
A Logic for Reasoning About Game Strategies

Dongmo Zhang
The University of Western Sydney

Australia
d.zhang@uws.edu.au

Michael Thielscher
The University of New South Wales

Australia
mit@cse.unsw.edu.au

Abstract

This paper introduces a modal logic for reasoning about game
strategies. The logic is based on a variant of the well-known
game description language for describing game rules and fur-
ther extends it with two modalities for reasoning about ac-
tions and strategies. We develop an axiomatic system and
prove its soundness and completeness with respect to a spe-
cific semantics based on the state transition model of games.
Interestingly, the completeness proof makes use of forgetting
techniques that have been widely used in the KR&R litera-
ture. We demonstrate how general game-playing systems can
apply the logic to develop game strategies.

Introduction
General Game Playing is concerned with replicating the
ability of humans to learn to play new games solely by be-
ing given the rules. The most challenging task of a gen-
eral game-playing system is to generate strategies for game
playing. Several approaches have been developed in gen-
eral game playing, including automatically generated heuris-
tics (Clune 2007; Schiffel and Thielscher 2007), sym-
bolic search (Kissmann and Edelkamp 2008), and Monte
Carlo-based search (Finnsson and Björnsson 2008); for an
overview, see (Genesereth and Björnsson 2013; Genesereth
and Thielscher 2014). However, for most games these ap-
proaches are too general to be as effective as a simple game-
specific strategy. The great challenge is how to automati-
cally generate specific strategies for specific games based on
a players’ understanding of the game rules. Ideally, a player
should be able to think logically about game strategies based
on the provided logical descriptions of the game rules.

As a quasi-standard in general game playing, game
rules are specified in the Game Description Language
(GDL) (Genesereth et al. 2005). The language is a fragment
of first-order logic, which is essentially propositional but
expressive enough for describing any finite combinatorial
games with complete information. GDL has been designed
solely for describing game rules but not for describing game
strategies, nor for reasoning about game strategies.

There exist a number of logical frameworks proposed
for reasoning about strategic abilities of players. Most of

Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

them were developed based on Alternating-time Temporal
Logic (ATL) (Alur et al. 2002; van der Hoek et al. 2005;
Chatterjee et al. 2010; Walther et al. 2007). However, these
logics “tend to have existential quantifiers saying that ‘play-
ers have a strategy’ for achieving some purpose, while de-
scriptions of these strategies themselves are not part of the
logical language” (van Benthem 2008). In fact, reasoning
about strategic abilities of players is different from reason-
ing about strategies themselves. The former takes a global
view of a group of players and does not consider how indi-
vidual players generate strategies.

In this paper we introduce a modal logic for representing
and reasoning about game strategies. We extend the game
description language with three modalities for representing
and reasoning about actions and game strategies. We estab-
lish an axiomatic system for the logic and prove its sound-
ness and completeness using variable forgetting technique.
We demonstrate how to the logic can be used for creating
strategies and verifying properties of strategies.

The paper is arranged as follows. The 2nd section intro-
duces the model we use for describing a game. The 3rd-5th

sections present the syntax, semantics and axiomatic system
of the logic, followed by a sketch of completeness proof. The
last few sections demonstrate how to use the logic for strat-
egy representation and reasoning before conclude the work.

State Transition Model for Games
All the games we consider in this paper are assumed to be
played in a multi-agent environment. We use N to represent
the set of agents. We assume that each agent in N can per-
form a finite but non-empty number of actions. Let Ai be the
set of actions agent i P N can perform. We assume that ac-
tions are different if they are performed by different agents
even though they may have same pre-conditions and post-
conditions. Formally, we call pN,Aq a multi-agent frame
where

• N is a non-empty, finite set of agents;

• A �
�

iPN Ai, where Ai is a non-empty, finite set of ac-
tions for player i P N and Ai X A j � H if i , j.

Most strategic games we play in the real-world, such as
board games, are finite and asynchronous. These games can
be easily specified with the state transition model.

Definition 1 Given a multi-agent frameF � pN,Aq, a state
transition game, or shortly game, is a tuple pW, I,T,U, Lq,
where

• W is a non-empty set of states (possible worlds);
• I � W is the initial states;
• T � W is the terminal states.
• U : W � A ÞÑ WzI is the update function, which maps

each pair of state and action to a non-initial state.
• L � W �A is a legality relation (describing the allowed

actions in a state);

As mentioned above, we only consider asynchronous
games, in the sense that only one action can be taken at one
time. This can be seen from the definition of update func-
tion. If we want to specify synchronous games, the update
function has to be extended to take a vector of actions from
all the players in each state as shown in (Genesereth et al.
2005). We leave that option for future investigations.

Slightly different from game models in the GGP litera-
ture, we do not assume that initial states are unique. We also
leave the winsp.q operator to users to define. These simplic-
ities make our axioms look neat. For convenience, we will
write uapwq �de f Upw, aq.

For any w P W and a P A, we call pw, aq a move. It is a
legal move if pw, aq P L. It is a move of player i if a P Ai.

Any set, S , of legal moves is called a strategy, which spec-
ifies which action is taken at some states. We call a strategy
S player i’s strategy if it contains only player i’s moves.

We say that a strategy S of player i is complete if for each
state w P W, there is a legal move pw, aiq P S unless lipwq �
H, where lipwq � ta P Ai : pw, aq P Lu. Roughly speaking,
a complete strategy of a player provides the player with a
“complete” guideline so that she can move whenever she
has a legal move. A strategy S of player i is deterministic if
for any pw, aq P S and pw, a1q P S , a, a1 P Ai implies a � a1.
A strategy is functional if it is complete and deterministic.

The Syntax
Describing a game with the state transition model is possi-
ble but not practical in all cases. We may encode a game in
a form that is more compact. Game Description Language
(GDL) is a logical language for describing game rules, pro-
posed as the official language for General Game Playing
Competition (Genesereth et al. 2005). The original GDL
is a variant of Datalog, which is a fragment of first-order
language. For the purpose of this paper, we reformat it in
propositional modal logic.

Definition 2 Given a multi-agent frame F � pN,Aq, let
LGDL be a propositional modal language consisting of

• a countable set, Φ, of propositional variables;
• logical connectives and ^ (from which _,Ñ,Ø, J, K

can be defined as usual);
• pre-defined propositions: initial, terminal, legalpaq and

doespaq, for each a P A;
• action execution modality r . s.

The following BNF rule generates all formulas in LGDL:
ϕ ::� p | ϕ | ϕ^ ϕ | initial | terminal |

doespaq | legalpaq | rasϕ |
where p P Φ and a P A.
As in GDL, initial and terminal are specific propositional
variables, representing the initial states and the terminal
states of a game, respectively. For any action a P A, doespaq
is a propositional variable stands that the action a is to be
taken at the current state while legalpaqmeans that it is legal
to perform a at the current state1. Different from the standard
GDL, instead of using the temporal operator© to specify ef-
fects of actions, we introduce the PDL-like action modality
r.s and use it to define the next operator:

©ϕ �de f

ª

aPA

pdoespaq ^ rasϕq (1)

Note that rasϕ means if action a is executed at the current
state, ϕ will be true in the next state.

Note that the language LGDL reliefs on the multi-agent
frame F . For simplicity without losing generality, in the rest
of the paper we will fix a multi-agent frame F � pN,Aq and
all concepts will be based on the same multi-agent frame.
Now we extend the language with two additional modalities
to represent choice of actions and effects of strategies.

Definition 3 Let LGDL� be the extension of LGDL aug-
mented by the action selection operator � �� and strategy
modality N�O . The formulas of LGDL� are generated by the
following BNF rule:

ϕ ::� p | ϕ | ϕ^ ϕ | initial | terminal |
doespaq | legalpaq | rasϕ | �a�ϕ | NϕOϕ |

where p P Φ and a P A.
Intuitively, �a�ϕ means that if action a were chosen (but
not yet executed), then ϕ would be true. NαOϕ means that if
player i were to play according to strategy α, then ϕ would
be true.

Interestingly, the action selection modality allows us to
define the following two binary modal operators:
• Prioritised Disjunction:

α> β �de f α_ pβ^
©

cPA

�c� αq (2)

• Prioritised Conjunction:

α? β �de f α^ pp
ª

cPA

�c�pα^ βqq Ñ βq (3)

We will show that if α and β are two strategies for a player,
α>β and α?β are also strategies of the player. α>β means
“apply strategy α if it is applicable; otherwise, apply β”. α?
β means “apply α and β if both applicable; otherwise, apply
α only”. As we will demonstrate later, these connectives play
important roles in strategy composition.

To show how to use the language to represent game rules
and related strategies, we consider the following simple
game (van den Herik et al. 2002).

1Since we assume that different players take different actions,
it is clear who takes the action.

Example 1 (mk-Game) An mk-game is a board game in
which two players take turns in marking either a nought ‘o’
or a cross ‘x’ on a board with m � m grid. The player who
first gets k consecutive marks of her own symbol in a row
(horizontally, vertically, or diagonally), will win the game.
It is assumed that player ’x’ makes the first move.

It is easy to see that Tic-Tac-Toe is a 3, 3-game and the
standard Gomoku game is a 15, 5-game. Now let us describe
the mk-games in our language.

Given a player t P tx,ou, let pt
i, j denote that grid pi, jq is

filled with player t’s symbol, and at
i, j denote the action that

player t marks grid pi, jq, where 1 ¤ i, j ¤ m. The game can
then be expressed with the following domain axioms:

1. initial Ñ turnpxq ^ turnpoq ^
m�

i, j�1
 ppx

i, j _ po
i, jq

2. winsptq Ø p
m�

i�1

m�k�1�
j�1

k�1�
l�0

pt
i, j�lq_ p

m�k�1�
i�1

m�
j�1

k�1�
l�0

pt
i�l, jq

_ p
m�k�1�

i�1

m�k�1�
j�1

k�1�
l�0

pt
i�l, j�lq _p

m�k�1�
i�1

m�
j�k

k�1�
l�0

pt
i�l, j�lq

3. teminal Ø winspxq _ winspoq _
m�

i, j�1
ppx

i, j _ po
i, jq

4. legalpat
i, jq Ø ppx

i, j _ po
i, jq ^ turnptq ^ terminal

5. ©pt
i, j Ø pt

i, j _ doespat
i, jq

6. turnptq Ñ © turnptq ^©turnp�tq, where �t represents
t’s opponent.
We let Σm,k be the set of the above axioms. Rule (1) says

that player x has the first turn and all grids are empty ini-
tially. Rules (2) and (3) describe the winning conditions and
termination conditions, respectively. (4) specifies the pre-
conditions of each action (legality). (5) is the combination
of the frame axioms and effect axioms a grid is marked with
a player’s symbol in the next state if the player takes the
respective action in the current state or the grid has been
marked before. The last rule specifies turn-taking.

We will see that a strategy can be also represented by a
formula in LGDL� . For instance, the following are examples
of strategies for player t in m, k-game:
• Mark anywhere available:

markanyt �
m�

i, j�1
p px

i, j ^ po
i, j ^ doespat

i, jqq

• Mark the center (c � tm{2u):
markcentert � px

c,c ^ po
c,c ^ doespat

c,cq

• Check if I can win:

checkt �
m�

i, j�1
p px

i, j ^ po
i, j ^ doespat

i, jq ^©winsptqq

• Prevent immediate loss:

de f encet�
mª

i, j�1

p©pdoespa-t
i, jq^©wintsp-tqqÑdoespat

i, jqq

• Combined strategies:
combinedt � markcentret>checkt>de f encet>markanyt

We will further explain these strategies in later sections.

The Semantics
We now provide the semantics for the language. Let G �
pW, I,T,U, Lq be a state transition game within the multi-
agent framework pN,Aq. V is a valuation function forΦ. We
call M � pG,Vq is a state transition model. We will assess if
a formula ϕ is true in each state with respect to a state transi-
tion model. As a logic for reasoning about actions, the truth
value of a formula relies on not only which state it is but also
which action is to take in the state. For instance, to satisfy
the formula markcentert, the center grid of the board should
be empty and player t is to take the action at the underlying
state. Therefore we will define the satisfiability relation as
M |ùpw,aq ϕ to check if formula ϕ is satisfied when action a
is to be taken in state w of M.
Definition 4 Let M be a state transition model within the
multi-agent framework pN,Aq. The satisfiabilty of a for-
mula ϕ wrt. M and a move pw, aq is defined as follows, where
p P Φ; a, b P A; and ϕ, α P LGDL� :

M |ùpw,aq p iff p P Vpwq
M |ùpw,aq ϕ iff M 6|ùpw,aq ϕ
M |ùpw,aq ϕ1 ^ ϕ2 iff M |ùpw,aq ϕ1 and M |ùpw,aq ϕ2
M |ùpw,aq doespbq iff a � b
M |ùpw,aq legalpbq iff pw, bq P L
M |ùpw,aq initial iff w P I
M |ùpw,aq terminal iff w P T
M |ùpw,aq rbsϕ iff M |ùpubpwq,cq ϕ for all c P A
M |ùpw,aq �b�ϕ iff M |ùpw,bq ϕ
M |ùpw,aq NαOϕ iff M|α |ùpw,aq ϕ.

where M|α is the same as M except for replacing the legality
relation in M by L|α � tps, bq P L : M |ùps,bq αu.

The definition is standard except for the modalities. rbsϕ
requires that ϕ holds at the next state no matter which action
to be taken at that state. rbsϕ being true at pw, aq means that
ϕ holds at w when b is taken instead of a. To understand the
semantics of N.O , let

}α}M � tps, bq P W �A : M |ùps,bq αu. (4)

i.e., the set of all the moves that make α true in M. Note that
L|α � L X }α}M , which means that L|α is in fact a strategy
(see the definition of strategy in the 2nd section), which con-
tains all the moves that make α true in M. Thus ϕ being true
under strategy α in M (i.e., M |ùpw,aq NαOϕ) means ϕ holds
in the restricted model where all legal moves are restricted
to the strategy L|α.

As in any modal logic, ϕ P LGDL� is said to be valid in
M, written as M |ù ϕ, if M |ùpw,aq ϕ for all w P W and
a P A. We write G |ù ϕ to mean that M |ù ϕ for all state
transition models M of G. Similarly, by |ù ϕ, we mean ϕ is
valid in all state transition models within F .

The Axioms
GDL was designed for describing game rules rather than for
reasoning about games because there is no inference mecha-
nism associated with it2. From this section, we will develop a

2Reasoning can be done in the semantical level but it is not
essential to the language.

proof theory for the logic we just defined. Firstly we present
the axioms and inference rules:

1. Basic axioms:

A1 all axioms for propositional calculus.
A2 $ pdoespaq ^ doespbqq if a , b.
A3 $

�
aPA

doespaq

A4 $ rasinitial
A5 $ terminal Ñ legalpaq

2. Axioms on the action execution modality:

B1 $ raspϕ^ ψq Ø rasϕ^ rasψ
B2 $ rasϕØ ras

�
bPA

�b� ϕ

3. Axioms on the action selection modality:

C1 $ �b�p Ø p, where p P ΦY tinitial, terminalu
C2 $ �b�legalpaq Ø legalpaq
C3 $ �b�doespaq Ø a � b
C4 $ �b� ϕØ �b�ϕ
C5 $ �b�pϕ^ ψq Ø �b�ϕ^ �b�ψ
C6 $ �a��b�ϕØ �b�ϕ
C7 $ �a�rbsϕØ rbsϕ

4. Axioms on the strategy modality:

D1 $ NαO p Ø p, where p P ΦY tinitial, terminalu
D2 $ NαO legalpaq Ø plegalpaq ^ �a�αq
D3 $ NαO doespaq Ø doespaq
D4 $ NαO ϕØ NαOϕ

D5 $ NαO pϕ^ ψq Ø pNαOϕ^ NαOψq

D6 $ NαO�b�ϕØ �b�NαOϕ
D7 $ NαO rasϕØ rasNαOϕ
D8 $ NαO NβOϕØ Nα^ NαO βOϕ

5. Inference rules:

(MP) If $ ϕ, $ ϕÑ ψ, then $ ψ.
(GEN A) If $ ϕ, then $ rasϕ.
(GEN C) If $ ϕ, then $ �a�ϕ.
(GEN S) If $ ϕ, then $ NaOϕ.

where a, b P A and ϕ, ψ, α P LGDL� . We will call the logical
system Strategic Game Logic (SGL).

The first set of axioms specify the basic properties of the
logic. A2&3 say that one action and only one action can be
performed in a state. A4&5 specifies the generic properties
of initial states and terminal states. The axiom sets B,C and
D specify the properties of each modality, respectively. In-
terestingly, the axioms for strategy modality N.O is similar to
the axioms for public announcement logic (van Ditmarsch
et al. 2007). Note that α is not a premise of NαOϕ.

A formula ϕ P LGDL� that can be derived from the above
axioms and inference rules is denoted by $ ϕ. For any set
of formulas Γ and a formula ϕ, Γ $ ϕ means that there are
ϕ1, � � � , ϕm P Γ, such that $ pϕ1 ^ � � � ^ ϕmq Ñ ϕ.

It is straightforward to verify that all the axioms and in-
ference rules are valid under the given semantics.

Theorem 1 (Soundness) For any ϕ P LGDL� , if $ ϕ, then
|ù ϕ.

However, due to the non-standard semantics of the logic, the
proof of completeness is much harder.

Completeness
The standard technique of completeness proof for a modal
logic is to use the canonical model to verify if a formula is
satisfiable or not. In other words, we need to establish a truth
lemma, something like:

MΛ |ùΓ ϕ iff ϕ P Γ

where MΛ is the canonical model of the logic under con-
sideration and Γ is a maximal consistent set. Unfortunately,
this approach is not applicable here because we have to
consider which action is taken at each state, i.e, to assess
MΛ |ùpΓ,aq ϕ. The question is how to assess ϕ P Γ accord-
ingly to gain a truth lemma as above. In other words, how
to separate action information from ϕ and Γ? This leads to
a new technique of action forgetting we introduced in this
paper. Due to space limitation, we are unable to present the
full proof of completeness but will outline the major ideas in
this section.

Disjunctive normal form
In order to introduce the concept of action forgetting, we
first show a technique to convert a formula in LGDL� into a
disjunctive normal form.

Consider a sublanguage of LGDL� by removing all
doesp.q variables. Formally, a formula is a state-wise for-
mula if it can be generated by the following BNF rule:

ϕ ::� p | ϕ | ϕ^ ϕ | initial | terminal | legalpaq |

�a�ϕ | rasϕ | NϕOϕ

The resultant language is denoted by LGDL� .
The following lemma shows why a formula in LGDL� is

state-wise, i.e. its true value is irrelevant to which action be-
ing chosen.

Lemma 1 For any χ P LGDL� and an action a P A,

$ χØ �a�χ

The following theorem shows that any formula in LGDL�

can be transformed into a disjunctive normal form.

Theorem 2 (Disjunctive Normal Form) Given a formula
ϕ P LGDL� , for each a P A there is χa P L

GDL� such that

$ ϕØ
ª

aPA

pχa ^ doespaqq

Moreover, the normal form is unique in the sense that if $
ϕØ

�
aPA
pχ1a ^ doespaqq, then $ χa Ø χ1a for all a P A.

We let Normpϕq represent the set of all normal forms of ϕ.

Action forgetting
With normal forms, we can introduce the concept of action
forgetting, which is inspired by the idea of variable forget-
ting in (Lin 2001). Given a formula ϕ P LGDL� , we let

f orgetpϕ; doesq � t
ª

aPA

χa :
ª

aPA

pχa^doespaqq P Normpϕqu

(5)
It is easy to see that f orgetpϕ; doesq contains the formulas

resulting from forgetting all the doesp.q variables for each
normal form of ϕ3.

Furthermore, for any set, Γ, of formulas in LGDL� , we let

f orgetpΓ; doesq �
¤

ϕPΓ

f orgetpϕ; doesq (6)

Canonical model
Let Γ � LGDL� . Γ is maximal consistent iff

1. Γ is consistent: Γ 0 K
2. Γ is maximal: there is no Γ1 � LGDL� such that Γ � Γ1

and Γ1 0 K
The set of all maximal consistent sets of formulas in

LGDL� is denoted by Ω. For any Γ and Γ1 in Ω, we say Γ
and Γ1 are equivalent, denoted by Γ � Γ1, if

f orgetpΓ; doesq � f orgetpΓ1; doesq (7)

Obviously � defines an equivalent relation over Ω. For any
Γ in Ω, we let

|Γ| � tΓ1 P Ω : Γ � Γ1u (8)

Furthermore, for each Γ P Ω and a P A, we write

|Γ|a � tΓ1 P |Γ| : doespaq P Γ1u (9)

It is easy to see that |Γ| �
�

aPA
|Γ|a. For simplicity, we

write ϕ P |Γ| to mean ϕ P Γ1 for any Γ1 P |Γ|. Similar abuse
also applies to |Γ|a.

The following lemma shows that the forgetting operator
gives us what we need, which separates action information
from state information.

Lemma 2 For any Γ P Ω, f orgetpΓ; doesq � ΓXLGDL� .

Now we are ready to define the canonical model for a
given multi-agent framework.

Definition 5 For the given multi-agent frame-
work pN,Aq, we define the canonical model
MΛ � ppN,A,WΛ, IΛ,TΛ,Uc, LΛq,VΛq as follows:

1. WΛ � t|Γ| : Γ is maximal consistent subset of LGDL�u.
2. IΛ � t|Γ| : initial P Γu

3Note that there are significant differences between our con-
cept and Lin’s, despite of some similarities. We apply the forget-
ting process to the normal forms of a formula rather than to its
original form. For instance, let ϕ � �b�doespaq where a , b.
f orgetpϕ; doesq � tψ P LGDL� : $ K Ø ψu because $ ϕ Ø K.
However, ϕpdoespaq{Jq _ ϕpdoespaq{Kq � J.

3. TΛ � t|Γ| : terminal P Γu.
4. UΛ : WΛ � A ÞÑ WΛzIΛ such that for each a P A and

w P WΛ, tϕ : rasϕ P wu � UΛpw, aq.
5. LΛ � tpw, aq P WΛ �A : legalpaq P wu.

6. VΛ : Φ ÞÑ 2WΛ such that VΛppq � tw P WΛ : p P wu.

The following two lemmas guarantee the canonical model
is a state transition model.

Lemma 3 For any a P A and any w P WΛ, there is a unique
w1 P WΛ such that tϕ : rasϕ P wu � w1.

Lemma 4
1. For all pw, aq P WΛ �A, UΛpw, aq < IΛ.
2. For all pw, aq P LΛ, w < TΛ.

Truth Lemma
Now we are ready to show the completeness, which is im-
mediately followed by the following Truth Lemma.

Lemma 5 Let ϕ P LGDL� . For any p|Γ|, aq P WΛ �A,

MΛ |ùp|Γ|,aq ϕ iff ϕ P |Γ|a

Proof: We prove it by induction on ϕ.
Assume that ϕ � p where p P Φ. By the construction of MΛ,

|Γ| P VΛppq iff p P |Γ| iff p P |Γ|a.
Assume that ϕ � initial. Then MΛ |ùp|Γ|,aq initial iff |Γ| P IΛ iff

initial P Γ iff initial P |Γ|a. ϕ � terminal is similar.
Assume that ϕ � doespbq where b P A. By the construction

of MΛ, MΛ |ùp|Γ|,aq doespbq iff a � b. Note that doespbq P |Γ|a
iff a � b, because $ pdoespaq ^ doespbqq if a , b. Therefore
MΛ |ùp|Γ|,aq doespbq iff doespbq P |Γ|a.

Assume that ϕ � legalpbq where b P A. Then MΛ |ùp|Γ|,aq

legalpbq iff p|Γ|, aq P LΛ iff legalpbq P |Γ| iff legalpbq P |Γ|a, as
desired.

Assume that ϕ � ψ. If MΛ |ùpw,aq ψ, we have MΛ 6|ùpw,aq ψ.
By inductive assumption, ψ < |Γ|a, which means that there is
a maximal consistent set Γ1 P |Γ|a such that ψ < Γ1. Since Γ1
is maximal consistent, we have ψ P Γ1. Assume that ψ ��

bPA
pdoespbq ^ χbq. Thus $ ψ Ø

�

bPA
pdoespbq ^ χbq Ø

�

bPA
pdoespbq Ñ χbq. By ψ P Γ1, we have doespbq Ñ χb P Γ

1

for all b P A. Specifically, we have doespaq Ñ χa P Γ
1. Note

that doespaq P Γ1, we yield χa P Γ
1. Since χa P L

GDL� ,
we have χa P |Γ|

a. On the other hand, doespbq P |Γ|a for
any b , a. Combining the two cases together, we then have
 doespcq _ χc P |Γ|

a for any c P A, which implies ψ P |Γ|a,
as desired.

Assume that ϕ � �b�ψwhere b P A. By the construction of MΛ
and the assumption of induction, MΛ |ùp|Γ|,aq �b�ψ iff MΛ |ùp|Γ|,bq

ψ iff ψ P |Γ|b. Let ψ �
�

cPA
pχc^doespcqq. Then

�

cPA
pχc^doespcqq P

|Γ|b. Note that doespbq P |Γ|b. Thus
�

cPA
pχc^doespcq^doespbqq P

|Γ|b, which implies χb P |Γ|
b. Since χb P L

GDL� , we have χb P |Γ|.
Note that $ �b�ψ Ø �b�

�

cPA
pχc ^ doespcqq Ø χb. Therefore

�b�ψ P |Γ|, which implies �b�ψ P |Γ|a.
Assume that ϕ � rbsψ. If MΛ |ùp|Γ|,aq rbsψ, we have

MΛ |ùpUΛb p|Γ|q,cq ψ for all c P A. By the inductive assump-
tion, ψ P |Γ1|c for any c P A, where |Γ1| � UΛb p|Γ|q. Let
ψ �

�

dPA
pχd ^ doespdqq. For each c P A, we have

�

dPA
pχd ^

doespdq ^ doespcqq P |Γ1|c, that is, χc P |Γ
1|c. Therefore χc P |Γ

1|
for any c P A, that is

�

cPA
χc P |Γ1|. On the other hand, if

rbsψ < |Γ|, there is Γ2 P |Γ| such that rbsψ P Γ2. It turns out that
rbs
�

cPA
�c� ψ P Γ2, or rbs

�

cPA
�c�
�

dPA
pdoespdq Ñ χdq P Γ

2. We

then have rbs
�

cPA
 χc P Γ

1. Since rbs
�

cPA
 χc P L

GDL� , we have

rbs
�

cPA
 χc P |Γ|. It follows that

�

cPA
 χc P |Γ

1|, which contradicts

the fact
�

cPA
χc P |Γ

1|. This means that assumption rbsψ < |Γ| is

incorrect. Therefore rbsψ P |Γ|, or rbsψ P |Γ|a, as desired.
If ϕ � NαOψ, we apply Axioms (D1-D8) recursively to

eliminate the occurrences of N.O operator. �

Theorem 3 (Completeness) For any ϕ P LGDL� , if |ù ϕ,
then $ ϕ.

Reasoning About Strategies
We have established a proof theory for the logic we intro-
duced. In this section, we demonstrate how to use this logic
for reasoning about game strategies. In fact, we are explor-
ing a proof-theoretical approach that can be used for general
game players to create, combine and verify their strategies.

Inference with game-specific axioms
The axioms and inference rules of SGL are generic for any
game. To verify a game specific property, we must utilise the
game specific axioms as we have shown for the mk-games.

Let Σ be a set of game-specific axioms for a game G. We
write $Σ ϕ to mean that ϕ can be derived from the generic
axioms of SGL and the game-specific axioms in Σ by the
inference rules of SGL.

For instance, the following can be derived in any mk-
game:
$Σ

m,k
turnpxq Ñ ©turnpoq ^©©turnpxq

We say Σ is an axiomatisation of a game G if for any
state transition model M of G and any ϕ P LGDL� , $Σ ϕ iff
M |ù ϕ. Note that not all games can be axiomatised.

Strategy rules of a player
As defined in the 2nd section, a strategy in a game is a set of
legal moves. In this sense, any formula can be viewed as a
strategy because it uniquely determines a set of legal moves.
Formally, given a game G � pN,A,W, I,T,U, Lq, for any
α P LGDL� , let

S Gpαq � tpw, aq P L : M |ùpw,aq α for any M of Gu

We say α is a strategy rule of the strategy S Gpαq. However,
when we talk about a strategy, we normally mean a strat-
egy of a player. The following defines strategies for specific
players.

Definition 6 A formula α P LGDL� is called a strategy rule,
or simply strategy, of player i if each normal form of α can
be expressed in the form

�
aPAi
pχa ^ doespaqq.

From the uniqueness of normal forms, it is easy to show
that player i’s strategies specify only player i’s moves.

Lemma 6 If α is a strategy of player i in game G, S Gpαq �
W � Ai.

One may have noticed that our concept of strategies is sig-
nificantly different from the one in the context of ATL (Alur
et al. 2002; van der Hoek et al. 2005; Walther et al. 2007).
In ATL, a strategy is a function that maps each state (or a
sequence of states) to an action. In other words, a strategy
specifies which action has to do exactly in each state.

The following theorem provides us with a syntactical ap-
proach to verify if a strategy rule represents a functional
strategy in a game.

Proposition 1 Let Σ be an axiomatisation of a game G. For
any strategy rule α of player i,

1. α of player i is complete in G if

$Σ
�

aPAi
legalpaq Ñ NαO

�
aPAi

legalpaq

2. α of player i is deterministic in G if

$Σ NαO
�

a,bPAi & a,b
 plegalpaq ^ legalpbqq

It is not hard to prove that the strategy markanyt defined in
the 3rd section is complete for player t and markcentert is
deterministic for t with respect to any mk-game.

Strategy composition
One way of creating strategies is that we start with some
“rough ideas” of strategies and combine them in certain way
to form more complicated, if needed, functional strategies.
This can be done by using the prioritised strategy connec-
tives defined by Equations (2) and (3) in the 3rd section. The
following observation gives the semantics of these connec-
tives:

Proposition 2 For any state transition model M,

• M |ùpw,aq α > β iff either M |ùpw,aq α, or M |ùpw,aq β but
M |ùpw,cq α for all c P A.

• M |ùpw,aq α? β iff M |ùpw,aq α, and if M |ùpw,cq α^ β for
some c P A, then M |ùpw,aq β.

One may wonder if α and β are strategy rules for a player,
whether their prioritised disjunction and conjunction are still
strategy rules for the same player. The following proposition
answers this question.

Proposition 3 If α and β are strategy rules for player i, so
are α> β and α? β.

The following properties will help us to create functional
strategies:

Proposition 4 Let α and β are strategy rules for player i.

1. If α or β is complete, so is α> β.
2. If α is complete, so is α? β.
3. If α and β are deterministic, so is α> β.
4. If α is deterministic, so is α? β.

With this result, we can easily know that combinedt is com-
plete because markany is complete.

Strategy implementation
One target of the current research is to develop a syntactical
approach for a game player to generate strategies for game
playing. We have shown how to use logical formulas to write
simple strategies and how to combine them into more com-
plicated strategies. We have also demonstrate how to verify
if a strategy satisfies some desired properties such as com-
pleteness and determinicity.

One may even want to prove if a strategy can guarantee
to win or not to lose. The following introduces a syntactical
way to verify if a strategy can bring a game from an initial
state to a final state in order to achieve a property.

Let Σ be an axiomatisation of a game. For any α, ϕ P

LGDL� , α implements ϕ in Σ, denoted by, α
Σ ϕ, if

• $Σ initial Ñ NαO
�

aPA
legalpaq

• $Σ terminal Ñ�
aPA
NαO plegalpaq Ñ raspterminal_

�
cPA

legalpcqqq

• $Σ terminal^ αÑ ϕ.

Intuitively, α implements ϕ if there is a complete path that
leads the game from an initial state to a terminal in which ϕ
is true. Note that if you want to verify one of your strategies,
you must have a guess of another player’s strategy and com-
bine them into a formula α. This will introduce significant
complexity, especially if you target for a winning strategy.

Conclusion and Related Work
We have established a modal logic with a non-standard
Kripke semantics, and we have presented a sound and com-
plete axiomatic system for representing, combining, and rea-
soning about game strategies. It is the first logical system for
GDL that is sound and complete, and one of a few existing
formal systems for strategic reasoning.

In terms of future work, our logic provides the founda-
tions for gaining new insights into the mechanism of strate-
gic reasoning and likely leads to a new approach for auto-
matically generating game strategies for game-playing sys-
tems, including general game players. Automatically gen-
erating good strategies for games in general game playing
is a largely unsolved problem (Genesereth and Björnsson
2013). But we believe that our logic can help general game
players to systematically generate, and automatically eval-
uate, strategies from the logical elements of a given game
description, especially if the aim is to find compact, prac-
tically useful strategies rather than optimal ones. It is a
widely held belief that automatically generating smart strate-
gies for complicated games is hard. But our own, recent
experiments indicate that it might be practically feasible
nonetheless. Specifically, we found that standard Minimax
with alpha-beta heuristics can easily generate the following
strategy rules for m, k-games (ordered by decreasing prior-
ity): (1) Fill the center; (2) Fill a cell if this wins the game;
(3) Fill a cell to prevent an immediate threat by the op-
ponent; (4) Make a threat; (5) Fill any cell, but give pri-
ority to central positions. Combining these strategies with

the prioritized connectives provides provably winning/loss-
preventing strategies for simple m, k-games and reasonably
good strategies for larger ones. In general, if we do not aim
to find prefect winning strategies for any game, then auto-
matically discovering strategies with certain desirable prop-
erties seems always possible.

References
R. Alur, T. Henzinger, and O. Kupferman. Alternating-time
temporal logic. J. ACM, 49(5):672–713, 2002.
K. Chatterjee, T. Henzinger, and N. Piterman. Strategy logic.
Information and Computation, 208(6):677 – 693, 2010.
J. Clune. Heuristic evaluation function for general game
playing. In Proceedings of the Twenty-Second AAAI Con-
ference on Artificial Intelligence, pages 1134–1139. 2007.
P. Kissmann and S. Edelkamp. Symbolic classification of
general multi-player games. In Proceedings of the 18th
European Conference on Artificial Intelligence, pages 905–
906. 2008.
H. Finnsson and Y. Björnsson. Simulation-based approach
to general game playing. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, pages 259–264.
2008.
M. Genesereth and M. Thielscher. General Game Playing.
Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2014.
M. Genesereth, N. Love, and B. Pell. General game playing:
Overview of the AAAI competition. AI Magazine, 26(2):62–
72, 2005.
M. Genesereth and Y. Björnsson. The international general
game playing competition. AI Magazine, 34(2):107–111,
2013.
F. Lin. On strongest necessary and weakest sufficient condi-
tions. Artificial Intelligence, 128(1-2):143 – 159, 2001.
S. Schiffel and M. Thielscher. Fluxplayer: a successful gen-
eral game player. In Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, pages 1191–
1196. 2007.
J. van Benthem. In praise of strategies. In Jan Van Eijck
and Rineke Verbrugge, editors, Games, Actions, and Social
Software, ILLC scientific publications. University of Ams-
terdam, 2008.
H. van den Herik, J. Uiterwijk, and J. van Rijswijck. Games
solved: Now and in the future. Artificial Intelligence, 134(1-
2):277 – 311, 2002.
W. van der Hoek, W. Jamroga, and M. Wooldridge. A logic
for strategic reasoning. In Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pages 157–164. 2005.
H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic
epistemic logic. Springer, 2007.
D. Walther, W. van der Hoek, and M. Wooldridge.
Alternating-time temporal logic with explicit strategies. In
Proceedings of the 11th Conference on Theoretical Aspects
of Rationality and Knowledge, pages 269–278. 2007.

