Decomposition of Multi-Player Games

Dengji Zhao', Stephan Schiffel?, and Michael Thielscher?

! Intelligent Systems Laboratory
University of Western Sydney, Australia
2 Department of Computer Science
Dresden University of Technology, Germany

Abstract. Research in General Game Playing aims at building systems
that learn to play unknown games without human intervention. We con-
tribute to this endeavour by generalising the established technique of
decomposition from AI Planning to multi-player games. To this end,
we present a method for the automatic decomposition of previously un-
known games into independent subgames, and we show how a general
game player can exploit a successful decomposition for game tree search.

1 Introduction

Research in General Game Playing is concerned with the development of sys-
tems that understand the rules of previously unknown games and learn to play
well without human intervention. Identified as a new Grand Al Challenge, this
endeavour requires to combine methods from a variety of a sub-disciplines in-
cluding Knowledge Representation, Search, Planning, and Learning [1,2,3,4]. An
annual AAAT Contest has been established in 2005 to foster research in this area
by evaluating general game playing systems in a competitive setting [5].

With this paper we contribute to the science of General Game Playing by
tackling an important and open sub-problem: how can game tree search be im-
proved by automatically decomposing a game into independent parts? The gen-
eral value of decomposition has been widely recognised in Al Planning, where it
is used to help solve large, complex problems arising in practical settings using a
divide-and-conquer strategy [6,7,8]. In [9] we have shown how this method can be
directly adapted to the special case of single-player games. This previous result
provides the starting point for our generalisation to multi-player games. Specif-
ically, we address the following two issues in the present paper: Given its mere
rules, how can a previously unknown multi-player game be automatically de-
composed into independent subgames? And how can a successful decomposition
be exploited for a significant improvement of game tree search during play?

We begin (Section 2) with a brief introduction to the formal basis for our
analysis, the Game Description Language [5]. In Section 3, we present a general
decomposition method for multi-player games. This result is used in Section 4 to
obtain a significant improvement of game tree search for decomposable games.
In Section 5, we further improve our method in the special case of so-called
impartial games. This is accompanied by both a formal complexity analysis and
an overview of experimental results. We conclude in Section 6.

2 Preliminaries

The Game Description Language (GDL) [5,10] is the standard language to com-
municate the rules of an arbitrary game to each player. It is a variant of first-order
logic enhanced by distinguished keywords for the conceptualisation of games.
GDL is purely axiomatic, that is, no algebra or arithmetics is included in the
language; if a game requires this, the relevant portions of arithmetics have to be
axiomatized in the game description.

The class of games that can be expressed in GDL can be classified as n-player
(n > 1), deterministic, perfect information games with simultaneous moves.
“Deterministic” excludes all games that contain any element of chance, while
“perfect information” prohibits that any part of the game state is hidden from
some players, as is common in most card games. “Simultaneous moves” allows to
describe games like Roshambo, where the players move at the same time, while
still permitting to describe games with alternating moves, like chess or checkers,
by restricting all players except one to a single “no-op” move. Also, GDL games
are finite in several ways: All reachable states are composed of finitely many
fluents; there is a finite, fixed number of players; each player has finitely many
possible actions in each game state, and the game has to be formulated such
that it leads to a terminal state after a finite number of moves. Each terminal
state has an associated goal value for each player, not necessarily zero-sum.

A game state is defined by a set of atomic properties, the fluents, that are
represented as ground terms. The leading function symbol of a fluent will be
called a fluent symbol. One game states is designated as the initial state. The
transitions are determined by the combined actions of all players. The game
progresses until a terminal state is reached.

Example 1. Figure 1 shows the GDL rules® of “Double-Tictactoe.” This game
consists of two instances of the well-known Tic Tac Toe played in parallel.

The role keyword (lines 1-2) declares the players in the game. The initial
state of the game is described by the keyword init (lines 3-7). The two Tic
Tac Toe boards are described by fluent functions celll and cell2, respectively.
Constant b indicates a blank cell. The fluent control defines whose turn it is.

The keyword legal (lines 8-13) defines what actions (i.e., moves) are possible
for each player depending on the properties of the current state, which in turn
are encoded using the keyword true. The game designer has to ensure that each
player always has at least one legal action in every game state. In turn-taking
games, players typically have “noop” as their only legal move if it is not their
turn. In Double-Tictactoe, the player whose turn it is has to choose one of the
two boards and a cell on this board to mark.

The keyword next (lines 14-23) defines the effects of the players’ actions.
For example, lines 14-16 declare that cell (M,N) on the first board is marked
with constant x if xplayer executes action mark1(M,N). The reserved keyword
does refers to the actions executed by the players. GDL also requires the game

3 We use Prolog notation with variables denoted by uppercase letters.

1 role(xplayer). 17 next(celll (M,N,X)) :—

> role(oplayer). 18 does(P,mark2(X2,Y2)),
3 init(celll (1,1,b)). 19 true(celll (M,N,X)).
20 next(control (xplayer)) :—
4 init (celll (3,3,b)). 21 true(control(oplayer)).
5 init(cell2(1,1,b)). 22 next(control (oplayer)) :—
23 true(control(xplayer)).
6 init (cell2(3,3,b)). 22 openl :— true(celll (M,N,b)).
7 init (control (xplayer)). 25 goal(xplayer ,100) :—
s legal (W,markl (X,Y)) :— 26 linel (x), line2(x).
o true(celll (X,Y,b)), 27 goal(oplayer ,75) :—
10 true(control (W)), 28 linel (o), not line2(x),
11 not terminall . 29 not line2 (o).
12 legal(xplayer ,noop) :— 30 terminal :—
13 true(control (oplayer)). 31 terminall , terminal2.
14 next(celll (M,N,x)) :— 32 terminall :— linel (x).
15 does(xplayer ,markl (M,N)), 33 terminall :— linel (o).
16 true(celll (M,N,b)). 34 terminall :— not openl.

Fig. 1: Some GDL rules of the game Double-Tictactoe

designer to specify the non-effects of actions by frame azioms; e.g., lines 17-19
say that marking a cell on the second board does not affect the first board.

The goal predicate (lines 25-29) assigns a number between 0 (loss) and 100
(win) to each role in a terminal state. It is defined with the help of the auziliary
predicates 1ine1(W) and 1ine2(W). Auxiliary predicates are not part of the pre-
defined language, but are defined in the game description itself. The game is
over when a state is reached that implies terminal (lines 30-34).

3 Subgame Detection

In our previous work [9], we have developed an algorithm to detect independent
subgames and applied this algorithm to single-player games. The basic idea is
to build a dependency graph for a given GDL description of a game, consisting
of the actions and fluents as vertices and edges between them if a fluent is a
precondition or an effect of an action. The connected components of this graph
then correspond to independent subgames of that particular game.

While in principle this idea can be applied to multi-player games, some im-
provements are necessary in order to extend the range of decomposable games.
One problem arises from the fact that in [9] the dependency graph is composed of
the mere fluent and action symbols of a game. This does not allow to decompose
a game based on different instances of these fluents and actions.

Example 2. Consider the following rules of the well-known game Nim with four
heaps (a,b,c,d), where the size of the heaps are represented by the fluent heap.

4 For a complete definition of syntax and semantics of GDL we refer to [11].

1 init (heap(a,1)). 9 ...

> init (heap(b,2)). 10 next(heap (X,N)) :—

3 init (heap(c,3)). 11 does (W, reduce (X,N)).
4 init (heap(d,5)). 12 next (heap (X,N)) :—

s legal (W, reduce (X,N)) :— 13 true(heap (X,N)),

6 true(control(W)), 14 does (W, reduce (Y ,M)),
7 true(heap (X,M)), 15 distinct (X,Y).

8 smaller (N,M). 16 ...

Identifying each heap as an independent game is not possible with a dependency
graph that does not allow to distinguish different (partial) instances of heap.’

To overcome this restriction, we base subgame detection for multi-player
games on partially instantiated fluent and action terms instead of the mere fluent
and action symbols. Considering fully instantiated (i.e., ground) fluents and
actions would yield the best results for subgame detection, but this is practically
infeasible except for very simple games. Therefore, we instantiate fluents and
actions according to the following heuristics:

— The i-th argument of a fluent f is instantiated with all possible values iff for
every rule that matches next(f(...,Xi,...)) : —B the call graph (see below)
of B contains true(f(...,X;,...)) and does not contain true(f(...,X},...))
with X # X;.

— The j-th argument of a move m is instantiated with all possible values iff the
i-th argument of £ is instantiated and there is a rule next(£f(...,Xi,...)) : —B
where the call graph of B contains does(r,m(...,Y;,...)) with Y; = X;.

A call graph [9] of a formula is the least set of atoms containing all atoms in the
formula as well as all atoms that occur in a rule whose head matches an atom in
the call graph. For computing the call graph, we replace every does(R,M) in the
rules by legal(R,M), in order to reflect the fact that every executed move must
be a legal one.

The idea behind the heuristics is that an argument of a fluent is instantiated
if its value does not change from one state to the next and if instances of the
fluent that differ in that argument do not interact. If the different instances
do not interact they are likely to belong to separate subgames. Arguments of
moves are instantiated if they refer to an instantiated argument of a fluent. In
example 2, for instance, the first argument of heap is instantiated because the
rules for next always refers directly (line 13) or indirectly (line 11 along with
lines 5, 7) to the first argument of heap in the current state and there is no other
heap referred to. The first argument of the move reduce is instantiated because
in the first next-rule the first argument of reduce is identical to that of heap.

Another problem we face in multi-player games is to determine which in-
dividual action of a joint move (by all players) is responsible for a positive or
negative effect. To this end, we extended the definition of potential effects from
[9] by the following notion of a role affecting some fluent.

5 See www.general-game-playing.de for the complete Nim rules.

| control(_) |

!_'"") = positive effect !
| ==~ » = negative effect |

l~‘

AL
heap(a,_)|

reduce(d,_)
oy

heap(d,_)

i = = precondition
...

Fig. 2: Dependency graph for the game Nim.

Definition 1. A role r affects a fluent f iff there is a game rule unifiable with
next(f) : —B, where the call graph of B contains does(r’,m) and r and r' are
unifiable.

A move m is called a noop move if it is the only legal move of a player
when not in control and if m does not occur in the call graph of any next rule.

Fluent f is a potential positive effect of move m if there is a game rule
unifiable with next(f) : —B such that m is not a noop move, B does not imply
true(f), and B is compatible (see below) with 3r,y.does(r,m) where r affects
f and i are the free variables in m.

Fluent f is a potential negative effect of move m if m is not a noop move
and there is no game rule unifiable with next(f) : —B such that for all v that
affect f we have V. (true(f) A does(r,m) = B) where §f are the free variables
m m.

Fluent f is a potential precondition of move m if f occurs in the call
graph of the body of a game rule with head legal(p,m), or head next(f’) where
1! is a potential positive or negative effect of m.

Compatibility means logical consistency under the constraint that each player
can do only one action at a time. Thus a fluent is a potential positive effect if
there is a non-frame axiom compatible with the action in question, and it is a
potential negative effect if there is no frame axiom for this fluent that applies
whenever the action is executed. The potential preconditions of a move include
all fluents occurring in a legal rule for that move and also the fluents that are
preconditions of its (conditional) effects.

The control-fluent that is used to encode turn-taking in multi-player games
typically occurs in the legal rules of all actions. We identify and subsequently
ignore the control-fluent as precondition during the subgame detection in turn-
taking games. Otherwise, it would connect all actions in the dependency graph,
effectively rendering subgame detection for turn-taking games impossible.

Applying the above definitions to the Nim game in example 2, we obtain the
dependency graph in figure 2 with six subgames: one for each heap consisting
of the respective heap-fluent and reduce-action, one consisting of the control-
fluent, and one for the noop-action.

4 Solving Decomposable Games

Once a multi-player game has been successfully decomposed, it needs to be solved
by what we call decomposition search (DS). DS is composed of subgame search
(SGS) and global game search (GGS). SGS searches each subgame independently
and returns a set of paths of the subgame tree, which is then used by GGS to

compute optimal strategies. As the DS for alternating move games is very similar
to the one for simultaneous move games, we will only describe the algorithm for
alternating move games here.

Subgame Search (SGS) In each state of an alternating move game, we know
whose turn it is next. However, the turn in each state of the subgames is un-
known, because in each turn, a player can only choose one subgame to play.
Thus SGS needs to consider all players’ legal moves during each subgame state
expansion and to return a set of paths of the subgame tree, called turn-move
sequences (TMSeqs).

Definition 2. A turn-move sequence is a tuple (T's, M s, Es) where

— T's is a list of roles (turn sequence), indicated by Ty o To o ...0 Ty,
— Ms is a list of moves (move sequence), indicated by My o My o ... o M,
— Es is a set of evaluations of local concepts (see below),

where n > 0 is the length of the sequence. If n = 0, we call it empty turn-move
sequence.

We extend our notion of local concepts from single-player games [9] by recording
a sign (positive or negative) for each concept: A local concept is a ground literal
that occurs in the call graph of a goal or terminal rule, and the local con-
cept’s call graph is only related to the fluents of one subgame. For the goal rule
in lines 27-29 of figure 1, for example, we get three local concepts: linel(o),
not line2(x), and not line2(o). The sign for each concept is determined by
whether an even or odd number of negations occurs in the path from the root
of the goal or terminal rule’s call graph to the concept. In this way we know
that a rule is satisfied if all its local concepts (with signs) are true.

With the help of the extended notion of local concepts, we can not only check
the equality of two TMSeqs but also find if one is better than another one by
using the following definition.

Definition 3. A turn move sequence s1=(T's1, M s1, Esy) is evaluation dom-
inated by sy = (T'sa, Msa, Esa) (written s1 <c¢s $2) under local concepts C's
iff Ts1 = Tsy and Veoecs(Esy = C = Ess = C), where Es = C means C' is
satisfied after playing the moves in the TMSeq. If 3cccs(Es1 = CANEss = C),
we call s1 strongly evaluation dominated (s1 <cs $2) by s2 under local
concepts C's. This extends to sets of turn move sequences in the following way:
Ty 215 =V er, Joserns1 Zos s2 and Tt < Ty = (Th X To A s e1y s0e1251 =<0
82).

The TMSeqs are constructed backwards from the leaf nodes to the initial
state of a subgame tree. An empty TMSeq, where E's are evaluations of all local
concepts, has to be added for every terminal state of the subgame. Because in
general the terminal rules cannot be evaluated in a subgame state, an empty
TMSeq is added for a state that has no legal move for any player or in which
at least one local concept of the terminal rules is satisfied. In both cases the

subgame state could belong to a terminal state of the game. In each subgame
state s a set of TMSeqs is computed for every player in the following way:
TMSeqs(p,s) = {(poTs,moMs, Es)|(Ts, Ms, Es) € TMSeqs(p',do(p,m,s))}.
This means that the TMSeqs of a player p in a state s are exactly the TMSeqs
of all successor states of s (denoted by do(p,m,s)) with the turn sequence T's
augmented by p and the move sequence Ms augmented by the move m that
leads to the successor state.
In each state, a set of turn move sequences

T, obtained from a move of player p is re- X[0

. . X[O]X
moved if there is a set 7Th from another move olo
such that ﬂv(Tl <os To NVyrsoT1 <o TQ) or)/ X\\N
VoT1 =Z¢s To where: v and v’ are goal values de- o x ;(o
fined for player p in the game rules, C's are lo- X[0IX X[OIX
cal concepts of goal(p,v) and terminal, and Cs’ X190 olo
are local concepts of goal(p,v') and terminal. (/\< X/, ~0
For example, the two paths with dashed lines 0|X|o X|X]o X]|x|o
; ; X[o[X XJO|X X]|O|X
in figure 3 have the same evaluation under Xlolo Xlolo olofo

local concepts of goal(x,100) (linel(x)) and
terminal (terminall) as the other two paths,
but under local concepts of goal(x, 75) (linel(x),
not linel(x), not linel(o), and not openl) and terminal, the dashed path
with turn sequence (x0) is strongly dominated by the corresponding solid path
because it does not entail not linel(o). Thus the two paths with dashed lines
can be removed.

Fig. 3: Subtree of one sub-
game of Double-Tictactoe

Global Game Search (GGS) GGS is based on standard search techniques
(e.g., Minimax, MaxN) but uses TMSeqs returned from SGS instead of the
game’s legal rules to determine the moves in each state. Because of the removal
of dominated TMSeqs in SGS the number of moves from the TMSegs is typically
smaller than the number of legal moves. This results in a much smaller game tree
compared to full search. Algorithm 4.1 shows the basic idea of DS. We applied
iterative-deepening depth-first search (IDDFS) in DS, which finds the shortest
solution first and prevents SGS from spending too much time on big subgames.

Algorithm 4.1 Decomposition Search

Input: State: global game state, Player: for which the best move is searched
Output: BestMove
TMSeqs «— ©;
foreach Subgamec Subgames do
SubState < subgame state of Subgame in State;
SubgameTMSeqs <+ SGS(SubState);
TMSeqs <+ TMSeqs U SubgameTMSeqs;
end
BestMove «— GGS(TMSegs,Player);

Complexity Comparison and Experiments The complexity of SGS is the
complexity of depth-first search (DFS) plus the complexity of TMSeq simplifica-
tion. The complexity of GGS depends on the number of TMSeqs returned from
SGS. The more TMSeqgs can be removed in SGS the less time GGS will use.
Assuming a game has n subgames and the average number of states for each
subgame is SV, the time complexity of normal search with DFS or IDDFS is
O(|SV|™ + |En|) while the time complexity of DS is O(n * |SV| + |Ep| + C)
where Fny and Ep are edges of the game tree in normal and decomposition
search, respectively; En > Ep; and C is the time complexity of GGS. Moreover,
the strategies found by DS are just as good as the ones found by normal search.

We have implemented and integrated DS for alternating move games in Fluz-
player [3]. Figure 4 shows the time costs of DS and normal search with different
search depths (the depth is related to the global game tree, which is the sum of all
SGS depths) for two alternating move games. TMSeq simplification works very
well for those games; e.g., only 0.0016% (912 of 58242432) and 0.0661% (10448 of
15864465) of the TMSeqs are returned by subgame search for Double-Tictactoe
to depth 9 and for Double-Crisscross2 to depth 6, respectively.

Double-Tictactoe Double-Crisscross2
10000 10000
1000
g g
3 +SGS g 100 SGS
8 & GGS 8 - GGS
ot vDS bt 10 v DS
IS] =NS S 1 NS
g g
[[
0,01
2 4 6 8 10 12 14 16 18 2 3 4 5 6 7 8 9 10 11 12
Search Depth Search Depth

Fig. 4: DS and normal search (NS) testing results

5 Impartial Games

Definition 4. A game G is tmpartial if G is an alternating move game, in
each state of G the player whose turn it is has the same legal moves, and the
effects of each move are independent on who is making the move.

Impartial games allow for a special DS that is more efficient than the general
method. Before discussing DS for impartial games, let us describe how a general
game player can check whether a game is impartial.

Checking Impartiality According to the definition of impartial games, we
would need to check every state of the game to know if the game is impartial.
Since this is not feasible in general, we only do a syntactic analysis of the game
rules. This yields a sound but incomplete method. The main idea is to verify
that the legal and next rules for all players are equivalent by checking that for
each legal and next rule that is defined for one player there is a correspondent
rule for every other player.

Definition 5. Given two rules Ry and Rs of a multi-player game, R1 and Ro
are correspondent for players Py and Py iff simultaneously substituting Py for
P, and P, for P in control fluents and does predicates in Ry yields a variant
(R1[P1/ P2, Py/P1]) of Ra, that is, R1[P1/P2, P2/Pi] and Ry are equal up to
renaming of variables and reordering of literals in the bodies of the rules.

As an example, the legal and next rules of Nim (example 2) are correspondent
to themselves for all players.

Decomposition Search (DS) It is easy to prove that a game G is impartial
iff its independent subgames are impartial. Another important theorem used in
this section is the Sprague-Grundy theorem, which says that each impartial game
with normal play convention is equivalent to some Nim heap. Nim is a typical
impartial game, which has been mathematically solved. Thus each subgame is
actually a Nim heap. If we have the size (called nimber) of each subgame, we
can use Nim-sum to obtain the size of the global game and solve the impartial
game by using the strategies used for Nim. More information about Nim and
nimber can be found in [12]; explaining the full theory behind impartial games
goes beyond the scope of our paper.

Subgame Search (SGS) SGS uses depth-first search to search each subgame
with only one player to compute the nimber of the subgame. As all players
have the same legal moves in each state, it is sufficient to consider one player’s
legal moves instead of all players. The nimber of terminal states is 0. For
intermediate state, the nimber is the minimal excludent of the nimbers of its
successors. For example, if the successors of a state have nimbers 0, 1 and 3,
the nimber for the state will be 2.

Global Game Search (GGS) The nimber of the global game can be easily
computed as Nim-sum of the nimbers of all subgames, and then the winning
strategies for Nim are used to do the rest.

Complexity Comparison and Experiments For a subgame of size n, the
worst-case time complexity of SGS is O(2"™). For an impartial game with m
heaps (subgames) of sizes ny, na, ..., Ny, the time complexity of DS is O(3 2™1),
whereas the worst-case time complexity of standard search is 0(2E ™). In prac-
tical play, however, the time complexities are much lower if transposition tables
are used in the search; e.g., for Nim this reduces the complexity of SGS to O(n).

The following table shows the time cost of DS and normal search for game
Nim with 4 heaps (4 subgames) in Fluzplayer:

Normal Play | Misere
Time Cost(s) Heaps Size
1,5,4,2|2,2,10,10(11,12,15,25|12,12,20,20
Normal Search 0.4 3.5 6607 10797
Decomposition Search| 0.01 0.01 0.07 0.06

From the results it is easy to see that the time cost for DS is linear in terms of
the biggest heap size, while the one for normal search is exponentially growing
in terms of the sum of all heap sizes.

6 Conclusion

We have developed a method by which general game playing systems can search
for a decomposition of a multi-player game into independent sub-games in order
to significantly improve game tree search. Our result generalises an established
method from Al Planning [6,7,8] to General Game Playing. A different, prelim-
inary approach to the decomposition of multi-player games has been indepen-
dently developed by [13], but there the authors did not address the issue of how
a general game player can actually exploit such a reduction during play.

References

1. Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuristic construction in a com-
plete general game player. In: AAAIL (2006) 1457-1462

2. Clune, J.: Heuristic evaluation functions for general game playing. In: AAAIL
(2007) 1134-1139

3. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In:
AAAT (2007) 1191-1196

4. Finnsson, H., Bjornsson, Y.: Simulation-based approach to general game playing.
In: AAAL (2008) 259-264

5. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI
competition. AI Magazine 26(2) (2005) 6272

6. Amir, E., Engelhardt, B.: Factored planning. In: IJCAI. (2003) 929-935

7. Brafman, R., Domshlak, C.: Factored planning: How, when and when not. In:
AAAIT (2006) 809-814

8. Kelareva, E., Buffet, O., Huang, J., Thiébaux, S.: Factored planning using decom-
position trees. In: IJCAIL (2007) 1942-1947

9. Giinther, M., Schiffel, S., Thielscher, M.: Factoring general games. In: Proceedings
of the IJCAI Workshop on General Intelligence in Game-Playing Agents (GIGA).
(2009) 27-34

10. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: Game description language specification. Technical report (2008)

11. Schiffel, S., Thielscher, M.: A multiagent semantics for the Game Description
Language. In: ICAART. Springer (2009)

12. Conway, J.H.: On Numbers and Games. Number 6 in London Mathematical
Society Monographs. Academic Press (1976)

13. Cox, E., Schkufza, E., Madsen, R., Genesereth, M.: Factoring general games us-
ing propositional automata. In: Proceedings of the IJCAI Workshop on General
Intelligence in Game-Playing Agents (GIGA). (2009) 13-20

