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Abstract

We consider the problem of ramifications, i.e., indirect
effects of actions, having exceptions. It is argued that
straightforward minimization of abnormality is insuf-
ficient in this context. Taking a recent causality-based
solution to the plain Ramification Problem as starting
point, we develop an action theory that is shown to
successfully address this amalgamation of Ramifica-
tion and Qualification Problem.

Introduction
In formal systems for reasoning about actions, the
Ramification Problem denotes the problem of handling
indirect effects. These effects are not explicitly repre-
sented in action specifications but follow from general
laws describing dependencies among the components
(usually called fluents) of a state description. Con-
sider, as an example, an electric circuit where a bat-
tery, a light bulb, and a switch are serially connected.
Suppose the switch is currently open, then the only di-
rect effect of closing it is that it changes its position. As
an additional, indirect effect, however, we expect the
light turns on. This conclusion is formally grounded on
a general law, often called a domain constraint , stating
that the light is on if and only if the switch is closed.

A fundamental assumption underlying existing ap-
proaches to the Ramification Problem is that a do-
main constraint is a universal truth. Consequently, it
is assumed that the indirect effects it triggers always
occur as expected. In any but artificially ideal environ-
ments, however, the occurrence of indirect effects of-
ten depends on many more conditions than one is usu-
ally aware of. The reason for this unawareness is that
most conditions are so likely to be satisfied that they
are assumed away in case there is no evidence to the
contrary. With regard to our example, when we tog-
gle the switch then, contrary to our expectations, the
light may actually not turn on—due to, for instance,
a broken bulb, a malfunction of the battery, or loose
wiring etc. Every one of these problems renders im-
possible the occurrence of the expected indirect effect.
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Nonetheless conditions like “the bulb is not broken”
should not be part of the underlying domain constraint
relating the switch and the bulb. For otherwise one al-
ways has to explicitly verify all of these conditions prior
to concluding that one can switch on the light. Like-
wise, the task of diagnosis—an important application
area for the results of this paper—requires to prima
facie assume normal circumstances.

The fact that domain constraints, and hence ram-
ifications, may have exceptions, closely resembles the
Qualification Problem, which requires to assume away
unlikely disqualifications of actions to the largest possi-
ble extent (McCarthy 1977). The similarity suggests a
straightforward solution to the problem of disqualified
ramifications: Each domain constraint is enhanced by
a normality condition, which restricts the constraint
to all but abnormal circumstances. One could then as-
sume normal circumstances whenever reasonable with-
out strictly ignoring the possibility of exceptional situ-
ations. In the following section, however, we show that
the straightforward approach of globally minimizing
abnormalities in this context is insufficient. It turns
out that the execution of actions may cause the fact
that an indirect effect does not occur as expected. As
will be illustrated, failing to distinguish caused from
unmotivated abnormalities may lead to unintended
conclusions.

The insufficiency of global minimization is related to
difficulties, first encountered in (Lifschitz 1987), with
globally assuming away abnormalities as an approach
to the Qualification Problem. In the spirit of our recent
solution to that problem (Thielscher 1996), we pro-
pose a method that successfully accounts for the pos-
sibility of ramifications being disqualified. Our frame-
work solves the problem of caused vs. unmotivated ab-
normalities by treating abnormal disqualifications of
ramifications as fluents which are minimized initially
but may later be (indirectly) affected by the execu-
tion of actions. The method also includes the prolif-
eration of possible explanations in case a ramification
has been—unexpectedly—observed unqualified. The
approach builds on our solution to the Ramification
Problem (Thielscher 1997), which is based on causal
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Figure 1: An example electric circuit.

propagation of indirect effects.

Causing Disqualifications
The ability to assume away, by default, exceptional
disqualifications of ramifications requires some non-
monotonic feature. For one might be forced to with-
draw previous conclusions in the light of additional in-
formation. This suggests the introduction of ‘normal-
ity’ conditions both to domain constraints and for the
computation of indirect effects triggered by these con-
straints. Then by suitably minimizing abnormality, we
achieve the desired behavior, namely, that exceptions
are assumed away to the largest reasonable extent. For
example, taken as domain constraints the formulas

¬ab1 ⊃ [closed(sw1) ≡ light ]
broken ⊃ ab1

broken ⊃ ¬light
(1)

state, respectively, that in any situation the light is
on iff switch sw1 is closed—but only in case there is
no abnormality with this regard; that a broken bulb
is such an abnormality; and that the broken bulb can
never shine. Now, suppose a situation where we know
nothing except that sw1 has just been closed. Then
minimizing abnormality allows us to conclude that
closed(sw1) ≡ light holds. Thus any reasonable so-
lution to the Ramification Problem should derive the
indirect effect light . On the other hand, in a situation
where we know that the bulb is broken, ab1 is deriv-
able, hence cannot be assumed false. Then closing the
switch no longer turns on the light.

Generally, assuming away unlikely exceptions of
ramifications is, however, not as easy as in this simple
example. In particular, just globally minimizing ab-
normalities can quickly become insufficient to obtain
the intended conclusions. To see why, consider the fol-
lowing extension of our introductory example (c.f. Fig-
ure 1). The light bulb is now involved in a second sub-
circuit consisting of another switch, sw 2 , and another
battery, bat2 . Suppose further that bat2 , without a
resistor being involved, is too powerful for our light
bulb so that the latter immediately gets broken when
closing sw2—provided, of course, the second battery
itself does not malfunction. In conjunction with the
formulas in (1), the following two domain constraints
formalize this extended domain:

¬ab2 ⊃ [closed(sw2) ⊃ broken]
malfunc(bat2) ⊃ ab2

(2)

Consider, now, a situation where we only know that
both switches are open (c.f. Figure 1). What would be
the predicted outcome of closing sw 2 followed by sw1?
Since nothing hints at bat2 malfunctioning, we should
expect that closed(sw2) ⊃ broken be true and, hence,
broken is an indirect effect of closing sw 2 . Conse-
quently, closing sw1 afterwards should fail to produce
light.

But what happens if abnormality is globally mini-
mized in this scenario? Obviously, some abnormality is
inevitable. Thus one minimal model is given by ¬ab2

with regard to the first action, and ab1 with regard
to the second. This corresponds to the intended con-
clusion. However, we can just as well assume the first
ramification unqualified (i.e., ab2), which then would
avoid the necessity of assuming a disqualification of
the following ramification (i.e., ¬ab1). For if the bulb
does not break as a consequence of toggling sw 2 , then
the light turns on as indirect effect of toggling sw 1 af-
terwards. This gives us a second, unintended model,
where finally the light is on!

The reason for the second minimal model being
counter-intuitive is not that we consider broken bulbs
more likely than malfunctioning batteries. Rather
what decisively distinguishes the two possible abnor-
malities is that ab1 but not ab2 can easily be ex-
plained from the perspective of causality. Closing sw 2

along with all of its expected indirect effects causes the
fact that the relation closed(sw 1) ≡ light no longer
holds, whereas an abnormal disqualification, ab2 , of
closed(sw2) ⊃ broken comes out of the blue in the un-
intended minimal model. One even tends to not call
the former abnormal since being unable to turn on the
light after having destroyed the bulb is, after all, what
one would normally expect. This situation resembles
a problem in the context of the Qualification Problem
if the latter is approached without supporting the dis-
tinction between caused and unmotivated disqualifica-
tions of actions (Lifschitz 1987). The reader may also
notice the similarities to the well-known Yale Shooting
problem (Hanks and McDermott 1987): A gun that be-
comes magically unloaded while waiting deserves being
called abnormal, whereas causality explains the death
of the turkey if being shot at with a loaded gun.

An alternative to global minimization is minimizing
chronologically, following the ideas of chronological ig-
norance (Shoham 1988). Putting off abnormalities as
long as possible indeed produces the unique intended
model for our example scenario. On the other hand,
chronological minimization is known to have chronic
problems with domains involving non-determinism.
Suppose, for example, we learn that while wait-
ing somebody non-deterministically closes sw 2 , which
would cause an abnormality (viz. the bulb breaks).
Putting off abnormalities as long as possible, chrono-
logical minimization supports the conclusion that sw 2

never gets closed, which is obviously a conclusion too
optimistic, hence unintended.



In the following, we develop a suitable account of
disqualified ramifications which respects the possibility
of abnormalities being caused. The approach builds
on our recently proposed solution to the Ramification
Problem (Thielscher 1997). A brief recapitulation of
this method is next.

Causal Relationships and Ramifications
Any satisfactory solution to the Ramification Problem
requires the successful treatment of two major issues.
First, an appropriately weakened version of the gen-
eral law of persistence needs to be developed which
applies only to those parts of the world description
that are unaffected by the action’s direct and indi-
rect effects. Second, while indirect effects derive from
domain constraints, not all logical consequences of do-
main constraints constitute indirect effects (Lifschitz
1990). To meet these challenges, our approach de-
scribed in (Thielscher 1997) takes the world description
obtained through generating the direct effects of an ac-
tion as a mere intermediate result. Indirect effects are
then accommodated by the successive application of
causal relationships until an overall satisfactory suc-
cessor state obtains. In the following, we recall the
formal definitions underlying this approach. Due to
space limitations we restrict ourselves to propositional
fluents; for the general case as well as for more details
we refer the reader to (Thielscher 1997).

Definition 1 Let F be a finite set of symbols called
fluents. A fluent literal is either a fluent f ∈ F or
its negation, denoted by ¬f . A set of fluent literals is
inconsistent iff it contains some f ∈ F along with ¬f ,
and is a state iff it is maximally consistent.

The elements of an underlying set of fluents can be
considered atoms for constructing (propositional) for-
mulas to allow for statements about states. Each fluent
literal and > (tautology) and ⊥ (contradiction) are
fluent formulas, and if F and G are fluent formulas
then so are F ∧G, F ∨G, F ⊃ G, and F ≡ G. The
notion of fluent formulas being true in a state S is
based on defining a literal ` to be true if and only if
` ∈ S . Fluent formulas which have to be satisfied in
all states that are possible in a domain are also called
domain constraints.

Definition 2 Let A be a finite set of symbols called
actions. An action law is a triple 〈C, a,E〉 where C ,
called condition, and E , called effect, are consistent
sets of fluent literals such that [C] = [E],1 and where
a ∈ A. If S is a state, then an action law 〈C, a,E〉
is applicable in S iff C ⊆ S . The application yields
(S \ C) ∪ E .

Notably, the resulting set (S \ C) ∪ E is a state if so
is S , but it may violate the underlying domain con-
straints.

1If S is a set of fluent literals, then by [S] we denote the
set of fluents occurring in S . That is, [C] = [E] requires C
and E refer to the same fluents.

Definition 3 Let F be a set of fluents. A causal re-
lationship is an expression of the form ε causes % if Φ
where Φ is a fluent formula and ε and % are fluent
literals.

The intended reading is the following: Under condi-
tion Φ, the (previously obtained, direct or indirect)
effect ε triggers the indirect effect %.

Causal relationships operate on pairs (S,E),
where S denotes the current state and E contains
all direct and indirect effects computed so far:

Definition 4 Let (S,E) be a pair consisting of a
state S and a set of fluent literals E , then a causal
relationship ε causes % if Φ is applicable to (S,E)
iff Φ ∧ ¬% is true in S and ε ∈ E . Its application
yields the pair (S′, E′) where S′ = (S \ {¬%}) ∪ {%}
and E′ = (E \ {¬%}) ∪ {%}.

If R is a set of causal relationships, then by
(S,E) ∗

ÃR (S′, E′) we indicate that there are elements
in R whose successive application to (S,E) yields
(S′, E′).

Now, suppose given a set of fluent literals S as the
result of having computed the direct effect E of an
action via Definition 2. Additional, indirect effects are
then accounted for by (non-deterministically) select-
ing and (serially) applying causal relationships until a
state satisfying the domain constraints obtains.

Definition 5 Let L be a set of action laws, D a
set of domain constraints, and R a set of causal rela-
tionships. Furthermore, let S be a state satisfying D
and a ∈ A. A state S′ is a successor state of S
and a iff there exists an applicable (wrt. S) action
law 〈C, a,E〉 ∈ L such that

1. ((S \ C) ∪ E,E) ∗

ÃR (S′, E′) for some E′ , and

2. S′ satisfies D.

Example 1 Let F = {closed(sw1), closed(sw2),
light , broken}. The domain constraints

closed(sw1) ≡ light
closed(sw2) ⊃ broken
broken ⊃ ¬light

(3)

state what normally holds in the circuit depicted in
Figure 1. All three formulas are true in the state
S = {¬closed(sw1),¬closed(sw2),¬light ,¬broken},
e.g. The following causal relationships derive from
these domain constraints:2

closed(sw1) causes light if >
¬closed(sw1) causes ¬light if >
closed(sw2) causes broken if >

broken causes ¬light if >

(4)

2See (Thielscher 1997) on how to automatically extract
causal relationships from domain constraints given addi-
tional domain knowledge as to potential causal influences.



Let A = {toggle(sw1), toggle(sw2)}, and let L con-
sists of the four action laws

〈 {¬closed(sw1)}, toggle(sw1), {closed(sw1)} 〉
〈 {closed(sw1)}, toggle(sw1), {¬closed(sw1)} 〉
〈 {¬closed(sw2)}, toggle(sw2), {closed(sw2)} 〉
〈 {closed(sw2)}, toggle(sw2), {¬closed(sw2)} 〉

(5)

Then applying action toggle(sw 2) to state S from
above, for instance, yields the intermediate state
S′ = {¬closed(sw1), closed(sw2),¬light ,¬broken}—
which violates the second domain constraint in (3).
Regarding the state-effect pair (S ′, {closed(sw2)}), we
can apply the third one of the causal relationships de-
picted in (4), which results in the pair

( {¬closed(sw1), closed(sw2),¬light , broken},
{closed(sw2), broken} )

The first component satisfies (3), hence constitutes a
successor of S and toggle(sw 2).

Disqualifications of Ramifications

A fundamental assumption underlying our approach to
the Ramification Problem is that domain constraints
are universally valid. This assumption is carried over
to the causal relationships that derive from a con-
straint. As a consequence, it is assumed that indirect
effects always occur as expected. As argued, however,
the situation might not be as ideal. Domain constraints
may have exceptions, hence so do causal relationships.

Suppose given a set of domain constraints D. In
order to account for exceptions to these formulas, we
first introduce, for each di ∈ D, a unique ‘abnormality’
predicate abi . Then constraint di is replaced by the
weaker formula ¬abi ⊃ di . This restricts the necessity
of di being true to states in which ¬abi holds—states
which are ‘normal’ with respect to di .

The modification of domain constraints transfers to
causal relationships. Each ε causes % if Φ triggered
by constraint di is replaced by ε causes % if Φ∧¬abi .
That is to say, effect ε causes indirect effect % now
only under normal circumstances—if there happens to
be an exception to the underlying domain constraints,
then the corresponding ramification is no longer ex-
pected.

Having admitted exceptions to domain constraints,
the next step is to define the circumstances under
which a particular abnormality occurs. This is accom-
plished by additional constraints each of which relates
some abi to the conceivable causes. In order that ob-
served abnormalities can be explained, it is desirable
to equate an abnormality with the disjunction of all
known potential reasons for its occurrence, e.g.3

ab1 ≡ broken ∨malfunc(bat1) ∨ loose wiring (6)

3Instead of explicitly providing the “only-if” part, this
could be implicitly obtained through circumscribing the
predicates abi in a given set of domain constraints.

The purpose of introducing conditions of ‘normality’
with regard to domain constraints is to not strictly ex-
clude the possibility of exceptions to these constraints.
Since any exception is considered unlikely, we do how-
ever wish to ignore it unless there is evidence to the
contrary. Abnormal circumstances should therefore be
assumed away to the largest reasonable extent. As
shown above, straightforward minimization of abnor-
mality is insufficient to this end because some abnor-
mal disqualifications of ramifications may be expected
for reasons of causality. To account for this, we rep-
resent any single abnormality as a fluent. As such,
abnormalities may be (indirectly) affected by the ex-
ecution of actions, and otherwise are subject to the
general law of persistence. The former allows us to ex-
pect an abnormality whenever it has been caused by
an action. Notice that formulas such as (6) give rise to
indirect effects if taken as domain constraints: When-
ever some cause for an abnormality occurs as (direct or
indirect) effect, then the abnormality appears through
ramification. Conversely, if a cause disappears and no
other cause holds, then the abnormality, too, disap-
pears, again through ramification.

In order that abnormal circumstances are assumed
away if nothing hints at their presence, the ‘abnormal-
ity’ fluents are considered false by default only in the
initial state. Persistence then guarantees normal cir-
cumstances as long as no actions are performed which
affect the truth-value of some fluent abi . Formally, we
distinguish among all fluents F those which describe
abnormalities, the set of which is denoted Fab . It is
required that abi ∈ Fab for any abi , but other fluents
may represent abnormal circumstances too, such as,
e.g., broken , malfunc(bat1), or loose wiring . When
searching for models of a scenario description, those
are preferred that declare false initially as many flu-
ents fab ∈ Fab as possible according to the obser-
vations that constitute the scenario. The formal de-
finition of model preference can be directly adopted
from (Thielscher 1996):

Definition 6 An interpretation is a partial func-
tion Res mapping finite action sequences to states4

such that for each k ≥ 0 and each action sequence
a∗ = [a1, . . . , ak, ak+1],

1. Res([ ]) is defined and satisfies the domain con-
straints.

2. Res(a∗) is defined iff so is Res([a1, . . . , ak]) and
there is a successor of Res([a1, . . . , ak]) and ak+1 .

3. If Res(a∗) is defined, then it is a successor of
Res([a1, . . . , ak]) and ak+1 .

An observation is an expression F after [a1, . . . , an]
where F is a fluent formula and a1, . . . , an are ac-
tions ( n ≥ 0). The observation holds in an interpre-
tation Res iff Res([a1, . . . , an]) is defined and F is
true in that state.

4We consider a branching time structure.



A model for a set of observation O is an interpre-
tation in which all observations hold. A model Res
is preferred iff there is no model Res ′ such that
Res ′([ ]) ∩ Fab Ã Res([ ]) ∩ Fab .

In the remainder of this section we illustrate how
our framework successfully addresses basic issues when
dealing with disqualifications of ramifications. Al-
though no strictly formal claim is made, the follow-
ing discussion is meant to convince the reader that our
theory is suitable as regards a variety of fundamental
aspects in this context.

Assuming qualification by default. Let us extend
the set of fluents F used in Example 1 by ab1 , ab2 ,
malfunc(bat1), malfunc(bat2), and loose wiring . All
of these plus fluent broken shall belong to Fab . We
define the following domain constraints (see Figure 1):

¬ab1 ⊃ [closed(sw1) ≡ light ] (7)

ab1 ≡ broken ∨malfunc(bat1) ∨ loose wiring (8)

¬ab2 ⊃ [closed(sw2) ⊃ broken] (9)

ab2 ≡ malfunc(bat2) ∨ loose wiring

¬ab3 ⊃ [broken ⊃ ¬light ]

ab3 ≡ ⊥

The very last formula states that a broken bulb shining
would be inexplicable. Due to space restrictions we
only mention four out of all the causal relationships
determined by these constraints:

closed(sw1) causes light if ¬ab1 (10)

broken causes ab1 if > (11)

¬broken causes ¬ab1 if ¬malfunc(bat1)

∧¬loose wiring (12)

closed(sw2) causes broken if ¬ab2 (13)

deriving from (7), (8), (8), and (9), respectively.
Suppose given the observation

¬closed(sw1) ∧ ¬closed(sw2) after [ ] (14)

It is consistent with this observation to assume false
initially each fab ∈ Fab . Any preferred model Res
therefore satisfies ¬ab2 ∈ Res([ ]). Consequently,
broken ∈ Res([toggle(sw 2)]) given action laws (5) and
causal relationship (13). In words, in any preferred
model the bulb is broken after toggling sw 2 —which
is the intended conclusion: Abnormal disqualification
of constraint (9) and of the ramification it triggers,
c.f. (13), is assumed away by default.

Causing disqualifications. We just saw that any
preferred model Res of observation (14) satisfies
broken ∈ Res([toggle(sw 2)]). According to causal
relationship (11), broken becoming true determines
another ramification, namely, ab1 becoming true in
Res([toggle(sw2)]). That is, the ramification becomes
disqualified which normally turns on the light if sw 1

gets closed. Thus any preferred model Res of (14) sat-
isfies ¬light ∈ Res([toggle(sw 2), toggle(sw1)]), which
is the intended conclusion as argued at the beginning:
The disqualification of domain constraint (7) has been
obtained as a side-effect of, hence has been caused by,
performing toggle(sw2).

Explaining disqualifications. Suppose given

¬broken ∧ ¬loose wiring after [ ] (15)

¬light after [toggle(sw 1)] (16)

in addition to observation (14). Any model Res must
satisfy ab1 ∈ Res([ ]) to account for (16). Observa-
tion (15) implies ¬broken,¬loose wiring ∈ Res([ ]).
Definition 6 requires that Res([ ]) satisfy the un-
derlying domain constraints, in particular (8); thus,
malfunc(bat1) ∈ Res([ ]). That is to say, each preferred
model determines a malfunction of bat1 as explanation
for being unable to switch on the light via closing sw 1 .

Minimizing explanations. Suppose we learn that
malfunc(bat1) after [ ], then ab1 ∈ Res([ ]) for any
model Res according to (8). Nonetheless it is con-
sistent to assume both broken and loose wiring be
false initially. These, too, being abnormality fluents,
we have ¬broken,¬loose wiring ∈ Res([ ]) in any pre-
ferred model. Thus, although we know there must be
an abnormality with the sub-circuit involving bat1 , we
still conclude, by default, that bulb and wiring are ok.

Revoking qualification. Suppose we introduce the
action of replacing the broken bulb, specified by the ac-
tion law 〈{broken}, replace, {¬broken}〉. As we have
seen, any preferred model Res of observation (14)
satisfies broken, ab1 ∈ Res([toggle(sw2)]). According
to (5), again toggling sw2 opens this switch while
nothing else changes, that is, broken and ab1 re-
main true in Res([toggle(sw 2), toggle(sw2)]). Conse-
quently, the replace action is applicable to this state
with the effect that broken is false in the next state.
Then causal relationship (12) determines the ramifi-
cation ¬ab1 (notice that both ¬malfunc(bat1) and
¬loose wiring hold initially in preferred models and
persist throughout the entire process). This implies
that the light could again be switched on in the state
Res([toggle(sw2), toggle(sw2), replace]). This in turn
shows how a qualification gets revoked as soon as its
cause (here: the broken bulb) disappears.

Non-deterministic actions. Recall the scenario
discussed earlier where switch sw 2 may or may not
get closed while waiting. Action wait being non-
deterministic, it is specified by two action laws whose
conditions are not mutually exclusive, viz.

〈 {}, wait , {} 〉
〈 {¬closed(sw2)}, wait , {closed(sw2)} 〉

(17)

Suppose again given observation (14). Since the ini-
tial values of the only non-abnormality fluents in



our domain are specified via this observation, there
is a unique preferred initial state Res([ ]), namely,
{¬closed(sw1),¬closed(sw2)} ∪ {¬fab : fab ∈ Fab}.
Among others, this state entails the (default) assump-
tion ¬ab1 , that is, the light could be switched on.
However, performing a wait action in Res([ ]) deter-
mines two possible successor states according to (17):
one that is identical to Res([ ]), and one where sw 2

gets closed and, hence, the bulb breaks and ab1 be-
comes true (c.f. (13) and (11)). Thus there are two
different preferred models Res1 and Res2 such that
¬ab1 ∈ Res1([wait ]) whereas ab1 ∈ Res2([wait ]). Due
to the latter, it cannot be concluded that the light
can be switched on after waiting, which is the in-
tended conclusion. This shows that our framework,
in contrast to chronological minimization, treats non-
deterministic information appropriately, namely, the
cautious way.

Discussion

We have argued that both domain constraints and the
ramifications they trigger may have exceptions, which,
however, need to be assumed away by default. We
have illustrated that simple global minimization of ab-
normalities is insufficient to this end because it fails to
distinguish caused from unmotivated disqualifications.
We then have developed an action theory where ab-
normal disqualifications of ramifications are taken as
fluents which are assumed false initially but may be
indirectly affected by the execution of actions. It has
been illustrated how this allows to assume away excep-
tional circumstances to a reasonable extent—including
a proper distinction of caused vs. unmotivated abnor-
malities. In addition, our framework supports the pro-
liferation of explanations for observed disqualifications
of ramifications. These explanations, too, are mini-
mized, and if a cause for a disqualification disappears
then qualification gets revoked. Finally, our approach
to ramifications with exceptions has been shown not to
interfere with handling non-deterministic information.

The work reported here essentially relies on our
causality-based solution to the Ramification Prob-
lem described in (Thielscher 1997). Arguments in
favor of this solution, linked with a through com-
parison to other approaches, can be found in that
paper. The problem of ramifications having excep-
tions has received little attention in literature up to
now, probably because satisfactory solutions to the
Ramification Problem itself have not emerged until
very recently. To the best of the author’s knowl-
edge, the only existing papers dealing with disquali-
fications of ramifications are (Baral and Lobo 1996;
Zhang 1996). In both of them expressions resembling
causal relationships are allowed to be defeasible. Nei-
ther of the approaches, however, goes beyond defining
a notion of successor state based on minimizing ab-
normality. Therefore, if applied as they stand the two
approaches, by producing the unintended model, im-

mediately get caught in the causality trap illustrated
with our key example depicted in Figure 1.

The action theory presented in this paper was in-
spired by a solution to the problem of abnormal dis-
qualifications of actions proposed in (Thielscher 1996).
The latter also describes a provably correct Fluent Cal-
culus (Hölldobler and Schneeberger 1990) realization
of that theory, which uses default rules to encode the
assumptions of ‘normality’. This Fluent Calculus en-
coding can straightforwardly be adopted to the the-
ory proposed in the present paper. (Thielscher 1996)
also describes a way to deal with so-called miraculous
abnormalities. This idea, too, can be adapted to the
problem of disqualified ramifications. A miracle occurs
whenever an abnormality cannot be explained from the
(necessarily restricted) knowledge provided by domain
constraints such as (6). See (Thielscher 1996) for a
formal discussion on this topic.
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