W ~ 0

I {v, ~ o}

+- fraoile o W = fragile, W ~ 0

I OV ~-, o}

~-0#0

Fig. 4. A finitely failed SLDENF-tree of rank 1 for PA U { ~ non~pecific(drop,fragile, O) },
where A consists of the two action descriptions (2) and (3). The last node of the leftmost
branch being a leaf is justified by the fact that there is no ACl-unifier of fragile o W and
0, whereas the last node in the rightmost branch is justified to be a leaf by the existence

of an SLDENF-refutation of rank 0 for PA tO { ~ 0 = 0}.

To illustrate these definitions, fig. 4 shows a finitely failed SLDENF- t ree of
rank 1 for PA U { ~--nonspeci f ic (drop, fragile, 0)}, where A = { (2), (3)}, i.e. the action
definit ion ([f rag i l e], drop, ~ fragi le , broken]) is indeed the most specific one w.r.t.
the situation f rag i l e o g =ACl f ragi le . Figure 5 shows an SLDENF-refuta t ion of rank 2
for PA U { <---causes(fragile, [drop], X)} which uses the SLDENF- t ree of fig. 4 and
yields the computed answer substitution {X ~ f rag i le o broken}. In both examples ,
subgoals are selected from left to right and unifiers are computed under the equational
theory AC1.

Recently, Shepherdson could prove the soundness of SLDENF-resolu t ion w.r.t.
the complet ion semantics [48]:

THEOREM 8

Let (P, E) be a normal E-program and G a normal goal (- - - - L 1 L m.

(1) If there is an SLDENF-refutation for P U { G} with computed answer substitution
/9, then (P*, E *) # V((L1 A ... A Lm)O).

(2) I f P U {G} has a finitely failed SLDENF-tree, then (P*, E*) ~ -~9(L1 A ... A L m) .

122 S. H~lldobler, M. Thielscher, Equational logic programs

causes (fragile, [drop], X)

{ I ~ lragilr A ~-~ drop, P H [], G *-.-* X }

action(C, drop, E), C o V = yragile, -mort_specific(drop, C, V), causes (E o V, [],X)

{C ~ lrayile, *--* lragile o broken} E

~ - l~agite o v = l~agite, ~,~on_,peci fic(drop, ~ g i t e , V), ca~,,e, (#agit~ o broken o V, [], X)

, - -~non-~ci~c(d~op,/,'~gile, ~), Ca~,,~, (#agile o b~ken o ~, [], X)

I
. - ~a,~e~(/~gile o brok~,~ o ~, [], X)

i { t ~ .h'aoile o broken, X ~ lvaoile o broken}

[]

Fig. 5. An SLDENF-refutation of rank 2 for PA t.J { e--causes(fragile, [drop], X)},
where A consists of the two action descriptions (2) and (3). The fourth derivation
step is justified by the exitence of a finitely failed SLDENF-tree of rank I for

PA U { e--non.specific(drop, fragile, 0)} (see fig. 4).

The question whether SLDENF-resolution is complete is more difficult to
answer. Negation-as-failure is incomplete in general [9], i.e. completeness results for
SLDNF-resolution, where no equational theory is considered, are obtained only for
restricted classes of programs. For instance, it is complete for definite programs and
normal ground goals [28] and for hierarchical normal programs and normal goals,
if they are allowed [28, 47]. In the latter case, the conditions attached to programs
and goals ensure that the SLDNF-tree of a program and a goal exists and is finite,
and that a derivation of a goal with respect to a program never flounders.

We need similar conditions for the E-programs considered in this paper. But
there is an additional difficulty. As the axioms of equality are built into the unification
computation and E-unification problems may be infinitary, a node occurring in an
SLDENF-tree may have infinitely many successor nodes. Consider, for instance, the
normal E-program (P, E) which consists of the clauses

p(b).

q(X, X) ~-- p(X).

r ~-- q (a . Y , Y . a).

(15)

along with the law of associativity for the binary function �9 Clearly, the completion
of this program is consistent, each derivation of P LJ { e-- r } is finite, and no derivation
of P t2 { e--r} flounders. --1 r is a consequence of the completion of (P, E) since q is

S. HOlldobler, M. Thielscher, Equational logic programs 123

- - - r

.--q(a y,Y.a)

/
6- p(a. a) *.- p(a. a. a)

Fig. 6. An infinite SLDENF-tree for P U { ~ r}, where P
consists of the clauses (15) and. is an associative function.

true just in the case of q(b, b). Searching for an SLDENF-refutation for the goal +-- r
using any most general E-unifier of q(a . Y, Y . a) and q(X, X) leads to a binding of
the form {X ~ a �9 ... - a} and, hence, to a subgoal of the form p(a �9 ... �9 a) after two
steps which fails to unify with p(b). Thus, every derivation of r fails within exactly
three steps. However, there is no finitely failed SLDENF-tree for P U { +--r} since
there is an infinite number of most general E-unifiers of q(a �9 Y, Y . a) and q(X, X)
w.r.t, associativity (see fig. 6). This phenomenon cannot be observed in the case of
finitary equational theories - provided the employed unification algorithm always
computes a finite set - w h i c h leads to the following completeness result.

THEOREM 9

Let (P, E) be a normal E-program, where E is finitary and (P*, E*) is consistent,
and G be a normal goal +--L 1 ,L,n such that no SLDENF-derivation of P U {G}
flounders or is infinite. If (P*, E*) ~ 3(L 1 A ... A Lm), then there exists an SLDENF-
refutation for P U {G}.

Proof

The proof is by contradiction. Assume that (P*, E*) ~ 3(L 1 A ... ALm) and
there does not exist an SLDENF-refutation for P U {G}. Since no derivation of
P U {G} is infinite and because E is finitary, we find that the SLDENF-tree of
P U {G} is finite. Since no derivation of P U {G} flounders, this tree is finitely failed.
By theorem 8(2), we learn that in this case (P*, E*) ~ ~3 (L 1 A ... ALm). []

The previous theorem is based on the premise that no derivation of P U { G}
flounders or is infinite. We would like to have a syntactical condition which guarantees
this premise. Unfortunately, as already mentioned in section 5, the E-programs (P~, AC1)
are not hierarchical as causes is recursive. The number of recursive calls to causes

124 S. H~lldobler, M. Thielscher, Equational logic programs

depends on the second argument of causes, which is a list. If the length of this list
is known in advance, then each derivation of a query of the form <---causes(i, p, g)
is finite, where i and g are (possibly uninstantiated) AC1 terms denoting the initial
and goal situation, respectively, and p is a (possibly uninstantiated) list of a given
length, e.g. p = [A1,...,An], where Aj, 1 < j < n, are variables. Hence, if the program
(PA, AC1) is applied to generate a plan, i.e. sequence of actions, for transforming an
initial situation i into a goal situation g and completeness is important, then the
number of actions in the plan have to be fixed in advance. If such a plan does not
exist, then a kind of iterative deepening procedure should be applied which seeks for
a longer plan.

However, knowing the length of the plan does not guarantee that an SLDENF-
derivation does not flounder. In what follows, we prove the claim that no derivation
of some ~--causes(i, p, g) flounders if the initial situation i is ground. These two
observations regarding finiteness and non-floundering, respectively, are combined in
the following proposition, which allows us to apply theorem 9 to our program. In the
sequel, let (PA, AC1) be an equational logic program encoding a set A of action
definitions. Consequently, SLDENF-derivations are computed w.r.t, the equational
theory AC1.

PROPOSITION 10

Let G be the goal ~--causes(i, [al an], g), where i is ground and al an, g
are arbitrary terms (n > 0). Then, no SLDENF-derivation of PA tA { G } flounders or
is infinite.

Proof

The proof is by induction on n.
In the case n = 0, causes(i, [], g) can only be ACl-unif ied with the first clause

of (7) and only if i and g are ACl-unifiable. Hence, either we obtain the empty
clause, or the derivation fails immediately.

The the case n > 0, G can only be ACl-unif ied with the head of the second
clause of (7). Applying an SLDENF-resolution step yields the goal

~--action(C, a 1, E), C o V= i, -~non_specific(a 1, C, V), causes(E o V, [a2,...,an], g).

Without loss of generality, it is assumed that the literals are selected from left to right.
Note that the third literal cannot be selected until its arguments are instantiated to
ground terms. If the leftmost literal is selected, then either the derivation finitely
fails, or the literal can be solved using a new variant action(c, a, e) of one of the
clauses (6), yielding a substitution 01 such that CO 1 -~ COl, a 1 01 = aO1, and E01 = e01.
According to definition 1, we know that a is a constant and, hence, Var(a 01) = Vat(a)
= 0, and Var(e01) C_ Var(cO1). The resulting goal is

S. HOlldobler, M. Thielscher, Equational logic programs 125

(---- COl o V - - i, -~non_specific(a, CO1, V), causes(e o V, [a2 an], g)01.

Now, if again the leftmost literal is selected, then either the derivation finitely fails
or the literal can be solved via ACl-unification, i.e. by applying clauses (9), with
substitution 02. Note that (c01 o V)02 and a02 = a as well as (e o V)01 02 are necessarily
ground because i is a ground term and the equational theory AC1 is regular. Then,
the remaining goal is

~-- ~non_specific(a, c, V)01 02, causes(e o V, [a 2 an] , g)OlO 2.

According to the preceding discussion, the negative literal can now be selected. The
following 1emma l l proves that the corresponding SLDENF-tree is finite. Thus,
either the derivation finitely fails, or continues with

~-- causes(e o V, [a2,...,an], g)OlO2.

Due to the fact that 02 is a ground substitution for cO1 and V, and since Var(e01)
C Var(cOa), it follows that the first argument of the remaining literal is ground.
Hence, we can apply the induction hypothesis to show that the derivation neither
flounders nor is infinite. []

LEMMA 11

Let G be the goal +--non_specific(a, c, v), where c, a, v are ground terms; then
no SLDENF-derivation of PA U {G} flounders or is infinite.

Proof

There is only one possibility to start the derivation, namely to apply clause (8),
which yields

+--act ion(C' ,a ,E') , C 'o V ' = c o v, co W= C', W~O.

Without loss of generality, it is assumed that the literals are selected from left to right.
Note that the rightmost literal cannot be selected until W is instantiated to a ground
term. If the leftmost literal is selected, then either the derivation finitely fails, or the
literal can be solved using one of the clauses (6), yielding a substitution 01 such that
C'01 = c'01 and E'O 1 = e'O1 for some terms c', e' . The resulting goal is

6---C'01 o V ' = c o I), co W=c'Ol , Wr

Now, if the two leftmost literals are selected, then either the derivation finitely fails
or they can be solved via AC 1-unification, i.e. by applying clause (9), with substitutions
02 and 03, respectively. Note that c o v being ground implies, as in the preceding
proof, c'O1 0203 being ground, which therefore holds for W0203 as well. Hence, the
remaining goal

~- W 0 2 0 3 ~

does not flounder and either fails or reduces to the empty goal. []

126 S. HOlldobler, M. Thielscher, Equational logic programs

Requiring the initial situation to be fully instantiated is acceptable in the case
of modelling the application of methods to given objects, or in the case of planning
problems. On the other hand, our approach is also suitable for more general kinds
of reasoning about actions and change. This is illustrated in the following section,
where it is also argued that, to this end, it is necessary to consider incompletely
specified, i.e. only partially instantiated, initial situations. A solution which allows
one to overcome the restriction given via proposition 10 is then briefly discussed in
section 8.

7. Reasoning about the past

Beside temporal projections, which is to predict what happens given an initial
situation or object and a sequence of actions or methods, and planning, which is to
find an appropriate sequence of actions which transforms a given initial situation into
a given goal situation, one is often interested in reasoning about situations in the past,
depending on what can be observed in the actual situation. This causes no problems
in the original equational logic programming approach [25], but is more difficult for
actions and specificity since negative literals occur in clause bodies and incomplete
information about former situations is modelled via partially instantiated situations
which may lead to uninstantiated negative subgoals. These problems are investigated
in this and the following section.

As an example, recall the Broken Item domain from section 3 in a variant which
we call Broken Item Mystery. Assume that a previously intact item is broken after the
execution of a drop action. In this case, we want to conclude that the item must have
been fragile at the beginning. Can we derive such a conclusion with our method?

The Broken Item Mystery is as the Broken Item domain discussed in section 3,
except that a new fluent, solid, is introduced. We will see later on that a fundamental
operation for reasoning about the past is the decision whether a situation or a collection
of situations is consistent. The new fluent causes a reformulation of the inconsistency
criterion (1): A situation S in the Broken Item Mystery domain is defined to be
inconsistent iff

~broken, intact~ C_ S V {{solid, f rag i le~ C_ S V
(16)

3 X ~ {broken, intact, solid, f ragi le} . [X , X J C S.

As a completed clause, this can be formalized for the Broken Item domain by

VX[inconsistent(X) <-->

V

V

V

V

V

3E broken o intact o Y = X

3E solid o fragi le o y = X

3E broken o broken o Y = X

3 E intact o intact o Y = X

3Y. solid o solid o y = X

3Y. fragi le o fragi le o Y = X].

(17)

S. H6lldobler, M. Thielscher, Equational logic programs 127

Recall that the actions or methods were defined such that their application to
a consistent situation yields again a consistent situation (see section 3). Since in the
temporal projection problems considered so far, the initial - and presumably consistent -
situation was given, there was no need to test the consistency of derived situations.
Reasoning about the past, however, is mainly based on finding consistent explanations
for observations, and the initial as well as the final situation are only partially
defined. For example, in the Broken Item Mystery, one might ask whether the formula

3V, W[causes(intact o V, [drop], broken o W)] (18)

is entailed by the completed program. Since the initial situation intact o V as well as
the final situation broken o W contains a variable, we have to check the consistency
of the situations as soon as the variables are instantiated. Fortunately, however, since
the application of an action preserves the consistency of a situation, we have to
perform a consistency check only once. Hence, it suffices to add to the query (18)
a single consistency check:

3V, W[causes(intact o V, [drop], broken o W) A -~inconsistent(intact o V)]. (19)

In other words, can we find a consistent initial situation 7 ~ ~ intact}} such that the
sequence of actions [drop] transforms ~/into a situation G such that ~ "_ Rbroken}}?
It should be observed that requiring consistency is inevitably necessary since otherwise
a simple solution to (18) would consist of the bindings {V~-~ broken, Wv--) intact}.

Expression (19) is in fact entailed, yielding e.g. the bindings V~--)fragile and
W w-~fragile. Thus, it is consistent to assume that the object was fragile. However,
this result is not sufficient if we want to be ensured that the object must have been
fragile. To test whether fragile holds necessarily in the initial situation, we should
ask whether it is impossible to assume the contrary, i.e. to assume that the object was
solid. This could be achieved by the additional question whether the formula

-~ 3V', W'[causes(intact o solid o V', [drop], broken o W') A

-~ inconsistent(intact o solid o V')]
(20)

is entailed, which should be interpreted as there is no way to satisfy the observation
that the item is broken provided it was intact and solid at the beginning. Expression (20)
is indeed entailed. Informally, the only possibility for unifying the goal situation
broken o W" with the result of applying an action description of drop to the initial
situation intact o solid o V" requires V' to be substituted by a term like fragile o Z.
This, however, can be shown to be inconsistent for any Z since solid and fragile must
not occur in a situation due to the consistency criterion (17). Thus, the consistency
check and the completeness of AC 1" provide the desired (negative) answer. Obviously,
such conclusions are mainly based on the unification completeness of AC 1". Otherwise,

128 S. HOlldobler, M. Thielscher, Equational logic programs

it is impossible to find proofs for statements as, for example, VZ[intact o solid o V = Z
---) (VZ ' . f rag i l e o Z" ~ Z) V inconsistent(Z)], i.e. if situation Z contains the fluents
intact and solid, then it either does not contain the fluent fragile or it is inconsistent.

The final proposition is a justification of the method described above. Whenever
backward reasoning should be performed, then we start with searching for fluents
which are consistent to assume by investigating the various instances which make
formulas as e.g. (19) true. Then, to test whether these fluents must have been true
at the beginning, we try to assume the contrary of each fluent separately using
formulas as e.g. (20). The following proposition claims that whenever there are no
two multisets V and W such that the consistent initial situation i ~ t3 V can be
transformed into the goal situation gl t.) W via the sequence [al,...,an] w.r.t, a set
of action descriptions A, then the formula -~ 3V, W[causes(i o V, [al ,an], g o W) A

inconsistent(i o V)] is entailed by (PA, ACI*).

PROPOSITION 12

If A is a set of action descriptions, then

(P~, ACI*) ~ ~ q v , W[causes(i o V, [al ,an], g ~ V) A ~inconsistent(i o V)]

iff there are no consistent multisets So,..., S n such that Sj "- (Sj_ 1 - Cj) (A Ej, where
(Cj, aj, Ej) E A is a most specific action description of aj w.r.t. Sj_ 1 (1 < j < n) and
i ~C_" S O a n d g I C S n.

Proof

The claim follows from propositions 7 and 4. []

A semantics for methods to reason about actions and change was recently
proposed by Gelfond and Lifschitz [17]. Their Action Description Language A
allows the specification of simple action scenarios and is capable of performing the
kind of reasoning described here, i.e. reasoning about the past and handling partially
specified situations are supported. As the above analysis already indicates, our equational
logic programming based approach includes the expressiveness of the Action Description
Language. The formal soundness and completeness result of a formalization in terms
of equational programs including the concept of specificity w.r.t, the semantics of A
is established in [52]. This result shows that our method is provably equivalent to
a variety of other systems designed for reasoning about actions and change, most of
them based on the situation calculus, which were also related to A recently, such as
Baker's method [5] based on circumscription [37], Pednault's [40] and Reiter's [41]
approach based on classical logic (all three adequateness result regarding A were
established in [31]), or the application of abductive logic programming ([12] and,
independently, [11]).

Moreover, in [51], the Action Description Language is related to Sandewall's
so-called Ego-World-Semantics [43,44], which provides another semantical framework

S. H6lldobler, M. Thielscher, Equational logic programs 129

to reason about dynamically changing worlds. The equivalence of a slightly restricted
version of A to a particular ontological problem class in Sandewall's methodology
has been proved. This justifies the claim that our approach forms just as well a sound
and complete encoding of this problem class within the frame of the Ego-World-
Semantics.

8. Constructive negation

A problem arises when trying to solve goals of the form used in the
previous section as, for example, (18) with SLDENF-resolution. The problem is a
consequence of the fact that a derivation flounders if the actual set of subgoals
contains only negative non-ground literals. Consider, for instance, the formula
3 V [causes (in tact o V, [], in tact o V) A -~ incons i s ten t (in tac t o V)]. Clearly, this is entailed
by the completed clauses (13) and (17) by using the binding {V~--> 0}, say. But as
a goal to the logic E-program defined by (13) and (17), there is no refutation because
this requires to solve the goal e- -~ incons i s ten t (in tac t o V) , which flounders immediately.

To solve this problem, we suggest to use the idea of constructive negation [8].
Informally, constructive negation handles negative non-ground literals in the way that
a complete set of answer substitutions to the corresponding positive literals is computed,
and afterwards these answers are used to define restrictions on the variables occurring
in the original negative goal literal. A special case occurs when the disjunction of
these answers evaluates to true - t h e n the negative goat fails. For instance, the set
of answers to the positive goal <---inconsistent(intact o V) determined by clause (17)
is

{ V = b r o k e n o y ,

V = so l id o f r a g i l e o Z A Y = in tac t o Z,

V = b r o k e n o b r o k e n o Z A Y = in tac t o Z, (21)
V = in tact o y ,

V = so l id o so l id o Z A Y = in tac t o Z,

V = f r a g i l e ~ o Z A Y = in tac t o Z } .

Thus, the constructive answer to the negative goal e-- ~ i n c o n s i s t e n t (i n t a c t o V) is the
conjunction

V ~ b r o k e n o Y A V r so l id o f r a g i l e o Z A V ~e b r o k e n o b r o k e n o Z A

V ~ in tac t o y / x V r so l id o so l id o Z A V c f r a g i l e ~ o Z, (22)

which is satisfiable via, for example, V = 0. Note that the restrictions to the variable
Y in (21) do not occur in (22) since Y was not a free variable in the goal literal
-7 i n c o n s i s t e n t (i n t a c t o V) .

What happens in the case of a formula like e.g. 3V. ~ i n c o n s i s t e n t (i n t a c t o

b r o k e n o V) , which should be unsatisfiable? The answer set to the positive goal
i n c o n s i s t e n t (i n t a c t o b r o k e n o V) is

130 S. H~lldobler, M. Thielscher, Equat iona l logic p rograms

{ V = Y ,

V = s o l i d o f r a g i l e o Z / ~ Y = i n t a c t o b r o k e n o Z ,

V = b r o k e n o Z A Y = i n t a c t o Z ,

V = i n t a c t o Z A Y = b r o k e n o Z ,

V = s o l i d o s o l i d o Z A Y = i n t a c t o b r o k e n o Z ,

V = f r a g i l e o f r a g i l e o Z A Y = i n t a c t o b r o k e n o Z } .

(23)

This set, which is interpreted as a disjunction of the elements, evaluates to true due
to the first element. Thus, the goal --1 i n c o n s i s t e n t (i n t a c t o b r o k e n o V) fails, which is
exactly the desired behavior.

Constructive negation is known to be sound and complete w.r.t, the completed
program in the case of finite derivation trees (cf. [8]) if the standard equational theory
is assumed. Whether this also holds in the case of an additional equation theory
- which is finitary - is an open problem. If this question can be positively answered,
then we are able to solve goals of the form determined by formulas as, for example,
(18) or (20).

9. Discussion

In this paper, we have presented an equational logic approach to reasoning
about situations, actions, and change, where situations are multisets of facts and an
action is applied to a situation S by deleting its condition from and adding its effect
to S. In particular, we have focused on specificity such that more specific action
descriptions are preferred. This solves an open problem in the approaches of [1,20]
or [42].

The specificity relation is computed syntactically by comparing the conditions
of different action descriptions for the same action and preferring the description
whose condition is a superset of the conditions of the other descriptions. At first
glance, this seems to be a weaker criterion compared to the definition of specificity
in non-monotonic logics such as conditional logics as given in [10] or [16]. In these
logics, specificity is not only defined w.r.t, the antecedent of conditional implications
(i.e. defaults), but also w.r.t, a set of strict formulae. We believe that our approach
can be extended to consider such a set of strict formulae as well. However, only a
rigorous comparison between the various approaches to handle specificity will show
whether they are really identical.

The equational logic programs considered in this paper are normal programs
together with an equational theory. Such programs are queried by normal goals. As
mentioned before, this class of problems is a combination of the class of problems
considered in [29] consisting of definite programs with equality and normal goals and
the class of problems considered in [2] consisting of normal programs and normal
goals, but without a general equational theory. We have shown that the models for
the equational logic programs considered herein interpret causality and specificity as

S. H6lldobler, M. Thielscher, Equational logic programs 131

intended. However, we have not yet investigated the class of normal programs with
equality and normal goals in general. We believe that the model intersection property

holds also for this class and that a fixpoint theory can be developed which relates
least fixpoints and least models. The question which of the various results concerning
consistency and completeness of SLDNF-resolution such as [45, 30, 50] can be extended
to SLDENF-resolution as well is part of future work.

We have mainly restricted our presentation to actions, whose conditions and
effects are ground, and to situations, which are ground as well. However, as already
discussed at the end of section 6, we may lift this restriction and allow variables to
occur in situations as well as in the conditions and effects of actions. This causes no
problems as long as we focus on the completed equational logic program and lift the

definition of specificity as well. It causes also no problems as long as negative literals
do not occur in clause bodies (cf. [20]). However, as soon as negative literals in
clause bodies are allowed and negation-as-failure is applied, we have to be more
careful. Currently, we must ensure that negative subgoals are fully instantiated before
they are called. However, this condition seems to be too strong. For the particular
application in mind, viz. specifying actions, causality and specificity, we hope to find
weaker conditions. For instance, a subgoal of the form W ~: 0 can be decided iff W
is either instantiated to 0 or to a term of the form s 1 o ... o sn, where n > 1 and si,

1 < i < n are elementary terms. We could go even one step further and use constructive
negation as indicated in section 8. Such an extension would greatly enhance the

expressive power of our system, as the example given in section 7 shows.

References

[1] J-M. Andreoli and R. Pareschi, Linear objects: Logical processes with built-in inheritance, New
Generation Comp. 9(3,4) (1991).

[2] K.R. Apt, H.A. Blair and A. Walker, Towards a theory of declarative knowledge, in: Foundations
of Deductive Databases and Logic Programming, chap. 2, ed. J. Minker (Kaufmann, 1987) pp.
89-148.

[3] F. Baader and J.H. Siekmann, Unification theory, in: Handbook of Logic in Artificial Intelligence
and Logic Programming, eds. D.M. Gabbey, C.J. Hogger and J.A. Robinson (Oxford University
Press, 1993).

[4] A.B. Baker, A simple solution to the Yale shooting problem, Proc. Int. Conf. on Knowledge
Representation and Reasoning, 1989, pp. 11-20.

[5] A.B. Baker, Nonmonotonic reasoning in the framework of situation calculus, Artificial Intelligence
Journal 49(1991)5-23.

[6] W. Bibel, A deductive solution for plan generation, New Generation Comp. 4(1986)115-132.
[7] W. Bibel, Intellectics, in: Encyclopedia of Artificial Intelligence, ed. S.C. Shapiro (Wiley, New

York, 1992) pp. 705-706.
[8] D. Chart, Constructive negation based on the completed database, Proc. Int. Joint Conf. and

Symp. on Logic Programming (IJCSLP), 1988, pp. 111-125.
[9] K.L. Clark, Negation as failure, in: Workshop Logic and Data Bases, eds. H. Gallaire and J.

Minker (Plenum Press, 1978) pp. 293-322.
[10] J.P. Delgrande, A semantically-based account of nonmonotonic reasoning in Horn-clause and

logic programming (1992), submitted J. Logic. Progr.

132 S. Hi~lldobler, M. Thielscher, Equational logic programs

[11] M. Denecker and D. de Schreye, Representing incomplete knowledge in abductive logic programming,
Proc. Int. Logic Programming Symposium (ILPS), Vancouver, 1993, ed. D. Miller (MIT Press)
pp. 147-163.

[12] P.M. Dung, Representing actions in logic programming and its applications in database updates,
Proc. Int. Conf. on Logic Programming (ICLP), Budapest, 1993, ed. D.S. Warren (MIT Press)
pp. 222-238.

[13] L. Brownston et al., Programming Expert Systems in OPS5 (Addison-Wesley, Reading, MA,
1985).

[14] R.E. Fikes and N.J. Nilsson, STRIPS: A new approach to the application of theorem proving to
problem solving, Artificial Intelligence Journal 5(1971)189-208.

[15] J.H. Gallier and S. Raatz, Extending SLD-resolution to equational Horn clauses using E-unification,
J. Logic Progr. 6(1989)3-44.

[16] H. Geffner and J. Pearl, Conditional entailment: Bridging two approaches to default reasoning,
Artificial Intelligence 53(1992)209-244.

[17] M. Gelfond and V. Lifschitz, Representing action and change by logic programs, J. Logic Progr.
17(1993)301-321.

[18] J.Y. Girard, Linear logic, J. Theor. Comp. Sci. 50(1987)1-102.
[19] G. Grol3e, S. H~lldobler and J. Schneeberger, Linear deductive planning, J. Logic and Comput.

(1995), to appear.
[20] G. Grol3e, S. H6lldobler, J. Schneeberger, U. Sigmund and M. Thielscher, Equational logic

programming, actions, and change, Proc. Int. Joint Conf. and Symp. on Logic Programming
(IJCSLP), Washington, 1992, ed. K. Apt (MIT Press) pp. 177-191.

[21] S. Hanks and D. McDermott, Nonmonotonic logic and temporal projection, Artificial Intelligence
Journal 33(1987)379-412.

[22] P. Hoddinott and E.W. Elcock, Prolog: Subsumption of equality axioms by the homogeneous
form. Proc. Symp. on Logic Programming (1986) pp. 115-126.

[23] S. H/511dobler, Foundations of Equational Logic Programming, Lecture Notes in Artificial Intelligence
353 (Springer 1989).

[24] S. HSlldobler, On deductive planning and the frame problem, Proc. Int. Conf. Logic Programming
and Automated Reasoning (LPAR), Lecture Notes in Artificial Intellegence 624 (Springer, 1993)
pp. 13-29.

[25] S. Htilldobler and J. Schneeberger, Deductive approach to planning, New Generation Comp.
8(1990)225-244.

[26] S. HSlldobler and M. Thielscher, Actions and specificity, Proc. Int. Logic Programming Symposium
(ILPS), Vancouver, 1993 (MIT Press)pp. 164-180.

[27] S. H611dobler and M. Thielscher, Properties vs. resources - solving simple frame problems,
Technical Report AIDA-94-15, Intellektik, Informatik, TH Darmstadt (1994).

[28] J. Jaffar, J.-L. Lassez and J. Lloyd, Completeness of the negation as failure rule, Proc. Int. Joint.
Conf. on Artificial Intelligence (IJCAD, 1983, pp. 500-506.

[29] J. Jaffar, J.-L. Lassez and M.J. Maher, A theory of complete logic programs with equality, J.
Logic Progr. 1(1984)211-223.

[30] G. J~iger and R.F. St~rk, The defining powers of stratified and hierarchical logic programs, J.
Logic Progr. 15(1993)55-77.

[31] G.N. Kartha, Soundness and completeness theorems for three formalizations of actions, Proc.
Int. Joint Conf. on Artificial Intelligence (IJCAI), Chamb6ry, France, 1993 (Kaufmann) pp.
724-729.

[32] R. Kowalski, Logic for Problem solving, Vol. 7 of Artificial Intelligence Series (Elsevier, 1979).
[33] V. Lifschitz, On the semantics of STRIPS, Proc. Workshop on Reasoning about Actions and

Plans, eds. M.P. Georgeff and A.L. Lansky (Kaufmann, 1986).
[34] J.W. Lloyd, Foundations of Logic Programming, Symbolic Computation Series, 2nd extended

ed. (Springer, 1987).

S. HOlldobler, M. Thielscher, Equational logic programs 133

[35] M. Masseron, C. Tollu and J. Vauzielles, Generating ptans in linear logic, in: Foundations of
Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science 472
(Springer, 1990) pp. 63-75.

[36] J. McCarthy, Situations and actions and causal laws, Memo 2, Stanford Artificial Intelligence
Project (1963).

[37] J. McCarthy, Circumscription - A form of non-monotonic reasoning, Artificial Intelligence
Journal 13(1980)27-39.

[38] J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial
Intelligence Journal 28(1986)89-116.

[39] J. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint of artificial
intelligence, Machine Intelligence 4(1969)463-502.

[40] E. Pednault, ADL: Exploring the middle ground between STRIPS and the situation calculus,
Proc. Int. Conf. on Principles of Knowledge Representation and Reasoning (KR), 1989, eds. R.
Brachman, H. Levesque and R. Reiter, pp. 324-332.

[41] R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes) and a
completeness result for goal regression, in: Artificial Intelligence and Mathematical Theory of
Computation, ed. V. Lifschitz (Academic Press, 1991) pp. 359-380.

[42] R. Reiter, Formalizing database evolution in the situation calculus, Proc. Int. Conf. on Fifth
Generation Computer Systems, 1992.

[43] E. Sandewall, Features and fluents, Technical Report LiTH-IDA-R-92-30, Institutionen fSr
datavetenskap, Univeritetet och Tekniska h6gskolan i Link6ping, Schweden (1992).

[44] E. Sandewall, The range of applicability of nonmonotonic logics for the inertia problem, Proc.
Int. Joint Conf. on Artificial Intelligence (IJCAI), Chamb6ry, France, 1993 (Kaufmann) pp.
738-743.

[45] T. Sato, Completed logic programs and their consistency, J. Logic Progr. 9(1990)33-44.
[46] J. Schneeberger, Plan generation by linear deduction, Ph.D. Thesis, FG Intellektik, TH Darmstadt

(1992).
[47] J.C. Shepherdson, Negation in logic programming for general logic programs, in: Foundations

of Deductive Databases and Logic Programming, chap. 1, ed. J. Minker (Kaufmann, 1987) pp.
19-88.

[48] J.C. Shepherdson, SLDNF-resolution with equality, J. Autom. Reasoning 8(1992)297-306.
[49] J.H. Siekmann, Unification theory, J. Symb. Comput. 7(1989)207-274. Special issue on unification.
[50] K. Stroetmann, A completeness result for SLDNF-resolution, J. Logic Progr. 15(1993)337-355.
[51] M. Thielscher, An analysis of systematic approaches to reasoning about actions and change, Int.

Conf. on Artificial Intelligence: Methodology, Systems, Applications (AIMSA), Sofia, Bulgaria,
1994, ed. E Jorrand (World Scientific, Singapore). Available by anonymous ftp from 130.83.26.1
in/pub/AIDNTech-ReportslOYH ER.

[52] M. Thielscher, Representing actions in equational logic programming, Proc. Int. Conf. on Logic
Programming (ICLP), Santa Margherita Ligure, Italy, 1994, ed. P. Van Hentenryck (MIT Press)
pp. 207-225.

