Abstracts on Global Climate Change
       

Jun 2007

Periodic solutions for soil carbon dynamics equilibriums with time-varying forcing variables

Martin, MP Cordier, S Balesdent, J Arrouays, D

ECOLOGICAL MODELLING 204:3-4 523-530

Numerical models that simulate the dynamics of carbon in soil are increasingly used to improve our knowledge and help our management of the carbon cycle. Calculation of the long-term behavior of these models is necessary in many applications but encounters the difficulty of managing the periodic forcing variables, e.g. seasonal variations, such as carbon inputs and decomposition rates. This calculation is conventionally done by running the model over large time durations or by assuming constant forcing variables. Two methods, which make it possible to rapidly compute periodic solutions taking into account the time variations of these variables, are proposed. The first one works on discrete-time models and the second one on continuous-time models involving Fourier transforms. Both methods were tested on the Rothamsted carbon model (RothC), a discrete-time model which has also been given a continuous approximation, using realistic and unrealistic sets of time-varying forcing functions. Both methods provided an efficient way to compute the periodic solutions of the RothC model within the application domain of the model. Compared to running the discrete model to the equilibrium, reduction in the computational cost was of up to 95% at the expense of a maximum absolute error of 1% for the estimation of carbon stocks. For specific distributions of the forcing variables the use of Fourier transform of zero order, which was equivalent to assume constant forcing variables, led to a maximum absolute error of SS% in the estimation of the long-term behavior of the model. There, a Fourier transform of order higher than zero is required. (C) 2007 Elsevier B.V. All rights reserved.

SPotGS:methods | /neutral/methods | 022

Simulation of seasonal precipitation and raindays over Greece: a statistical downscaling technique based on artificial neural networks (ANNs)

Tolika, K Maheras, P Vafiadis, M Flocasc, HA Arseni-Papadimitriou, A

INTERNATIONAL JOURNAL OF CLIMATOLOGY 27:7 861-881

A statistical downscaling technique based on artificial neural network (ANN) was employed for the estimation of local changes on seasonal (winter, spring) precipitation and raindays for selected stations over Greece. Empirical transfer functions were derived between large-scale predictors from the NCEP/NCAR reanalysis and local rainfall parameters. Two sets of predictors were used: (1) the circulation-based 500 hPa and (2) its combination along with surface specific humidity and raw precipitation data (nonconventional predictor). The simulated time series were evaluated against observational data and the downscaling model was found efficient in generating winter and spring precipitation and raindays. The temporal evolution of the estimated variables was well captured, for both seasons. Generally, the use of the nonconventional predictors are attributed to the improvement of the simulated results. Subsequently, the present day and future changes on precipitation conditions were examined using large-scale data from the atmospheric general circulation model HadAM3P to the statistical model. The downscaled climate change signal for both precipitation and raindays, partly for winter and especially for spring, is similar to the signal from the HadAM3P direct output: a decrease of the parameters is predicted over the study area. However, the amplitude of the changes was different. Copyright (c) 2006 Royal Meteorological Society

SPotGS:methods | /neutral/methods | 008

Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa

Wu, HB Guiot, J Brewer, S Guo, ZT Peng, CH

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 104:23 9720-9724

The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO2 concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO2 concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO2 glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

SPotGS:paleo | /neutral/paleo | 014

A maximum entropy method for combining AOGCMs for regional intra-year climate change assessment

Laurent, R Cai, XM

CLIMATIC CHANGE 82:3-4 411-435

This paper deals with different responses from various Atmosphere-Ocean Global Climate Models (AOGCMs) at the regional scale. What can be the best use of AOGCMs for assessing the climate change in a particular region? The question is complicated by the consideration of intra-year month-to-month variability of a particular climate variable such as precipitation or temperature in a specific region. A maximum entropy method (MEM), which combines limited information with empirical perspectives, is applied to assessing the probability-weighted multimodel ensemble average of a climate variable at the region scale. The method is compared to and coupled with other two methods: the root mean square error minimization method and the simple multimodel ensemble average method. A mechanism is developed to handle a comprehensive range of model uncertainties and to identify the best combination of AOGCMs based on a balance of two rules: depending equally on all models versus giving higher priority to models more strongly verified by the historical observation. As a case study, the method is applied to a central US region to compute the probability-based average changes in monthly precipitation and temperature projected for 2055, based on outputs from a set of AOGCMs. Using the AOGCM data prepared by international climate change study groups and local climate observation data, one can apply the MEM to precipitation or temperature for a particular region to generate an annual cycle, which includes the effects from both global climate change and local intra-year climate variability.

SPotGS:methods | /neutral/methods | 052

Eustasy and sea water Sr composition: application to high-resolution Sr-isotope stratigraphy of Miocene shallow-water carbonates

Kroeger, KF Reuter, M Forst, MH Breisig, S Hartmann, G Brachert, TC

SEDIMENTOLOGY 54:3 565-585

Oceanic Sr-87/Sr-86-isotope ratios are strongly influenced by rates of silicate weathering and therefore linked not only to glaciation but also to sea-level change. The present study combines analysis of sequence stratigraphy and basin architecture with Sr-isotope stratigraphy in Miocene shallow-water sediments in southern Portugal and Crete (Greece). The common method is to use smoothed global sea water Sr-isotope reference curves but here a different approach is chosen. Instead, measured Sr-isotope curves are correlated with unsmoothed reference curves by identification of similar fluctuations in the order of several 100 kyr. Transgressive intervals are characterized by increasing Sr-isotope ratios interpreted as corresponding to intensified silicate weathering as a consequence of deglaciation, while lowstand deposits have low Sr-isotope ratios. Comparison of Sr-isotope curves and sedimentary sequences in the studied basins with independent global delta O-18 data and data on global sea-level might suggest a general relationship, supporting a connection to global climate change. Because of these relationships, the method presented herein has a high potential for use in high-resolution age dating and is also applicable in shallow-water sediments.

SPotGS:paleo | /neutral/paleo | 024

Expert judgements on the response of the Atlantic meridional overturning circulation to climate change

Zickfeld, K Levermann, A Morgan, MG Kuhlbrodt, T Rahmstorf, S Keith, DW

CLIMATIC CHANGE 82:3-4 235-265

We present results from detailed interviews with 12 leading climate scientists about the possible effects of global climate change on the Atlantic Meridional Overturning Circulation (AMOC). The elicitation sought to examine the range of opinions within the climatic research community about the physical processes that determine the current strength of the AMOC, its future evolution in a changing climate and the consequences of potential AMOC changes. Experts assign different relative importance to physical processes which determine the present-day strength of the AMOC as well as to forcing factors which determine its future evolution under climate change. Many processes and factors deemed important are assessed as poorly known and insufficiently represented in state-of-the-art climate models. All experts anticipate a weakening of the AMOC under scenarios of increase of greenhouse gas concentrations. Two experts expect a permanent collapse of the AMOC as the most likely response under a 4xCO(2) scenario. Assuming a global mean temperature increase in the year 2100 of 4 K, eight experts assess the probability of triggering an AMOC collapse as significantly different from zero, three of them as larger than 40%. Elicited consequences of AMOC reduction include strong changes in temperature, precipitation distribution and sea level in the North Atlantic area. It is expected that an appropriately designed research program, with emphasis on long-term observations and coupled climate modeling, would contribute to substantially reduce uncertainty about the future evolution of the AMOC.

SPotGS:discuss | /neutral/discuss | 050

Dec 2006

Seasonal-to-decadal predictability and prediction of South American climate

Nobre, P Marengo, JA Cavalcanti, IFA Obregon, G Barros, V Camilloni, I Campos, N Ferreira, AG

JOURNAL OF CLIMATE 19:23 5988-6004

The dynamical basis for seasonal to decadal climate predictions and predictability over South America is reviewed. It is shown that, while global tropical SSTs affect both predictability and predictions over South America, the current lack of SST predictability over the tropical Atlantic represents a limiting factor to seasonal climate predictions over some parts of the continent. The model’s skill varies with the continental region: the highest skill is found in the “Nordeste” region and the lowest skill over southeastern Brazil. It is also suggested that current two-tier approaches to predict seasonal climate variations might represent a major limitation to forecast coupled ocean-atmosphere phenomena like the South Atlantic convergence zone. Also discussed are the possible effects of global climate change on regional predictability of seasonal climate.

melatonin:methods | /neutral/methods | 119

A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet

Hu, HP Ye, BS Zhou, YH Tian, FQ

SCIENCE IN CHINA SERIES D-EARTH SCIENCES 49:12 1311-1322

Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and ecosystem, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisticated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demonstrates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle characteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.

melatonin:methods | /neutral/methods | 128

Interhemispheric anti-phasing of rainfall during the last glacial period

Wang, XF Auler, AS Edwards, RL Cheng, H Ito, E Solheid, M

QUATERNARY SCIENCE REVIEWS 25:23-24 3391-3403

We have obtained a high-resolution oxygen isotopic record of cave calcite from Caverna Botuvera (27 degrees 13’S, 49 degrees 09’W), southern Brazil, which covers most of the last 36 thousand years (ka), with an average resolution of a few to several decades. The chronology was determined with 46 U/Th ages from two stalagmites. Tests for equilibrium conditions show that oxygen isotopic variations are primarily caused by climate change. We interpret our record in terms of meteoric precipitation changes, hence the variability of South American Monsoon (SAM) intensity. The oxygen isotopic profile broadly follows local insolation changes and shows clear millennial-scale variations during the last glacial period with amplitudes as large as 3 parts per thousand but with smaller centennial-scale shifts (< 1 parts per thousand) during the Holocene. The overall record is strikingly similar to, but strongly anti-correlated with, a number of records from the Northern Hemisphere. We compared our record to other precisely dated contemporaneous records from Hulu Cave eastern China. Minima in 6180 (wet periods, intense SAM) at our site are synchronous with maxima in delta O-18 (dry periods, weak East Asian Monsoon, EAM) in eastern China (within precise dating errors) and vice versa. This anti-phased precipitation relationship between two low-latitude locations may be interhemispheric in extent, based on comparison with records from other sites. Precipitation anti-phasing may be related to north-south shifts in the mean position of the intertropical convergence zone (ITCZ) and asymmetry in Hadley circulation in two hemispheres, associated not with seasonal changes as observed today, but with millennial-scale climate shifts. The millennial-scale atmospheric see-saw patterns that we observe could have important controls and feedbacks on climate within hemispheres because of water vapor’s greenhouse properties. (c) 2006 Elsevier Ltd. All rights reserved.

melatonin:paleo | /neutral/paleo | 071

Nov 2006

Late Pliocene monsoon linkage in the tropical South China Sea

Tian, J Pak, DK Wang, PX Lea, D Cheng, XR Zhao, QH

EARTH AND PLANETARY SCIENCE LETTERS 252:1-2 72-81

The onset of Northern Hemisphere Glaciation (NHG) similar to 2.7 Ma ago coincided with prominent climate changes in the tropical regions such as the African and the Asian monsoons. However, the relationship between tropical and sub-tropical monsoonal variations and high northern latitude ice sheet expansion as well as processes such as late Pliocene tropical sea surface temperature (SST) change is not clear. Our late Pliocene (2.5-3.3 Ma) monsoon proxy records and Mg/Ca derived SST records at Ocean Drilling Program (ODP) Site 1143 from the southern South China Sea (SCS) reveal that while tropical SST shows a stepwise decrease of 2-3 degrees C during this period, the East Asian monsoon gradually strengthens in response to the onset of the NHG. At the 41-kyr and 23-kyr bands, ice volume change lags tropical SST by similar to 4 kyr, but leads the East Asian monsoon by similar to 12-17 kyr. Our finding highlights the significant role of the tropical Pacific region in driving global climate change in the late Pliocene, which has invariable leading phase relative to the ice volume change as in the late Pleistocene. However, the East Asian monsoon shows a linear response to the onset: of the NHG in the late Pliocene, with much bigger phase lagged at the 41-kyr and 23-kyr bands than in the Pleistocene, which suggests that at the obliquity and precession bands the phases of the Plio-Pleistocene East Asian monsoon variations relative to the global ice volume changes are not constant, but variable. Therefore, the East Asian monsoons are not only simply driven by northern summer insolation at the precession period but also modulated by global ice volume change in high latitudes. (c) 2006 Elsevier B.V. All rights reserved.

melatonin:paleo | /neutral/paleo | 122

The elevation history of the Tibetan Plateau and its implications for the Asian monsoon

Harris, N

PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY 241:1 4-15

The determination of the evolving palaeoaltitude of the Tibetan Plateau, since the India-Eurasia collision underpins our understanding of how orography in central Asia affects the intensity of the monsoon and hence global climate change. Palacoaltitudes, however, cannot be measured directly and need to be inferred from proxy observations that are usually model-dependent. Differing tectonic models for the behaviour of the lithosphere during continental collision have contrasting implications for the elevation of the plateau. However, two techniques recently employed for determining palaeo-elevation are independent of tectonic models, the first involving the variation with altitude of oxygen isotopes in precipitation and the second involving the change of leaf morphology with moist static energy of the atmosphere. Elevation studies have focused on southern Tibet, largely due to the relative ease of access to the region. There is a remarkable unanimity amongst the diverse techniques applied that the altitude of the southern plateau has not significantly changed since at least the mid Miocene (ca. 15 Ma) arguing for an onset of the monsoon system during or before the early Miocene. A range of tectonic studies suggest that the northern and eastern parts of the plateau are younger geornorphological features, but there are few quantitative constraints of the timing of elevation from these regions of Tibet. Since both the elevation and the surface area of the plateau impact on atmospheric circulation, palacoaltitude studies need to be extended to chart the increasing areas of elevated land surface through time. (c) 2006 Elsevier B.V All rights reserved.

melatonin:paleo | /neutral/paleo | 147

Optimal endogenous carbon taxes for electric power supply chains with power plants

Nagurney, A Liu, ZG Woolley, T

MATHEMATICAL AND COMPUTER MODELLING 44:9-10 899-916

In this paper, we develop a modeling and computational framework that allows for the determination of optimal carbon taxes applied to electric power plants in the context of electric power supply chain (generation/distribution/consumption) networks. The adoption of carbon/pollution taxes both internationally and regionally has been fueled by global climate change and fuel security risks, with a significant portion of such policy interventions directed at the electric power industry. The general framework that we develop allows for three distinct types of carbon taxation environmental policies, beginning with a completely decentralized scheme in which taxes can be applied to each individual power generator/power plant in order to guarantee that each assigned emission bound is not exceeded, to two versions of a centralized scheme, one which assumes a fixed bound over the entire electric power supply chain in terms of total carbon emissions and the other which allows the bound to be a function of the tax. The behavior of the various decision-makers in the electric power supply chain network is described, along with the three taxation schemes, and the governing equilibrium conditions, which are formulated as finite-dimensional variational inequality problems. Twelve numerical examples are presented in which the optimal carbon taxes, as well as the equilibrium electric power flows and demands, are computed. The numerical results demonstrate, as the theory predicts, that the carbon taxes achieve the desired goal, in that the imposed bounds on the carbon emissions are not exceeded. Moreover, they illustrate the spectrum of scenarios that can be explored in terms of changes in the bounds on the carbon emissions; changes in emission factors; changes in the demand price functions, etc. (c) 2006 Elsevier Ltd. All rights reserved.

melatonin:methods | /neutral/methods | 181

Prognosis of the impact of global climate change on zonal ecosystems of the Volga river basin

Kolomyts, EG

RUSSIAN JOURNAL OF ECOLOGY 37:6 391-401

On the basis of the GISS prognostic climatic model, landscape-ecological scenarios concerning the immediate future of the region are considered in the forms of cartographic and analytical models. These scenarios predict a growing thermoarid bioclimatic trend accompanied by a general northward displacement of zonal boundaries, with corresponding acceleration of the biological cycle and increase in the productivity of boreal forests.

melatonin:methods | /neutral/methods | 144

Atypical delta N-15 variations at the southern boundary of the East Pacific oxygen minimum zone over the last 50 ka

Martinez, P Lamy, F Robinson, RR Pichevin, L Billy, I

QUATERNARY SCIENCE REVIEWS 25:21-22 3017-3028

We report a nitrogen isotope record (ODP Site 1233) from the southern Chile margin at 41 degrees S. The site is located slightly south of the southern boundary of the Peru-Chile upwelling system and the associated oxygen minimum zone off Peru and northern Chile. We show that our nitrogen isotope record, from the time interval 0-50 calendar kiloyears before present (ka B.P.), bears an atypical pattern both in shape and timing when compared with records obtained from either the continental margin of the eastern Pacific or the Subantarctic Zone (SAZ) of the Southern Ocean. The delta N-15 values at Site 1233 are relatively high throughout the record, varying between 9 parts per thousand. and 13 parts per thousand. The iriajor features are a pronounced delta N-15 increase at the beginning of the deglaciation, a maximum from 19 to 10 ka B.P.; thereafter a large decrease during the early Holocene, and millenial scale oscillations showing an Antarctic timing. We propose that the record results from an amalgam of low-latitude and high-latitude processes. Low-latitude processes, including a stronger advection signal of heavy nitrates from the denitrifying zones off Peru and northern Chile, would explain the timing of the deglaciation rise and the heaviest values found over this interval, excluding the Antarctic Cold Reversal period. The overall differences between site 1233 and records from Peru and northwest American margins suggest however that the origin of the delta N-15 signal off Chile is largely controlled by hydrologic and climatic changes in the Southern Ocean. We propose that the interplay between nutrient demand in the SAZ and latitudinal shifts of hydrologic fronts controlled both the concentrations and the isotopic signature of the remaining nitrate delivered to the Chile margin. Then, the glacial surface waters of the southern Chile margin were likely lower in nitrate concentration and bear a higher delta N-15 than during interglacial periods. (c) 2006 Elsevier Ltd. All rights reserved.

melatonin:paleo | /neutral/paleo | 115

Soil respiration of forest ecosystems in Japan and global implications

Lee, MS Mo, WH Koizumi, H

ECOLOGICAL RESEARCH 21:6 828-839

Within terrestrial ecosystems, soil respiration is one of the largest carbon flux components. We discuss the factors controlling soil respiration, while focusing on research conducted at the Takayama Experimental Site. Soil respiration was affected by soil temperature, soil moisture, rainfall events, typhoons, and root respiration. We consider the temporal and spatial variability of soil respiration at the Takayama Experimental Site and review the variability of annual soil respiration in Japanese forests. In the 26 compiled studies, the values of annual soil respiration ranged from 203 to 1,290 g C m(-2) year(-1), with a mean value of 669 g C m(-2) year(-1) (SD = 264, CV = 40). We note the need for more studies and data synthesis for the accurate prediction of soil respiration and soil carbon dynamics in Japanese forests. Finally, several methods for measuring soil respiration rates are compared and the implications of soil respiration rates for global climate change are discussed.

melatonin:discuss | /neutral/discuss | 130

Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method

Wu, SH Liu, ZS Liu, BY

OPTICS COMMUNICATIONS 267:1 137-144

Lidar is being widely used to monitor meteorological parameters and atmospheric constituents. Applications include meteorology, environmental pollution, atmospheric dynamics and global climate change. Signal processing for lidar applications involve highly nonlinear models and consequently nonlinear filtering. In this paper, we applied a new method, empirical mode decomposition to the lidar signal processing. The denoising approach is done by removal of the proper intrinsic mode functions. The data from the simulation and measurements are analyzed to evaluate this method comparing with the traditional low-pass filter and the multi-pulse averaging. Results show that it is effective-and superior to the band-pass filter and the averaging method. The denoising method also allows less averaging laser shots which is important for the real-time monitoring and for the low cost laser transmitter. (c) 2006 Elsevier B.V. All rights reserved.

melatonin:methods | /neutral/methods | 156

Oct 2006

Assessing Goddard Institute for Space Studies ModelE aerosol climatology using satellite and ground-based measurements: A comparison study

Liu, L Lacis, AA Carlson, BE Mishchenko, MI Cairns, B

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 111:D20 -

A physically based aerosol climatology is important to address questions of global climate change. We evaluate the aerosol climatology used in the GISS ModelE (Schmidt et al., 2006), by characterizing and comparing the geographic distribution and seasonal variability of aerosol optical depth (AOD) and particle size via Angstrom exponent (A) against available satellite and ground-based measurements, i.e., MODIS, MISR, POLDER, AVHRR, and AERONET data. There are a number of model parameters, particularly those related to aerosol size specification, that can be better constrained by comparison to satellite data. Our comparison shows that there are large differences in the satellite and ground-based global distributions of AOD. The differences between the observations increase for the Angstrom exponent. Given the uncertainties associated with satellite retrieval results, the agreement in the distributions of global optical depth between GCM aerosols and satellite data is qualitatively reasonable. However, the Angstrom exponent of the GCM aerosol is clearly biased low compared to satellite data, implying that the GCM aerosol sizes are overestimated. There is qualitative agreement of the ModelE aerosol single scattering albedo pi with TOMS Aerosol Index (AI) and AERONET data. The comparisons show insufficient aerosol absorption at most locations, suggesting a possible underestimation of black carbon distributions in the GCM. However, a more quantitative comparison first requires a readjustment of the GCM aerosol size specification.

melatonin:methods | /neutral/methods | 148

Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation

Kienast, M Kienast, SS Calvert, SE Eglinton, TI Mollenhauer, G Francois, R Mix, AC

NATURE 443:7113 846-849

Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean - atmosphere feedbacks or by changes in the Atlantic thermohaline circulation(1). North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America(2-4), as well as the Indian and East Asian monsoon systems(5,6), but not with tropical Pacific sea surface temperatures(7). Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of 1 degrees C, synchronous ( within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from Th-230-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans’ thermohaline circulation, although possibly amplified by tropical ocean - atmosphere interaction as suggested before(8).

melatonin:paleo | /neutral/paleo | 167

Technology options for capturing CO2

Elwell, LC Grant, WS

POWER 150:8 60-+

Concerns about global climate change have prompted interest in reducing or eliminating the carbon dioxide (CO2) emissions of fossil fuel-fired power plants. Here’s a guide to the technology and economics of three CO2 capture methods: postcombustion separation Of CO2 from flue gas (applicable to existing plants), and oxygen-fired combustion and precombustion capture (suitable for new coal-fired capacity, including IGCC plants).

melatonin:discuss | /neutral/discuss | 158

Integration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group

Turney, CSM Haberle, S Fink, D Kershaw, AP Barbetti, M Barrows, TT Black, M Cohen, T Correge, T Hesse, PP Hua, Q Johnston, R Morgan, V Moss, P Nanson, G Van Ommen, T Rule, S Williams, NJ Zhao, JX D’Costa, D Feng, YX Gagan, MK Mooney, S Xia, Q

JOURNAL OF QUATERNARY SCIENCE 21:7 751-761

The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric ‘teleconnection’ and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright (c) 2006 John Wiley & Sons, Ltd.

melatonin:paleo | /neutral/paleo | 152