
Fluxplayer: A Successful General Game Player

Stephan Schiffel and Michael Thielscher
Department of Computer Science
Dresden University of Technology

{stephan.schiffel,mit}@inf.tu-dresden.de

Abstract

General Game Playing (GGP) is the art of designing pro-
grams that are capable of playing previously unknown games
of a wide variety by being told nothing but the rules of the
game. This is in contrast to traditional computer game play-
ers like Deep Blue, which are designed for a particular game
and can’t adapt automatically to modifications of the rules, let
alone play completely different games. General Game Play-
ing is intended to foster the development of integrated cog-
nitive information processing technology. In this article we
present an approach to General Game Playing using a novel
way of automatically constructing a position evaluation func-
tion from a formal game description. Our system is being
tested with a wide range of different games. Most notably, it
is the winner of the AAAI GGP Competition 2006.

Introduction

General Game Playing is concerned with the development of
systems that can play well an arbitrary game solely by being
given the rules of the game. This raises a number of issues
different from traditional research in game playing, where it
is assumed that the rules of a game are known to the pro-
grammer. Writing a player for a particular game allows to
focus on the design of elaborate, game-specific evaluation
functions (e.g., (Morris 1997)) and libraries (e.g, (Schaeffer
et al. 2005)). But these game computers can’t adapt auto-
matically to modifications of the rules, let alone play com-
pletely different games.

Systems able to play arbitrary, unknown games can’t be
given game-specific knowledge. They rather need to be en-
dowed with high-level cognitive abilities such as general
strategic thinking and abstract reasoning. This makes Gen-
eral Game Playing a good example of a challenge problem
which encompasses a variety of AI research areas including
knowledge representation and reasoning, heuristic search,
planning, and learning. In this way, General Game Playing
also revives some of the hopes that were initially raised for
game playing computers as a key to human-level AI (Shan-
non 1950).

In this paper, we present an approach to General Game
Playing which combines reasoning about actions with
heuristic search. Our focus is on techniques for constructing

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

search heuristics by the automated analysis of game specifi-
cations. More specifically, we describe the following func-
tionalities of a complete General Game Player:

1. Determining legal moves and their effects from a formal
game description requires reasoning about actions. We
use the Fluent Calculus and its Prolog-based implementa-
tion FLUX (Thielscher 2005).

2. To search a game tree, we use non-uniform depth-first
search with iterative deepening and general pruning tech-
niques.

3. Games which cannot be fully searched require the auto-
matic construction of evaluation functions from formal
game specifications. We give the details of a method that
uses Fuzzy Logic to determine the degree to which a posi-
tion satisfies the logical description of a winning position.

4. Strategic, goal-oriented play requires to automatically de-
rive game-specific knowledge from the game rules. We
present an approach to recognizing structures in game de-
scriptions.

All of these techniques are independent of a particular lan-
guage for defining games. However, for the examples given
in this paper we use the Game Description Language devel-
oped by Michael Genesereth and his Stanford Logic Group;
the full specification of syntax and semantics can be found
at games.stanford.edu. We also refer to a number
of different games whose formal rules are available on this
website, too. Since 2005 the Stanford Logic Group holds
an annual competition for General Game Players. The ap-
proach described in this paper has been implemented in the
system Fluxplayer, which has won the second AAAI Gen-
eral Game Playing competition.

Theorem Proving/Reasoning

Games can be formally described by an axiomatization of
their rules. A symbolic representation of the positions and
moves of a game is needed. For the purpose of a modu-
lar and compact encoding, positions need to be composed
of features like, for example, (cell ?x ?y ?p) repre-
senting that ?p is the contents of square (?x,?y) on a
chessboard.1 The moves are represented by symbols, too,

1Throughout the paper, we use KIF (the Knowledge Inter-
change Format), where variables are indicated by a leading “?”.

like (move ?u ?v ?x ?y) denoting to move the piece
on square (?u,?v) to (?x,?y).

In the following, we give a brief overview of the Game
Description Language. This language is suitable for de-
scribing finite and deterministic n-player games (n ≥ 1)
with complete information. GDL is purely axiomatic, so
that no prior knowledge (e.g., of geometry or arithmetics) is
assumed. The language is based on a small set of keywords,
that is, symbols which have a predefined meaning. A general
game description consists of the following elements.

• The players are described using the keyword (role

?p), e.g., (role white).

• The initial position is axiomatized using the key-
word (init ?f), for example, (init (cell a 1

white rook)).

• Legal moves are axiomatized with the help of the key-
words (legal ?p ?m) and (true ?f), where the
latter is used to describe features of the current position.
An example is given by the following implication:

(<= (legal white (move ?x ?v ?x ?y))

(true (cell ?x ?v white_pawn))

(true (cell ?x ?y blank))

...)

• Position updates are axiomatized by a set of formulas
which entail all features that hold after a move, relative to
the current position and the moves taken by the players.
The axioms use the keywords (next ?f) and (does

?p ?m), e.g.,

(<= (next (cell ?x ?y ?p))

(does ?player (move ?u ?v ?x ?y))

(true (cell ?u ?v ?p)))

• The end of a game is axiomatized using the keyword
terminal, for example,

(<= terminal checkmate)

(<= terminal stalemate)

where checkmate and stalemate are auxiliary,
domain-dependent predicates which are defined in terms
of the current position, that is, with the help of predicate
true.

• Finally, the result of a game is described using the key-
word (goal ?p ?v), e.g.,

(<= (goal white 100)

checkmate (true (control black)))

(<= (goal black 0)

checkmate (true (control black)))

(<= (goal white 50) stalemate)

(<= (goal black 50) stalemate)

where the domain-dependent feature (control ?p)

means that it’s player’s ?p turn.

In order to be able to derive legal moves, to simulate game
play, and to determine the end of a game, a general game
playing system needs an automated theorem prover. The
first thing our player does when it receives a game descrip-
tion is to translate the GDL representation to Prolog. This

allows for efficient theorem proving. More specifically, we
use the Prolog based Flux system (Thielscher 2005) for rea-
soning. Flux is a system for programming reasoning agents
and for reasoning about actions in dynamic domains. It is
based on the Fluent Calculus and uses an explicit state rep-
resentation and so called state-update axioms for calculating
the successor state after executing an action. Positions corre-
spond to states in the Fluent Calculus and features of a game,
i.e. atomic parts of a position, are described by fluents.

Search Algorithm

The search method used by our player is a modified iterative-
deepening depth-first search with two well-known enhance-
ments: transposition tables (Schaeffer 1989) for caching the
value of states already visited during the search; and his-
tory heuristics (Schaeffer 1989) for reordering the moves
according to the values found in lower-depth searches. For
higher depths we apply non-uniform depth-first search. With
this method the depth limit of the iterative deepening search
is only used for the move that got the highest value in a
lower-depth search and is gradually lowered for the rest of
the moves until a lower bound is reached. For the entry
in the transposition table the maximal search depth of the
best move in a state is used. This method allows for higher
maximal depth of the search, especially with big branch-
ing factors. In practice, this increases the probability that
the search reaches terminal states earlier in the match be-
cause all games considered end after a finite number of steps.
Thus, non-uniform depth-first search helps to reduce the
horizon problem in games ending after a limited number of
steps. In those games the heuristic evaluation function might
return a good value although the goal is in fact not reach-
able anymore because there are not enough steps left. A
deeper search helps to avoid bad terminal states in that case.
There is another, probably more important rationale behind
non-uniform depth-limited search: It helps filling the trans-
position table with states that will be looked up again and
therefore speeds up search in the future. If we search the
state space following a move we do not take, it is unlikely
that we will encounter these states again in the next steps of
the match.

Depending on the type of the game (single-player vs.
multi-player, zero-sum game vs. non-zero-sum game) we
use additional pruning techniques e.g., alpha-beta-pruning
for two-player games. Our player also decides between
turn-taking and simultaneous-moves games. For turn-taking
games the node is always treated as a maximization node
for the player making the move. So we assume each player
wants to maximize his own reward. For simultaneous-moves
games we make a paranoid assumption: we serialize the
moves of the players and move first. Thereby we assume
that all our opponents know our move. In effect of this we
can easily apply pruning techniques to the search but the as-
sumption may lead to suboptimal play. There is currently
work in progress to use a more game-theoretic approach in-
cluding the calculation of mixed strategy profiles and Nash-
equilibria.

Heuristic Function

Because in most games the state space is too big to be
searched exhaustively, it is necessary to bound the search
depth and use a heuristic evaluation function for non-
terminal states. A general game playing system in our set-
ting must be able to play all games that can be described
with the GDL. Thus, it is not possible to provide a heuristic
function beforehand that depends on features specific for the
concrete game at hand. Therefore the heuristics function has
to be generated automatically at runtime by using the rules
given for the game.

The idea for our heuristic evaluation function is to calcu-
late the degree of truth of the formulas defining predicates
goal and terminal in the state to evaluate. The values
for goal and terminal are combined in such a way that
terminal states are avoided as long as the goal is not fulfilled,
that is, the value of terminal has a negative impact on the
evaluation of the state if goal has a low value and a positive
impact otherwise.

The main idea is to use fuzzy logic, that is, to assign the
values 0 or 1 to atoms depending on their truth value and
use some standard t-norm and t-co-norm to calculate the de-
gree of truth of complex formulas. However this approach
has undesirable consequences. Consider the following eval-
uation function for GDL formulas in a game state z and let
p := 1:

eval(a, z) =

{

p, if a holds in the state z

1 − p, otherwise

eval(f ∧ g, z) = T (eval(f, z), eval(g, z))

eval(f ∨ g, z) = S(eval(f, z), eval(g, z))

eval(¬f, z) = 1 − eval(f, z)

where a denotes a GDL atom, f, g are GDL formulas, and
T denotes an arbitrary t-norm with associated t-co-norm S.

Now consider a simple blocks world domain with three
blocks a, b and c and the goal g = on(a, b) ∧ on(b, c) ∧
ontable(c). In this case we would want eval(g, z) to reflect
the number of subgoals solved. However, as long as one of
the atoms of the goal is not fulfilled in z, eval(g, z) = 0.

To overcome this problem we use values different from 0
or 1 for atoms that are false or true respectively, that means
0.5 < p < 1 in the definition of eval above. This solves
the problem of the blocks world domain described above, as
long as we use a continuous t-norm T , that is, which satisfies
the condition x1 < x2 ∧ y > 0 ⊃ T (x1, y) < T (x2, y).
One example for such a t-norm would be T (x, y) = x ∗ y.
However this solution introduces a new problem. Because of
the monotonicity of T , eval(a1 ∧ . . . ∧ an, z) → 0 for n →
∞. Put in words, the evaluation says the formula a1∧. . .∧an

is false (value is near zero) for large n even if all ai hold in
z.

To overcome this problem, we use a threshold t with
0.5 < t ≤ p, with the following intention: values above
t denote true and values below 1 − t denote false. The truth
function we use for conjunction is now defined as:

T (a, b) =

{

max(T ′(a, b), t), if min(a, b) > 0.5

T ′(a, b) otherwise

where T ′ denotes an arbitrary standard t-norm. This func-
tion together with the associated truth function for disjunc-
tions (S(a, b) = 1 − T (1 − a, 1 − b)) ensures that formulas
that are true always get a value greater or equal t and formu-
las that are false get a value smaller or equal 1− t. Thus the
values of different formulas stay comparable. This is nec-
essary, for example, if there are multiple goals in the game.
The disadvantage is that T is not associative, at least in cases
of continuous t-norms T ′, and is therefore not a t-norm itself
in general. The effect of this is that the evaluation of seman-
tically equivalent but syntactically different formulas can be
different. However by choosing an appropriate t-norm T ′ it
is possible to minimize that effect.

For the t-norm T ′ we use an instance of the Yager family
of t-norms:

T ′(a, b) = 1 − S′(1 − a, 1 − b)

S′(a, b) = (aq + bq)
1

q

The Yager family captures a wide range of different t-norms.
Ideally we would want a heuristic and thus a pair of t-norm
and t-co-norm that is able to differentiate between all states
that are different with respect to the goal and terminal for-
mulas. In principal this is possible with the Yager family of
t-norms. By varying q one can choose an appropriate t-norm
for each game, depending on the structure of the goal and
terminal formulas to be evaluated, such that as many states
as possible that are different with respect to the goal and ter-
minal formulas are assigned a different value by the heuristic
function. However, at the moment we just use a fixed value
for q which seems to work well with most games currently
available on http://games.stanford.edu.

According to the definitions above, the evaluation func-
tion has the following property, which shows its connection
to the logical formula:

(∀f, z) eval(f, z) ≥ t > 0.5 ⇐⇒ holds(f, z)

(∀f, z) eval(f, z) ≤ 1 − t < 0.5 ⇐⇒ ¬holds(f, z)

where holds(f, z) denotes that formula f holds in state z.
The heuristic evaluation function for a state z in a partic-

ular game is defined as follows:

h(z) =
1

∑

gv∈GV gv
∗

⊕

gv∈GV

h(gv, z) ∗ gv/100

h(gv, z) =

{

eval(goal(gv) ∨ term, z), if goal(gv)

eval(goal(gv) ∧ ¬term, z), if ¬goal(gv)
⊕

denotes a product t-co-norm sum, GV is the domain of
goal values, goal(gv) is the (unrolled) goal formula for the
goal value gv and term is the (unrolled) terminal formula of
the game. That means the heuristics of a state is calculated
by combining heuristics h(gv, z) for each goal value gv of
the domain of goal values GV weighted by the goal value
gv with a product t-co-norm (denoted by

⊕

). The heuristics
for each possible goal value is calculated as the evaluation
of the disjunction of the goal and terminal formulas in case
the goal is fulfilled, that is, the heuristics tries to reach a
terminal state if the goal is reached. On the other hand the
heuristics tries to avoid terminal states as long as the goal is
not reached.

Identifying Structures

The evaluation function described above can be further im-
proved by using the whole range of values between 0 and 1
for atoms instead of assigning fixed values 1−p for false and
p for true atoms. The idea is to detect structures in the game
description which can be used for non-binary evaluations
like successor relations, order relations, quantities or game
boards. The approach is similar to the one of (Kuhlmann,
Dresner, & Stone 2006) but with some improvements.

Unlike (Kuhlmann, Dresner, & Stone 2006), who use the
syntactical structure of the rules, we exploit semantical prop-
erties of the predicates to detect static structures, which are
independent of the state of the game. For example, binary
relations that are antisymmetric, functional and injective are
considered as successor relations. Because we use seman-
tical instead of syntactical properties, we can also detect
higher-level predicates like order relations, that is, binary
relations which are transitive and antisymmetric. This is dif-
ficult to do when relying on the syntax of the rules, because
there are many semantically equivalent but syntactically dif-
ferent descriptions of a predicate. The properties of the pred-
icates can be proved quite easily because all domains are
finite.

Dynamic structures like game boards and quantities are
detected in the same way as described in (Kuhlmann, Dres-
ner, & Stone 2006). However our definition of a game board
is broader in that we allow arbitrary dimensions for boards.
We can also deal with boards where only some of the coor-
dinates, i.e. input arguments, are ordered, in which case the
fluent possibly describes multiple ordered boards. An exam-
ple for this case is the fluent (cell ?b ?y ?x ?c) in
the Racetrack game (the final game in the AAAI GGP Com-
petition 2005), a two-player racing game where each player
moves on his own board. The arguments ?y and ?x are the
coordinates of the cell on board ?b and ?c is the content of
the cell. Only the domains of ?x and ?y are ordered, but the
input arguments are ?b, ?x and ?y.

For deciding if a fluent describes a board or a quantity we
need to know the fluent’s input and output arguments as well
as the information if a certain argument of a fluent is ordered.
We compute input and output arguments of all fluents in the
same way as (Kuhlmann, Dresner, & Stone 2006).

For the decision if an argument of a fluent is ordered it
is necessary to know the domains of the arguments of flu-
ents and if there is a successor relation for this domain. The
domains, or rather supersets of the domains, of all predi-
cates and functions of the game description are computed by
generating a dependency graph from the rules of the game
description. The nodes of the graph are the arguments of
functions and predicates in game description, and there is an
edge between two nodes whenever there is a variable in a
rule of the game description that occurs in both arguments.
Connected components in the graph share a (super-)domain.

Figure 1 shows the dependency graph for the following
game rules describing an ordinary step counter:

(succ 0 1) (succ 1 2) (succ 2 3)

(init (step 0))

(<= (next (step ?x))

(true (step ?y)) (succ ?y ?x))

The arguments of the function step and the predicate succ
are all connected in the graph and thus share the same do-
main. The computed set of constants {0, 1, 2, 3} is actually
a superset of the real domain of the arguments of succ. For
example, 3 can’t occur in the first argument of succ. We
disregard this fact because we are more interested in the de-
pendencies between different functions and predicates than
in the actual domains.

step,1

succ,1

succ,2

0

1

2

3

Figure 1: A dependency graph for calculating domains of
functions and predicates. (Ellipses denote arguments of flu-
ents or predicates and squares denote constants.)

Using identified structures for the heuristics

The heuristic evaluation function is improved by introduc-
ing non-binary evaluations of the atoms that correspond to
identified structures.

The evaluation of an order relation r is computed as

eval(r(a, b), z) =

{

t + (1 − t) ∗ ∆(a,b)
|dom(r)| , if r(a, b)

(1 − t) ∗ (1 − ∆(b,a)
|dom(r)|), if ¬r(a, b)

where ∆(a, b) is the number of steps needed for reaching b
from a with the successor function that is the basis of this or-
der relation, and |dom(r)| denotes the size of the domain of
the arguments of r. This evaluation function has advantages
over a binary evaluation which just reflects the truth value of
the order relation: It prefers states with a narrow miss of the
goal over states with a strong miss.

The evaluation of atoms of the form (true f) can be
non-binary if the f in question describes an ordered game
board or a quantity. For ordered game boards this evaluation
reflects the distance (computed with a normalized city-block
metrics) of the position of a piece on the board in the cur-
rent state to the goal position. If there are multiple matching
pieces in a state like in Chinese Checkers where the pieces of
each player are indistinguishable, the evaluation is the mean
value of the distances for all matching pieces.

For example, the evaluation function for a two-
dimensional ordered board with the coordinates x and y is:

eval(f(x, y, c), z) =

1

N
∗

∑

f(x′,y′,c)∈z

1

2
∗

(

∆(x, x′)

|dom(f, 1)|
+

∆(y, y′)

|dom(f, 2)|

)

where N is the number of occurrences of some f(x′, y′, c)
in z, |dom(f, i)| denotes the size of the domain of the i-th
argument of f , and ∆(x, x′) is the number of steps between
x and x′ according to the successor function that induces the

order for the domain. The function can easily be extended
to boards of arbitrary dimensio.

If the fluent f of the atom (true f) is a quantity (or
a board where the cell’s state is a quantity), the evaluation
is based on the difference between the quantity in the cur-
rent state and the quantity in the atom to evaluate. E.g., the
evaluation function for a unary quantity fluent f like the step
counter is:

eval(f(x), z) =
∆(x, x′)

|dom(f, 1)|
, if f(x′) ∈ z

This function can be extended easily to an arbitrary (non-
zero) number of input and output arguments.

Evaluation

It is difficult to find a fair evaluation scheme for general
game playing systems because the performance of a general
game player might depend on many different factors, e.g.,
the game played, the actual description of the game, the op-
ponents and the time given for analysis of the game as well
as for actual game play. For general game playing, there
exists no predefined set of benchmark problems to compare
your players with, as opposed to e.g., SAT solvers or plan-
ners. So instead of developing our own set of benchmark
problems and running a lot of experiments with different pa-
rameters against random opponents, we choose to use the
results of more than 400 matches (more than 70 for each
player) of the AAAI GGP Competition 2006 for determin-
ing which parts of our evaluation function affected good play
for which games. The advantage of using this data is that we
were playing against real opponents and thus we can directly
compare the performance of our player to that of other state
of the art systems.

Figure 2: The chart shows the average score of Fluxplayer
for certain games relative to (1) the overall average score of
Fluxplayer and (2) the average score of the best six players
for the games with the respective property.

Figure 2 depicts the performance of Fluxplayer separately
for games with the following seven properties:

• a concrete goal state, i.e., the goal is one conjunction of
ground fluents not necessarily describing a complete goal
state;

• gradual goal values, i.e., goal values < 100 for reaching
only a part of the goal;

• the goal involves a quantity, i.e., to reach a certain amount
of something;

• the goal involves a position of a piece on an ordered board
such that a distance measure applies;

• a large branching factor b, i.e. b ≥ 20, for some state that
occurred during a match;

• a nondescript goal, i.e., all fluents that occur in the goal
have the same truth value in all states of the same search
depth;

• the goal or terminal condition amounts to a mobility
heuristics, which is the case, e.g., for games ending if
there are no more legal moves.

Of course these properties do not define distinct categories,
that is, there are games that have more than one of the prop-
erties. Still most games have only few of these properties
and none of the sets of games is a subset of another. Thus,
some statements can be made.

We see that Fluxplayer performs better than its own av-
erage for games with concrete goals and gradual goals. If
a game has a concrete goal then, because of the evaluation
function, those non-terminal states are preferred in which
more of the fluents of the conjunction hold. The evaluation
function also takes advantage of gradual goals. Thus, the
good performance in games with concrete goals and gradual
goals indicates that our particular construction of the eval-
uation function has a fair share in the success. The same
argument holds for games with goals involving quantities,
indicating that our detection of quantities and order relations
has a positive influence on the performance. For games in-
volving quantities we can also see that Fluxplayer performs
much better than all the opponents, which probably means
that the other players do not take as much advantage of this
information. We can see that Fluxplayer got average scores
for games with distance measures and that the winning mar-
gin of Fluxplayer for those games is smaller. For games with
a high branching factor the scores of Fluxplayer are, not
surprisingly, below its average. After all the search depth
reached in those games is much smaller. Still Fluxplayer
seems to handle those games much better than its opponents,
which, besides games with other advantageous properties,
might be caused by the higher maximal depth reached dur-
ing search because of the non-uniform search.

The main disadvantage of our approach is the dependency
on the goal description, as can be seen by the poor perfor-
mance for games with nondescript goals. This is already
alleviated by the fact that many of these games end if there
are no more moves left, in which case our evaluation func-
tion for the terminal condition automatically amounts to a
mobility heuristics. Games with nondescript goals are an
important area for improvements of our evaluation function.

Discussion

The evaluation function obtained by the method described
above is directly based on the goal description of the game.
The generation of the heuristics is much faster than learning-
based approaches. Thus our approach is particularly well-
suited for games with a big state space and sparse goal

states. In both cases, with learning-based approaches one
has to play many random matches to have significant data.
Based on the same rationale our approach has advantages for
games with little time for learning parameters of the heuris-
tic function.

However, depending on the game description our evalua-
tion function can be more complex to compute than learned
features, or it might not be able to differentiate between non-
terminal states at all. Decomposition and abstraction tech-
niques like they are described in (Fawcett & Utgoff 1992)
might be used to overcome the first problem. We want to
tackle the second problem by formal analysis of the rules
of the game for discovering relations between properties of
different states and thereby detecting features that are im-
portant for reaching the goal.

Another advantage of our approach regarding possible fu-
ture extensions of the general game playing domain is the
direct applicablility to domains with incomplete information
about the current position. Flux, which is used for reasoning,
as well as the heuristic evaluation function are in principle
able to handle incomplete-information games.

Related Work

A work in the same setting is (Kuhlmann, Dresner, & Stone
2006). The authors consider the same problem but use a
different approach for heuristics construction. A set of can-
didate heuristics is constructed, which are based on features
detected in the game, but the goal description is not taken
into account. The process of selecting which of the candi-
date heuristics is leading to the goal remains an open chal-
lenge.

Previous work on general game playing includes Barney
Pell’s Metagamer (Pell 1993) which addresses the domain
of Chess-like board games. Fawcett (Fawcett 1990) applies
a feature discovery algorithm to a game of Othello. Fea-
tures are generated by inductively applying transformation
operators starting with the goal description. Discovered fea-
tures need to be trained. Much research has been done on
heuristic-search planning (Bonet & Geffner 2001), which
might be reused at least for single-player games.

However, most of the work depends on STRIPS-style do-
main descriptions. Further investigations are necessary in
order to determine which of the techniques can be applied to
domain descriptions in GDL, and which can be adapted for
multi-player games.

Conclusion

We have presented an approach to General Game Play-
ing which combines reasoning about actions with heuristic
search. The main contribution is a novel way of constructing
a heuristic evaluation function by the automated analysis of
game specifications. Our search heuristics evaluates states
with regard to the incomplete description of goal and termi-
nal states given in the rules of the game. It takes advantage
of features detected in the game like boards, quantities and
order relations.

Our General Game player performed well in a wide va-
riety of games, including puzzles, board games, and eco-

nomic games. However there is ample room for improve-
ment: We are currently working on enhancing the translation
of the game description to Prolog in order to make reason-
ing and especially the calculation of successor states more
efficient and therefore the search faster. There is also work
in progress directed at an improved evaluation of non-leaf
nodes of the search tree, which uses methods from game
theory and allows better opponent modeling.

A number of problems of the heuristics need to be ad-
dressed. This includes a more efficient evaluation of com-
plex goal descriptions, which might be achieved by using
abstraction and generalization techniques to focus on impor-
tant features and disregard features which are less important
but expensive to compute.

We plan to use formal analysis of the game description to
get a more thorough picture of the function of each part of
the game description and their connections. This informa-
tion can then be used to increase the efficiency of the the-
orem prover as well as detecting new features of the game,
which might improve the heuristics.

For directing future research we need to analyze the im-
pact of the different evaluation functions on the game play-
ing performance. For this analysis it is necessary to de-
fine realistic opponent models and problem sets. Ideally, we
would want to have a range of benchmark domains and op-
ponents such that objective comparisons between different
general game playing systems are possible.

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.

Fawcett, T. E., and Utgoff, P. E. 1992. Automatic feature
generation for problem solving systems. In Proc. of ICML,
144–153. Morgan Kaufmann.

Fawcett, T. E. 1990. Feature discovery for inductive con-
cept learning. Technical Report UM-CS-1990-015, Depart-
ment of Computer Science, University of Massachusetts.

Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player.
In Proc. of AAAI, 1457–62.

Morris, R., ed. 1997. Deep Blue Versus Kasparov: The
Significance for Artificial Intelligence. AAAI Press.

Pell, B. 1993. Strategy generation and evaluation for meta-
game playing.

Schaeffer, J.; Björnsson, Y.; Burch, N.; Kishimoto, A.;
Müller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2005. Solving
checkers. In Proc. of IJCAI, 292–297.

Schaeffer, J. 1989. The history heuristic and alpha-beta
search enhancements in practice. IEEE Transactions on
Pattern Analysis and Machine Intelligence 11(11).

Shannon, C. 1950. Programming a computer for playing
chess. Philosophical Magazine 7 41(314):256–275.

Thielscher, M. 2005. Reasoning Robots: The Art and Sci-
ence of Programming Robotic Agents. Applied Logic Se-
ries. Kluwer.

