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Abstract
This paper argues that a pragmatic approach is needed for integrat-
ing design and formalisation of complex systems. We report on our
approach to designing the seL4 operating system microkernel API
and its formalisation in Isabelle/HOL. The formalisation consists of
the systematic translation of significant parts of the functional pro-
gramming language Haskell into Isabelle/HOL, including monad-
based code. We give an account of the experience, decisions and
outcomes in this translation as well as the technical problems we
encountered together with our solutions. The longer-term goal is to
demonstrate that formalisation and verification of a large, complex,
OS-level code base is feasible with current tools and methods and
is in the order of magnitude of traditional development cost.

1. Introduction
Sometimes an incomplete engineering approach is better than a
complete, precise mathematical solution. As for normal software,
so also for formalisation and verification, seeking the perfect solu-
tion to a problem is at odds with the reality of limited development
costs.

The overall aim of our project is to design and verify a micro-
kernel-based operating system (Sect. 2). In this paper we argue that
a pragmatic approach is essential for large-scale projects such as
operating system (OS) verification. We aim to be pragmatic in the
sense that we are using a method that on first sight is not suitable,
because it will not work in general, because it does not provide
a complete solution to the problem, and because it is not fully
automatic where in theory it could be. Instead it is semi-automated,
systematic, cheap, easy to employ, and still gives the desired result.

Another of our overall goals is to demonstrate that formalisation
and verification of a large, complex OS-level code base is feasible
with current tools and methods and that the cost of this is in the
same order of magnitude as traditional development cost.

Our methodology is to develop an executable OS prototype in
the high-level programming language Haskell (done by the OS
team), then translate it to a formal specification (done by the theo-
rem proving team). The result will be the basis for refinement into a
high-performance C implementation of the OS, as well as the basis
for a further abstraction to verify security properties.

This paper focuses on the techniques employed to achieve a
practical translation process, the observations and lessons learnt.
Its main contributions are:

• a simple, pragmatic method for making the benefits of formal
verification and specification available to system architects in
traditional system design. It retains traditional means for testing
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and validation while avoiding the need for unfamiliar specifica-
tion languages (Sect. 2).
• a practical method for translating complex, real-life, monad-

based Haskell [17] code to Isabelle/HOL, detailed in Sect. 3.
• experience from conducting a large scale verification project

(Sect. 4), in particular creating a large, complex specification
within a short time and with few resources, as would be com-
mon in an industrial setting.

At this early stage we can report that the methodology has been
successful and beneficial so far. The formalisation cost was signif-
icantly lower than the implementation and testing cost, which is a
significant improvement to our earlier experience on formalising
and verifying parts of the C implementation of the L4 microkernel.
The methodology resulted in a fully working microkernel proto-
type, implemented in Haskell, formalised in Isabelle/HOL, running
normal ARM binaries through a simulator. The formalisation has
uncovered a number of problems with the high-level language pro-
totype, including a potentially unbounded operation (Sect. 4).

Although we have only concluded the formalisation stage so far,
and have not proceeded to verification on that part of the project,
the formalisation already implies one theorem: all system calls
terminate.

2. seL4
A microkernel is an OS kernel designed to be minimal in code
size and concepts. The kernel is the part of the OS that runs in
the privileged mode of the hardware. L4 is a widely deployed sec-
ond generation microkernel [20] providing the improved reliability
and flexibility of the microkernel approach while overcoming the
performance limitations of its predecessors. The current L4 imple-
mentation is on the order of 10,000 lines of C++ and assembler
code.

The seL4 project is a descendant of L4, and aims to provide
a secure foundation for high-end embedded systems development
(e.g. mobile phones or PDAs). The security goals address two gen-
eral areas that are lacking in the existing L4 API: communication
control between applications, and kernel physical memory man-
agement. Control of communication is critical for both providing
isolation guarantees between subsystems, and providing confine-
ment guarantees of information possessed by an application. Con-
trol of physical memory consumed by the kernel is critical for pro-
viding availability guarantees for kernel services, and also for the
predictability of their execution times.

On embarking on the seL4 project, we wanted an approach
that had the following properties, while enabling the exploration of
the design space of potential API solutions that address the issues
outlined above



Figure 1. Overview

• The resulting API specification must be precise. Natural lan-
guage manual-like descriptions are ambiguous and unsatisfac-
tory.
• The approach must expose enough of the implementation de-

tails to allow the experimenter to be convinced a high perfor-
mance implementation is possible.
• It should provide a method for gaining experience with the API

by allowing construction of higher-level systems on top.
• It must be readily amenable to formalisation.
• The approach must be usable by kernel programmers who are

not adept in formal methods.

The approach taken was to use literate Haskell [17] to specify
and implement the seL4 API. Haskell, as a functional programming
language, is not a large paradigm shift for typical kernel program-
mers. This might sound surprising as OS kernels are not usually
developed in functional languages, but the proposition came from
the OS group, not the verification group. Haskell is side-effect free,
and at the same time allows us to explore implementation details of
the kernel if desired.

This methodology is in part born out of a pilot project on L4
that we conducted to investigate two aspects of the feasibility of
kernel verification: a formalisation of the L4 API using the B
Method (topmost horizontal layer in Fig. 1) [19], taking about
6 person months, and a full refinement proof for a non-trivial
subsystem (virtual memory) of L4 using Isabelle/HOL (vertical
slice in Fig. 1) [26], taking about 18 person months. In the current
work, the Haskell prototype serves as a solid, validated basis for the
design, formalisation and verification of seL4. The formalisation in
this paper occupies the horizontal layer between the most abstract
model and the C code.

For validation, to enable the API to be used without requiring
a real kernel implementation together with all the complexities of
managing real hardware, we created a simulator that implements
the ARM processor user-level instruction set and that transfers
control to the Haskell kernel for hardware events like page faults
and system calls. The simulator enables normal ARM application
binaries, compiled for instance from C, to be executed on our kernel
prototype.

At the present time, we have an initial seL4 API in Haskell
together with the simulator executing ARM binaries. We have
formalised this implementation using the mechanism described in
Sect. 3 and are now further validating the API by attempting to
prove the first security properties and at the same time porting our
high-level application environment [15] to the new platform.

As observed in the design iterations so far, we expect to be
able to readily adapt the API as we gain more experience in its
use for building systems on top of the kernel, without the time
consuming debugging usually associated with kernel programming

and without large time investments for tracking changes in the
formalisation.

3. Translating Haskell
This section gives an overview of our translation from Haskell
to Isabelle/HOL. Although some of the solutions below are tai-
lored to our specific problem, they are more generally useful and
they demonstrate that interactive specification and theorem prov-
ing tools like Isabelle/HOL are suitable for pragmatic, large scale
projects.

After discussing our choice of logic in Sect. 3.1, we describe the
translation process itself in Sect. 3.2. Our main aim is to keep the
translated code readable for interactive verification. Correctness, in
particular with respect to partiality, is not our main concern. What
will be implemented in the end is a refinement of the verified formal
construct in Isabelle. The original Haskell code serves to validate
the API design, not the implementation. Danielsson et al [5] show
why partiality does not matter in this translation if the program is
shown to terminate.

The last three subsections focus on particularly interesting parts
of the translation: termination (Sect. 3.3), monads (Sect. 3.4), and
the Dynamic extension of GHC (Sect. 3.5).

3.1 HOL or HOLCF?
Based on experience in our aforementioned pilot project, the ver-
ification tool of choice was the generic interactive theorem prover
Isabelle which provides two logic instantiations that might be suit-
able: HOL and HOLCF.

As the name suggests, HOLCF is an implementation of Scott’s
logic of computable functions on top of Isabelle/HOL. It is well
suited for faithfully describing features of Haskell such as par-
tial functions and lazy evaluation. The Programatica project [9]
attempts to automatically translate Haskell into Isabelle/HOLCF.
Even though automatic translation would be ideal, we chose HOL
over HOLCF, because Programatica at the time of writing was not
able to parse our code base, because partial functions and lazy data
structures do no play a major role in our code, and because HOLCF
as a logic is more heavyweight than HOL, introducing reasoning
about domains and continuous functions.

As the pilot study clearly showed that most of the effort will
be spent in the later stages of the project, we made the trade-
off towards more work in the specification phase instead of more
complex reasoning later.

3.2 Types and Terms
The translation proceeded by creating one Isabelle theory per
Haskell module. In the case of circular module dependencies which
are possible with GHC, we created two Isabelle theories for one
module — one with type and constant declarations only, the other
with the corresponding definitions.



The bulk of the translation from Haskell to Isabelle/HOL con-
sists of straightforward purely syntactic transformations, some of
them just symbol replacements like converting Haskell’s -> func-
tion arrow into Isabelle’s ⇒, and Haskell’s prefix notation for
type constructors into postfix notation in Isabelle/HOL. The fre-
quent simple case of algebraic data type declarations like data
D a = C1 a | C2 a Int is trivial to translate; the general case with
labelled fields like

data D a b = C1 { f1:a } | C2 {f1:a } { f2:Int }

has no direct counterpart in Isabelle, but can be simulated by defin-
ing separate field selector and update functions. If the appropriate
naming and type conventions are respected, the update functions
automatically become available in Isabelle as record update syn-
tax.

For many basic terms no translation is required (Haskell and
Isabelle syntax and semantics coincide apart from laziness), for
most, simple token replacements already do the trick.

Among the more interesting constructs are let, where Isabelle
does not allow recursive references. These would have to be lifted
out and declared in a separate function, although this did not oc-
cur in our application. The list comprehensions [e | pat <- xs,

P pat ] that can be translated directly into [pat∈xs . P pat] are
only a small subset of the Haskell98 standard, but again were suf-
ficient for our application. For more complex list comprehension
expressions a separate function declaration might be necessary. Pat-
terns in lambda, case, let and list comprehension expressions are
restricted in Isabelle. Isabelle allows basic tuple patterns in let

and lambda, and non-nested constructor patterns only for case and
primitive recursion. More deeply nested patterns were translated
to selectors. For example, for the option datatype with the con-
structors Some ’a and None and the selector the (Some x) = x, the
expression let Some x = f would become let x = the f. More
complex patterns in case construct are translated into one or more
predicates combined with a let statement for name binding. For
example, case x of p1 -> t1; . . . is translated into if is_p1 x

then let p1 = x in t1 else . . . This is similar to the translation
the Haskell98 [17] report gives into the Haskell core language. The
difference here is that we use this expansion only when strictly nec-
essary to keep the translated code as close as possible to the origi-
nal.

Incomplete pattern matches are mapped to the value undefined

in Haskell which is semantically equivalent to⊥, a non-terminating
program. Compilers typically abort the program with an error mes-
sage when undefined or error, which takes a message as its ar-
gument, are evaluated. We handle incomplete pattern matches in
the standard Isabelle/HOL way: they are mapped to the value
arbitrary which exists for every type, but is left unspecified. Since
HOL is a logic of total functions, this value exists, but nothing
is known about it. We also map explicit calls to undefined and
error to arbitrary. This corresponds neatly with Haskell’s lazy
evaluation. In Haskell the error is only raised when undefined is
evaluated, i.e. when it contributes to the result of a function. In
Isabelle, proofs about the result of the same function only fail due
to arbitrary when the constant contributes to the result.

Our first instance of this translation process was almost com-
pletely manual and still only took a small fraction of the original
implementation cost in terms of effort. In the meantime, we have
automated most of this process. Our tool is highly incomplete and
manages an estimated 90% of the overall translation work automat-
ically with the remaining 10% supplied manually as stubs or sec-
tions of translated code. The main lesson from this is that although
Haskell is a very rich language and a complete, fully faithful trans-
lation is a sizeable project on its own, the easy, incomplete solution
does work in practice. It is sufficient even for complex, real imple-

mentations of software on the OS level to be able to translate the
part of Haskell with a relatively straightforward correspondence to
HOL.

A trivial, but important detail was maintaining, as far as pos-
sible, a 1:1 correspondence with the Haskell code in both naming
and the visual layout of functions. Since the translation was manual
anyway, we had initially started out to translate concepts instead of
syntax, along the way introducing slight abstractions. It quickly be-
came clear that the better way for ease of translation and tracking
change to the original was to translate purely syntactically first, and
develop abstractions by proofs later if necessary.

As mentioned above, our application does not use lazy data
structures and lazy evaluation as an essential feature. Laziness
occurred in expressions like zip xs [1..] which could easily be
translated to zip xs [1..length xs].

3.3 Termination
Using HOL instead of HOLCF introduces the problem that all
functions must be total. As mentioned before, this is our intention
anyway, but it introduces an additional proof burden when writing
the specification.

Fortunately termination for the bulk of the kernel code is ob-
vious as it does not contain recursion. These parts can be handled
by Isabelle’s constdef which introduces a new constant as an ab-
breviation of existing constants. Apart from one instance, all re-
cursion occurring in the code was easy to handle using Isabelle’s
primitive and well-founded recursion constructs. The one difficult
instance concerns the one long-running operation of the seL4 ker-
nel: revoking a capability. This is reflected in the code in a mutual
recursion over four different functions that traverse the so-called
mapping database which keeps track of capability derivations. Is-
abelle/HOL does support well-founded recursion in one argument,
but it currently does not directly support arbitrary mutual recursion.
To define these functions, we instead build one recursive function
that takes the union of the original parameters together with an ad-
ditional parameter that determines which of the branches is to be
executed. This momentarily introduces more complexity and large,
ugly terms, but the original function definitions as they appear in
Haskell can then be easily derived as lemmas. For validation and
proofs we use these lemmas, not the large construct containing all
recursive branches. This technique was documented in detail by
Slind [23].

Termination of this function still was nontrivial. The algorithm
follows pointers in a data structure that models physical machine
memory. We have shown a similar mechanism to terminate in
the pilot study [18], but, since we still expect changes from the
ongoing validation of the seL4 API in real systems, we would at
this stage ideally like to avoid deep proofs that might be obsoleted
faster than they were produced. A very simple method of at least
guaranteeing that termination depends on the pointer parameter
only is the observation that the set of machine words is finite and
that traversing the tree will visit each pointer at most once. This
termination criterion is easily accepted by Isabelle.

3.4 Monads
Since microkernels are inherently state-based, the Haskell imple-
mentation of seL4 uses monads [21] heavily to encapsulate this
state. On the one hand this explicit state representation is much
closer to HOL than for instance ML’s implicit program state. On the
other hand, faithfully representing Haskell monads in Isabelle/HOL
is problematic.

The main difficulty is that Haskell uses type constructor classes
for describing monads abstractly. A monad is a structure of type ’a

m where ’a is a type variable and m a type constructor (like list

or option), implementing two functions return :: ’a ⇒ ’a m



and bind :: ’a m ⇒ (’a ⇒ ’b m) ⇒ ’b m, written _ >>= _.
Although there is no way to enforce this in Haskell, to form a
monad, the two operations additionally have to satisfy the three
monad laws.

Isabelle does provide single parameter axiomatic type classes,
but it does not provide constructor classes, and can hence not
express monads in the same abstract fashion. There is, however,
nothing stopping us from defining concrete monads in Isabelle.
The seL4 implementation uses three monads: a state transformer,
a state transformer with an exception (ErrorT) monad on top, and
a state transformer with two exception monads on top. They are
easily formalised:

(’s,’a) state_monad = ’s ⇒ ’a × ’s

return a ≡ λs. (a, s)

f >>= g ≡ λs. let (v, s’) = f s in g v s’

gets f ≡ λs. (f s, s)

modify f ≡ λs. ((), f s)

(’s,’a,’b) error_monad = (’s, ’a + ’b) state_monad

returnOk ≡ return ◦ Inr

throwError ≡ return ◦ Inl

lift f v ≡ case v of Inl e ⇒ throwError e
| Inr v’ ⇒ f v’

f >>=E g ≡ f >>= lift g

Note that we did not formalise the monad transformer ErrorT,
but instead the result, an ErrorT StateMonad. The functions Inl

and Inr are the projections into the sum type. We leave out the for-
mal definition of the ErrorT (ErrorT StateMonad), it is analogous
and introduces another sum type in the result.

We initially defined (’s,’a) state_monad in the usual way as
a data type with the only constructor State ’s ⇒ ’a × ’s. This
ensures that state_monad is different from the function space ’s ⇒
’a × ’s and makes conversions between them explicit. Later, for
reasoning about the state monad, these explicit conversions got in
the way. Apart from purely algebraic reasoning, we often showed
equality of two state monads by extensionality (being equal if they
yield the same results for all start states). Stating this without ex-
plicit conversions was more natural and provided smoother automa-
tion.

It was easy to show that the three monad laws hold for all of
the instantiations, and it was also not hard to provide a slightly
modified do-notation where do x ← f; g x od stands for bind f

(λx. g).
We opted not to use Isabelle’s constant overloading, but instead

chose different names for each bind and return implementation
with corresponding do-notation (doE, doEE). The reason is again the
absence of constructor classes. To express the type of return for all
implementations, we would have to generalise it to ’a ⇒ ’b which
in turn dilutes the value of type checking the specification. That
means we traded off a small notational overhead against higher
assurance through type checking. In fact, we found the notational
overhead made the specification clearer than the original Haskell
code because in its nested do-blocks it was often not obvious in
which monad the operations are performed.

Fig. 2 shows a typical example of translated monadic code and
demonstrates how more complex case patterns are resolved.

For specification purposes, this concrete treatment of monads
proved fully adequate. The main disadvantage is that we cannot
reason abstractly about monads just in term of monad laws, which
could lead to duplication of theorems. So far this did not turn out
to be a problem. We mostly had to reason about the behaviour of
the state monad, which involved lemmas specific to state monads,
not lemmas about monads in general. Scalability was not a prob-

Haskell:
activateThread = do

thread <- getCurThread
state <- getWaitState thread

case state of
NotWaiting -> return ()
WaitingToSend { pendingReceiveCap = Nothing } ->

doIPCTransfer thread (waitingIPCPartner state)
WaitingToReceive {} ->

doIPCTransfer (waitingIPCPartner state) thread
_ -> error "Current thread is blocked"

Isabelle/HOL:
activateThread ≡
do thread ← getCurThread;

state ← getWaitState thread;
case state of

NotWaiting ⇒ return ()
| WaitingToSend eptr badge fault cap ⇒

if cap = None then
doIPCTransfer thread (waitingIPCPartner state)

else arbitrary
| WaitingToReceive eptr ⇒

doIPCTransfer (waitingIPCPartner state) thread
| _ ⇒ arbitrary

od

Figure 2. Typical monad code translation

lem. For some programs it might turn out inconvenient to not have
monad transformers available as such, but only their results. Ap-
plying significantly more than three transformers (as in our case) is
unlikely to occur in practice, though.

Although the method described above is very lightweight and
proved adequate so far, it would be more satisfactory and scalable
to be able to directly emulate constructor classes in Isabelle.

Dawson [6] shows that abstract reasoning about monads is pos-
sible in Isabelle/HOL by declaring a new type ’a m that encodes
type constructor application. This makes the types of return and
bind and the corresponding laws directly expressible. Unfortu-
nately, this technique prohibits instantiation.

Lüth et al [3, 16] have extended Isabelle with parameterised the-
ories. They show how this mechanism enables an abstract treatment
of monads together with a convenient instantiation mechanism. The
only drawback of the method is scalability of another kind: it re-
lies on Isabelle’s proof terms to produce the required instantiations.
Proof terms currently consume a significant amount of additional
resources (mainly memory). For small to medium-sized develop-
ments this does not pose a problem, but we expect the size of our
proofs to go beyond the limits of current ML systems if proof terms
are switched on.

Huffman [14] uses a method similar to Dawson’s for mod-
elling monads in Isabelle/HOLCF which he recently extended to
Isabelle/HOL [13]. Instead of declaring a new type for all type con-
structors, he creates an axiomatic class of type constructors and de-
fines a new type for each specific type constructor. For example,
instead of showing that ’a option is of class monad, one declares a
new type Option and instead shows that this is of class monad. It can
then be used as ’a · Option where · is a new operator for apply-
ing type constructors to types. The argument type ’a is restricted
to the class of representable types which are basically types whose
values can be enumerated. The approach is flexible, allows abstract
reasoning, generic do-notation, monad transformers, and instantia-
tion. It is, however, cumbersome to use because it requires explicit
conversion between e.g. ’a option and ’a · Option that are not
present in the Haskell code.



3.5 Dynamic
The Dynamic extension of GHC to Haskell98 allows a limited form
of type casting: automatic conversion of monomorphic types to the
type Dynamic and back.

This extension is used in the kernel implementation to model
physical memory as a map from addresses (machine words) to a
tuple of dynamic objects and their size:

psMap :: Map (PPtr w) (Int, Dynamic)

Kernel objects belong to the Storable type class and implement op-
erations which among others allow their storage to (storeObject)
and from (loadObject) this physical memory.

The question therefore is how to define this type class storable
and how to represent Dynamic in Isabelle/HOL. These two points
are related: had we not wanted to define a type class, the naı̈ve
solution of modelling Dynamic as the union (a sum or datatype) of
all types we possibly might want to store would work. Because
some of the types to be stored have parameters, so would the
union. Since the class storable already describes at least one type
variable, this conflicts with the fact that Isabelle supports single
parameter type classes only.

We therefore chose a concrete type that is large enough to sup-
port an injection of all storable objects: word8 list where word8

is the type of 8 bit machine words. This choice was arbitrary, we
could just as well have chosen natural numbers or anything else
large enough. We picked word8 list, because we already had some
of the infrastructure for encoding/decoding other types into it avail-
able from our work on a memory model for C pointers [27]. What is
new here is lifting these encodings to more complex data structures
by using parser combinators.

The axiomatic type class storable is built up as follows in
Isabelle/HOL.

axclass to_from_byte < type

to_byte :: ’a::to_from_byte ⇒ word8 list

from_byte :: word8 list ⇒
(’a::to_from_byte × word8 list) option

axclass storable < to_from_byte

from_byte (to_byte x @ xs) = Some (x, xs)

We use the class to_from_byte, a subclass of Isabelle’s default
type, to restrict the type of the two overloaded constants to_byte

and from_byte. The subclass storable introduces the defining ax-
iom. The constant from_byte has a slightly more complex type than
might be expected, because we are interested in what remains of the
stream when we have read an object (@ is the append operator).

We can now define a combinator and an extractor:

(f1 -- f2) bs ≡ let res1 = f1 bs;
res2 =

case res1 of None ⇒ None
| Some (obj, rem) ⇒ f2 rem

in case res2 of None ⇒ None
| Some (obj2, rem2) ⇒

Some
((fst (the res1), obj2), rem2)

x B f ≡ case x of None ⇒ None
| Some (y, rem) ⇒ Some (f y, rem)

This allows us to build more complex types from existing ones.
For example, if we have already proved that bool::storable, the
datatype used to model capability rights is introduced easily:

datatype cap_rights = CapRights bool bool bool bool

to_byte (CapRights b1 b2 b3 b4) =
to_byte b1 @ to_byte b2 @ to_byte b3 @ to_byte b4

from_byte bs ≡ (from_byte --
from_byte -- from_byte -- from_byte)
bs B

(λ(b1, b2, b3, b4).
CapRights b1 b2 b3 b4)

Type inference and overloading saves us from specifying which
to_byte and from_byte are to be used. We only need to give the
structure of the encoding.

After showing that arbitrarily sized machine words are storable,
we encoded natural numbers using repeated modulo/division by
255, with 255 itself as the terminator of the stream. Boolean values
were stored as byte values of 0 or 1; similarly for the option type,
but with the encapsulated object following it in the stream. Lists
were encoded as their length (a natural number) followed by their
contents. Functions can be encoded as long as their domains can be
shown to be finite enumerations; this is done by iterating over the
domain and encoding only the range. All other components were
based upon these primitives.

We found this approach to scale well beyond primitive types;
once these were defined, the build-up of all other storable data types
and records was swift, and the instantiation proofs automatic.

4. Experience
As mentioned above, the overall project goal is not to show that
microkernels can be verified in principle. The goal is to show that
and how it can be done with time and resources in the order of
traditional system implementation (within maybe a factor of 2 or
3). The goal is not to verify a toy implementation or simplified
abstraction, but a high-performance, binary compatible version of
seL4 that can directly be used on embedded devices such as mobile
phones.

The basic philosophy in planning and conducting this project
is not much different from conducting a software development
project. We are aiming to be pragmatic, to use existing tools as
far as possible, to employ automation when possible, and to use
systematic methods if not.

Translating Haskell in part manually instead of fully automati-
cally was a pragmatic decision. The cost of manual translation was
with about 1 person month significantly below that of implement-
ing the Haskell kernel in the first place. The total development cost
(including API design ca. 10 person months) was less than our for-
malisations in the pilot project had suggested. Change tracking us-
ing dependency tags in the source files together with normal version
control and shell scripts to pick out changes automatically proved
to be effective and again well below the cost of the implementing
the changes in Haskell in the first place. The overall cost of creating
a fully automated tool would have been significantly higher.

So far, the design and formalisation task has gone smoothly and
largely according to expectation.

This process of designing a new OS kernel API and formalis-
ing it at the same time was highly interactive and interwoven with
many iterations and it has not concluded yet. The translation to
Isabelle/HOL started relatively early, when the Haskell API was
nearing a first stable point and first user-level binaries could be
run through the machine simulator on top of seL4. Already during
the translation process, we found and fixed a number of problems,
for example an unintentionally unbounded runtime of the IPC send
operation. It was discovered because Isabelle demanded termina-



tion proofs for operations that were supposed to execute in constant
time.

5. Related Work
We have already mentioned work related to the translation of
Haskell [9, 14] and the treatment of monads in Isabelle [6, 14,
13, 3, 16] in Sect. 3.

Thompson [25] translates Miranda to Isabelle, but uses first
order logic as base and does not treat advanced features like monads
or Dynamic. Abel et al [1] give an automatic translation of the GHC
core language (into which Haskell is transformed for compilation)
into the type-theory based Agda system and into first order logic.
Some of our manual translations to Isabelle/HOL are similar to
those of Haskell to GHC core. Harrison and Kieburtz [11] present
P-logic, a program logic for Haskell that focuses on the strict and
lazy aspects of the Haskell semantics.

Hallgren et al [10] also produced a microkernel in Haskell. The
difference to our work is that they are interested in providing a
production kernel in Haskell running directly on the hardware. We
are producing a series of design prototypes that are later to result in
a high-performance C implementation.

Earlier work on OS verification includes PSOS [22] and UCLA
Secure Unix [30]. Later, KIT [2] describes verification of process
isolation properties down to object code level, but for an idealised
kernel with far simpler and less general abstractions than mod-
ern microkernels. A number of case studies [7, 4, 29] describe the
IPC and scheduling subsystems of microkernels in PROMELA and
verify them with the SPIN model checker. Manually constructed,
these abstractions are not necessarily sound, and so while useful
for discovering concurrency bugs, they cannot provide guarantees
of correctness. The VFiasco project [12] is verifying parts of the
L4-based Fiasco micro kernel directly on the implementation level
without a more abstract specification of its behaviour. The VeriSoft
project [8] is attempting to verify a whole system stack, includ-
ing hardware, compiler, applications, and a simplified microkernel
called VAMOS.

Spies [24] uses the high level specification language FOCUS to
describe the behaviour of an operating system. The difference to
our approach is that we use a language that is foremost a program-
ming language and that can being used as such by the kernel design
team without expert knowledge in formal methods. It is one contri-
bution of this work to show that this choice does not sacrifice the
ability to arrive at an exact formalisation with little effort.

Our approach occupies the middle ground between two ex-
tremes: the a priori approach where the kernel is designed formally
from the start, and the a posteriori approach where a traditional
(C/C++) implementation is created first and formalised later. Both
can be found in the literature, e.g. the formal design process of
PSOS [22] and implementation verifications such as [7, 4, 29, 12].

In our setting, the a priori approach would design the kernel di-
rectly in the theorem prover and extract a program to be used for
validation. This requires that the OS designers are intimately famil-
iar with the formal specification language, which they are usually
not. They also would be restricted in their use of the language by the
executable fragment of HOL, since validation of low-level design
decisions is necessary to distinguish between those designs that can
possibly be implemented efficiently and those that cannot. This re-
striction is significant, because even full Isabelle/HOL, while per-
fectly suited for specification, is not a comfortable programming
language yet, certainly not one for rapid development, testing and
prototyping of sizeable, low-level, and largely imperative systems.

The a posteriori approach would create a traditional C imple-
mentation first. Folklore says and our own experience [28] shows
that the effort for formalisation here is significantly higher and cor-
respondence to the prototype much less obvious. Additionally, the

effort for implementation is significantly higher as well — we es-
timate the effort for creating a micro-kernel prototype the tradi-
tional way in our OS group to be about 1 person year. This does
not include the numerous iterative changes to the API that we went
through in our process.

Our approach lies in between. Compared to the a priori method,
we enjoy the richness and expressiveness of a full functional pro-
gramming language and keep the intricacies of formalisation from
the OS designers. Compared to the a posteriori method, we arrive
at a precise formalisation very quickly and easily. We also signif-
icantly speed up development and make an iterative prototyping
process possible that in a few months has gone through more API
changes than what would otherwise have taken years to implement.

6. Conclusion
In this paper, we have shown how formalisation can be included
in the creation of an OS microkernel while maintaining OS design
concerns as the main driving factors. We are convinced that this
approach is amenable to spreading software verification wider into
industry use, because it makes it easier to achieve scale, and to
achieve formalisations quickly and systematically. Note that the
formalisation activity can be carried out by a separate group of
people — there is no need to replace an established design team
with people who are trained in formal methods. This is an important
difference to other techniques such as creating design prototypes in
the theorem prover directly.

We have shown how a significant part of Haskell98, including
a number of common GHC extensions that occur in practice can
be systematically translated into Isabelle/HOL. It was not our aim
to provide a complete translation for all language features, as our
target language HOL is not suited to this task. The programs that
are likely to work well with our method are those that terminate and
do not make essential use of laziness. Programs that are likely to be
problematic are those that make heavy use of laziness and advanced
type system features like multi-parameter type classes. As we have
shown, though, some of these problems can be solved, at least for
specific applications.

We have received feedback on earlier version of this paper in
both directions: on the one hand that it is obvious that one would
want to be pragmatic in this way and on the other hand that it
will not work in the longer term, because the lack of automation
will introduce inconsistencies. With longer experience in tracking
change and staying in synchronisation with Haskell over many
prototype iterations we can safely disagree with the latter. The
former criticism is harder to rebut. It is, of course, obvious that
you want to be pragmatic when you know with hindsight that the
approach works. The main message of this paper is that it does
work, and that it does work well. One can in fact formalise large
(5.000 loc literate Haskell), real-world programs at a low cost, even
though the translation is not fully automatic, HOL and Haskell do
not quite match, and the method we use is incomplete. This fact in
our view is far from obvious.

We have additionally created (but not shown here) a more ab-
stract specification that is suitable for proofs on security and invari-
ants on kernel data structures. We are currently proving that it is
indeed a formal abstraction of the result of the Haskell translation.
Again, starting this process has already helped uncover problems in
the Haskell implementation that slipped through code reviews and
tests (such as an incomplete test in the revoke-capability operation).

This shows that formalisation and the use of theorem proving
tools is beneficial even if full verification is not yet performed or
is not even planned. In our setting the formalisation cost so far has
been significantly lower than the implementation and testing cost,
while the design team did not have to switch to completely new
methods or notations.



We currently have a fully working microkernel, implemented
in Haskell, running normal ARM binaries through a simulator. We
have fully formalised this microkernel in Isabelle/HOL by system-
atic translation. Next to continuing validation and development of
the kernel, this formalisation is the basis for future verification of
properties of the system (which we have already started), and a for-
mal refinement of the formalisation down to high-performance C
code.
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