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Research in Intellectics, ie. Artificial Intelligence (AI) and Cognition, has always
focussed on two primary goals, viz. to understand how humans behave intelligently
and to make systems behave intelligently. Unfortunately, many researchers had and
still have the habit of following only one of these goals although it is not at all clear
that one can get closer towards one of these goals without getting closer to the other
one at the same time. Can we expect to build a robot which applies common sense
reasoning to solve a given task in a previously unknown environment if we do not
understand how the human nervous system perceives, processes, and acts in a similar
scenario? Can we expect to fully understand the human nervous system if we cannot
build a machine which behaves similarly? Machines already outperform humans in
many simple manual and some simple intellectual activities. We do not want to give
up these advantages. On the contrary, we want our machines to perform intellectually
more demanding activities like planning, diagnosing, or common sense reasoning. What
is the kind of similarity between a machine and a human that we are aiming at?

Computational models have widely been used in modern psychology to explain per-
ception, thought, and behavior. Moreover, many researchers in the Neurosciences
believe that the activities of our brains and nervous systems are computations in the
very same sense as computations are the kind of activities performed by computers (see
eg. [3]). One should observe that this believe has various consequences. If we addition-
ally assume that all computations performed by a computer are formalized — and this
assumption is widely accepted in Computer Science and AI – then it follows on the one
hand that anything a machine could possibly achieve in simulating human intelligence
can be formally described [10] and, on the other hand, that intelligent behavior can be
formally described [9].

A computational model usually consists of three levels, viz. the abstract or specifica-
tion level, the algorithmic level, and the physical level. This is independent of whether



we follow a top–down or bottom–up approach. For example, in AI one often starts
with a specification, eg. a certain logic, develops an algorithm for the specification, eg.
a calculus together with appropriate tactics and strategies, and finally implements the
algorithm on a computer. On the other hand, in Cognitive Science one often starts
with a biological system, eg. the human, analyses the hardware, ie. the receptors, the
neurons, their connections, etc., tries to understand the “algorithms” which are “exe-
cuted” on this hardware, and finally attempts to specify the behavior of the biological
system.

From Computer Science we learn that theoretically the three levels are independent
and, in particular, that algorithms can be designed independently of the underlying
physical system. As a typical computer as well as a neuronal system are universal one
could argue, that what really matters are the specification and the algorithmic level,
and if an algorithm is correct and complete with respect to the given specification,
then it does not matter whether it is run on a silicon–based computer or an a neuronal
system. Is this really true?

Let us have a look at an example. Suppose we want to design a system which
recognizes persons and, in particular, recognizes our grandmother. From an AI point
of view we would specify the visual properties of our grandmother in, say, some logic
language and, whenever a visual scene is given, we match the persons in the visual
scene against the stored visual properties of our grandmother. The matching task can
be encoded such that it is essentially a validity problem in the logic used and, hence,
some calculus can be used to compute the answer. One should note that the task is
quite tricky as we know more persons than just our grandmother and we do not only
consider standardized pictures of our grandmother but want the system to recognize
grandma independently of whether she is sitting in the church, riding a bicycle, or
cleaning up her apartment. We should not be surprised to discover that the time to
find an answer is exponential with respect to the size of the knowledge base. On the
other hand experience tells us that it takes usually only a few milliseconds to recognize
our grandmother in the real life even if she is standing in the middle of a crowd of
people.

More generally, many tasks which are specified naively in some formal language turn
out to be exponential in time whereas humans solve these tasks in the millisecond
range. As real neurons are quite slow computational devices we can conclude that only
few steps may have taken place until our nervous system has reached a conclusion (see
eg. [4]). Although the nervous system is massively parallel the results from Theoretical
Computer Science tell us that parallelization alone cannot solve the apparent gap
between the performance of a naivly designed AI system and a human.

There are a variety of reasons which may explain this gap. The used specification
language may be too expressive. The given specification may be faulty, the selected
algorithms may not be appropriate, the demanded properties of the algorithm like, for
example, completeness may be too severe, the applied tactics and strategies may be
clumsy, the chosen data structures and the machine architecture may be unsuitable,
etc. Obviously, these causes do not only concern the implementation level but the



other levels as well. We do not want to analyse each of these causes independently and
in detail as we believe that we have to consider all of them in order to get closer to the
ulimate goal of Intellectics. Rather we would like to discuss whether there is a kind
of abstract or general property that AI–systems and methods should satisfy. Clearly,
AI–systems and methods should be correct or, at least, should approximate a correct
solution arbitrarily accurate. But what about other properties?

In this talk we will discuss the adequateness of AI–systems and methods. Following
[2] a (proof) method is adequate if — roughly speaking — for any given knowledge base,
the method solves simpler problems faster than more difficult ones. Thereby simplicity
is measured under consideration of all (general) formalisms available to capture the
problem.

Before we discuss the notion of adequateness by means of four example, we will make
some general remarks. The systems, methods, knowledge bases, and problems referred
to in the previous characterization are assumed to be formalized objects as we believe
that all computations done by a computer are formalized. Although adequateness is
only defined for proof methods in [2] this is by no means a restriction and the definition
applies to other formalized methods as well. As already stated in [2], the definition
hinges on the given knowledge base as one could always solve a problem in one step
if its solution is added to the knowledge base. Last but not least, one should observe
that if we accept the hypothesis that our brain and nervous system computes then our
brain and nervous system is itself a formalism and has to be taken into consideration.

Specification Languages may be Inadequate. Our first example, which is con-
cerned with image interpretations and that is taken from [13], illustrates inadequteness
on the most abstract level, namely the specification language itself that describes the
problem.

The authors of [12] present a logical specification language for the problem of inter-
preting simple hand-drawn sketch maps consisting of arbitrary chains. On condition
that some system has numbered the chains and abstracted form the image a set of re-
lations between theses chains such as c1 and c2 cross each other or c1 meets c2 etc.,
the task is to determine whether a chain denotes a road, a river, or a shore. In [12] this
task is formalized as a problem to generate models of an appropriate propositional for-
mula which contains the various relations which characterize a particular image along
with a set of general axioms — i.e. constraints such as rivers cannot cross each other

etc. — restricting interpretations to realistic scenarios.
In [13] it is shown that the problem of generating models for such a propositional

formula is intractable in general as it is NP-complete. On the other hand, [13] also
elaborates the reason for this intractability, namely the presence of unnatural and
unexpected interpretations, viz. the unlikely coincidence of the source of a river with
some point of a road. It is shown that whenever such an unintuitive coincidence is
ignored, by providing an additional constraint, then the task to compute models of a
corrsponding propositional formula becomes linear wrt the number of chains detected
in the image. Hence, it turned out that the unrestricted specification language is



inadequate as it causes the problem to be intractable by the consideration of unnatural
solutions.

Calculi may be Inadequate. The inadequateness of a calculus regarding a spec-
ification shall be illustrated by a well-known calculus designed for reasoning about
actions and change in dynamic systems.

One application of this kind of problem solving consists in determining the goal
state of such a system given an initial state along with a particular sequence of actions
whose execution causes changes of system states. This task is usually called temporal

projection. A difficulty when trying to formalize this kind of reasoning using a logical
specification is the dynamical aspect of state transition. In the Situation Calculus [7, 8]
a state is described by a number of facts which are represented by atomic formulas,
i.e. by a number of properties which hold forever and, thus, have to be restricted to the
particular state in which they are assumed to hold by employing an additional argu-
ment. This representation leads to the famous frame problem, i.e. to the question how
to formalize the inertia assumption stating that facts which are not affected by the ex-
ecution of an action keep their validity. Each concrete implementation of the Situation
Calculus has to include additional axioms to express this assumption, e.g. successor
state axioms as in [11].

In [6] we illustrate by a simple example that the Situation Calculus and especially
the method presented in [11] is inadequate. Informally, the example is as follows: Let
each cell of some array be initialized with an arbitrary integer number, and let an
action sequence be given which increases the value of each cell by 1 . The temporal
projection problem is to determine the goal state of the array. It is obvious that the
time complexity of this task is linear wrt the size of the array.

However, the application of the approach [11] to this scenario requires quadratic time
as it is necessary for each single increment operation to apply a particular instance of a
successor state axiom to each fact describing the contents of a cell which is not affected
by the operation. As the Situation Calculus in general is based on the technique to
associate an additional state argument to each fact, this justifies the claim that this
calculus is not an adequate computational mechansim and, hence, implementations
which are based on this method cannot constitute adequate AI-systems.

Adequateness Implies Massive Parallelism. Driven by the observation that hu-
mans can draw a variety of inferences effortlessly, spontaneously, and with remarkable
efficiency, Lokendra Shastri’s and Venkat Ajjanagadde’s goal was to identify a class of
problems and to specify a computational model such that it is biologically plausible,
matches psychological data, and answers queries efficiently [14]. Efficiency is defined
with respect to a knowledge base, which is assumed to be quite large. The number of
processors is bound by the size of the knowledge base and the time to answer a query
should be much smaller than — or even independent of — the size of the knowledge
base.

The class of problems considered in [14] is a class of definite formulae which is queried



by a goal clause. The class is restricted such that all branches in the search tree can be
investigated in parallel. The computational model is a massively parallel, connectionist
one and much effort has been put into the model to make it biologically plausible. It is
an open question whether the problems defined by Shastri and Ajjanagadde are prob-
lems which humans can solve efficiently and effortlessly and, henceforth, the question
whether the model matches psychological data remains to be tested.

In [1] a formal semantics for Shastri’s and Ajjanagadde’s computational model was
defined by showing that reasoning in this model is nothing but reasoning by reduction
in a standard first–order calculus. But, in order to meet the time constraints this first–
order calculus has to be implemented in parallel, which can be done along the lines
outlined in [5]. In other words, adequateness implies massive parallelism.

Seeking Adequate Computational Models. One of the most active research ar-
eas in Cognition is Vision. How does our nervous system perceive and identify the
thousands of objects encountered each day? The favored model among psychologists,
physiologists and reasearchers in AI consists of two or more layers. In the first layer
features like color, orientation, or size are extracted from patterns of light and in the
higher layers these features are combined to form objects, figures, ground, etc. (eg.
[15]). Two major constraints govern the research in this field. Our nervous system has
only a limited number of neurons and, thus, we cannot have a neuron for each possible
combination of features. Experiments can be made to time subjects on certain visual
tasks and computational models should meet these time constraints. For example, a
person is asked to find a certain object within a set of distractors. If the object differs
in a simple feature from all distractors, then the object can be found almost imme-
diately and independently from the number of distractors. Thus, a kind of parallel
search must have been taken place. If, however, the object differs in a conjunction of
features, then the time to find the object often depends on the number of distractors.
Hence, a kind of serial search must have been performed. This is clearly a simplified
analysis and conjunction search is much more difficult (eg. [16]). In any case, the goal
is to develop adequate computational models.
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