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ABSTRACT
The L4 microkernel, like many first and second generation
microkernels, was designed to maximise best-effort perfor-
mance. One component of its functionality critical to overall
system performance is its interprocess communication prim-
itive. L4 uses two techniques to minimise communication
costs: direct process switching and lazy queue management.
These techniques improve performance at the expense of
real-time predictability of the scheduler. Now that L4 is be-
ing adopted in the embedded space, which features real-time
requirements, we must determine if there is continued merit
in using the optimisations. In this paper we quantitatively
analyse the two optimisations using different kernel imple-
mentations and measure the performance improvements of
the optimisations directly, and indirectly using the Re-aim
benchmark suite. We find that the system-level performance
improvements are marginal for this Unix-like workload.

1. INTRODUCTION
The functionality and the overall system complexity of high-
end embedded systems is rapidly approaching, and in some
cases surpassing, those of desktop systems. At the same
time, they are expected to be much more reliable and robust
than desktop systems as in most cases embedded systems
cannot be managed by their users, and often they cannot be
physically serviced.

However, traditional operating systems that are cut down
to run in the embedded space usually struggle to provide
strong real-time guarantees as their original design aimed at
best-effort system performance, and kernel components such
as interrupt handlers run outside the scheduler’s control.
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While timeliness can be addressed in part by running the OS
on top of a realtime executive, this does not help with the
reliability and complexity issues. In fact, an already large
desktop operating system is expanded further by a real-time
executive, and potentially real-time tasks that run without
any isolation next to the desktop kernel.

To address these requirements embedded systems are mov-
ing, on the hardware side, towards processors featuring full
memory management (i.e., translation and protection), and,
on the software side, towards microkernel-based systems,
where operating system services run as separated user-level
applications, safely isolated by hardware protection.

In principle, compared to a monolithic system, in a
microkernel-based system it should be easier to tame com-
plexity and provide timeliness for high-end embedded sys-
tems. System services are decomposed into user-level ser-
vices that contain most of the system functionality (and
hence complexity). These user-level services execute un-
der microkernel enforced protection boundaries (processes),
which should result in improved system reliability through
well defined modular structuring, and better fault isolation
and fault identification.

Timeliness benefits from the smaller kernel in two ways.
Firstly, being smaller in size, the kernel should be more
amenable to whole kernel analysis and carefully targeted
modifications to provide or improve real-time behaviour, as
there are significantly less lines of privileged code to analyse
or modify. Secondly, a real-time capable microkernel pro-
vides its real-time guarantees to higher-level services includ-
ing interrupt handlers, device drivers and other traditional
kernel services. Kernel activities that are difficult to ac-
count for (or are ignored completely) in monolithic systems,
become user-level applications under control of the scheduler
and the guarantees it provides.

In practice, like traditional monolithic systems, general-
purpose microkernels stem from performance-driven designs,
and have ingrained in their design or implementation many
optimisations that aim to improve best-effort system per-
formance at the expense of the predictability in scheduling
required for real-time systems [18].

L4 [11] is a general-purpose microkernel well-known in aca-
demic circles for its contributions to low overhead commu-



nication between processes [13]. Recently L4 is gaining an
industrial foothold as a basis for high-end embedded and
mobile systems and as a virtualisation platform.

In this paper we focus on two performance optimisations
performed in the L4 microkernel interprocess communica-
tion primitive, commonly known in the L4 community as the
IPC path. Direct process switching, that avoids running the
scheduler along the kernel’s critical paths, and lazy queue-
ing, that defers the updating of its ready queue. These op-
timisations decrease the cost of interprocess communication
(IPC), but, as a side-effect, the first can temporarily vio-
late the scheduling policy of the system, while the second,
in pathological cases, may increase its latency to external
events. We describe these two optimisations in detail, pro-
vide qualitative arguments both for and against their use,
and quantify their performance benefits to allow kernel en-
gineers and users to weigh their pros and cons in both best-
effort and real-time scenarios.

2. INTERPROCESS COMMUNICATION
OPTIMISATION

2.1 The Pursuit of IPC Performance
The intended structure of microkernel-based systems puts
heavy demands on the performance of IPC. In microkernel-
based systems, traditional operating system services — such
as device drivers, filesystems and network stacks — are pro-
vided by processes (servers) running at user-level. Thus,
instead of a system call to a traditional monolithic oper-
ating system, in a microkernel-based system all interactions
between applications and system services involve IPC to and
from servers implementing those services.

In the L4 microkernel the basic IPC mechanism is used not
only to transfer messages between user-level threads, but
also to deliver interrupts, asynchronous notifications, mem-
ory mappings, thread startups, thread preemptions, excep-
tions and page faults. Because of its pervasiveness, IPC is
likely to be used very frequently. It is also evident that any
kernel change that increases IPC costs will increase over-
head.

It is then clear why IPC performance in L4 (and in gen-
eral) has received so much attention (including, but not lim-
ited to [2,10,13,19]), with achieved performance being suffi-
cient to support near-monolithic system performance when
all system-call-like invocations are implemented by IPC to
a system server, which in this case was Linux [3]. Härtig et
al. also directly compared their system with MkLinux (a
directly comparable version of Linux based on a microker-
nel with slower IPC performance) and demonstrated that
the version of Linux running on the slower microkernel ex-
hibited a 25% performance penalty. IPC performance was
critical to overall system performance.

The requirement for high IPC performance is further mo-
tivated when device drivers are run as user-level servers to
improve robustness and reduce kernel complexity [7, 12]. In
L4, hardware interrupt delivery is via IPC to interrupt han-
dling threads. Interrupt delivery overhead can be critical for
hardware devices such as gigabit Ethernet where, to reduce
the performance impact of high interrupt rates, hardware-

based interrupt throttling is now common for even normal
interrupt delivery.

IPC performance affects not only the overall performance of
the system, but also its design space. It has been observed
early in the evolution of microkernels that given poor IPC
performance, system builders will work around it by either
co-locating services back within the kernel, or by composing
the system with much coarser granularity than they would
otherwise [4].

In addition to supporting decomposed services and applica-
tions, microkernels can also support virtual machine moni-
tors (VMMs) as an approach to supporting legacy operating
systems [3, 9, 17], while concurrently providing isolated en-
vironments for microkernel-based applications and services
that, to implement security or temporally critical services,
rely only on the guarantees provided only by the microker-
nel [14].

VMMs require efficient exception handling to emulate priv-
ileged instructions present in the hosted operating system.
Also relevant for VMMs is the vectoring of native system
calls to a paravirtualised operating system server running
on the microkernel [1].

In the case of a paravirtualised Linux running on top of
L4, both exception and syscall delivery are again via IPC
from the Linux applications to the Linux server, or from
the Linux server to the virtual machine monitor. Again IPC
performance plays a primary role in determining system per-
formance for system call-intensive (or exception-intensive)
applications.
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Figure 1: The IPC overhead for various IPC costs
against the average cycles between successive IPC.

Figure 1 illustrates the sensitivity of IPC overhead to the
raw cost of IPC, and the average cycles between successive
IPCs. The x-axis represents the average number of cycles
between each IPC, on a log scale. Each line is a plot of the
percentage overhead attributable to IPC for hypothetical
IPC costs of 50, 100, 200, 400, 800 and 1600 cycles, which are
within the range of typical IPC warm-cache costs. It shows
how the overhead is particularly sensitive to IPC costs in the
range surrounding 5000 cycles. This corresponds broadly to



an hypothetical gigabit Ethernet interrupt delivery intervals
(the time to receive a minimum sized packet on the wire)
if hardware-based interrupt throttling is not used. Fine-
grained synchronisation would also be in this range.

Summarising, there is strong motivation for minimising IPC
costs if it is invoked frequently, and this is certainly the
case for L4. In the remainder of this paper we will discuss
two generally-applicable IPC optimisations used in L4 that
reduce IPC cost, but affect in major and minor ways its
realtime scheduling behaviour. In the following sections, to
illustrate the two optimisations we will consider the case of a
interprocess communication where one process calls another
to request a service, resulting in the caller becoming blocked
and the called becoming runnable; the reverse happens as a
result of the response.

2.2 Direct Process Switch
In principle, every operating system, when the current pro-
cess blocks, invokes the scheduler to choose the next process
to run based on the specific scheduling policy it implements,
e.g., the highest priority runnable process will run. How-
ever, if the process blocks in the IPC path, invoking the
scheduler can be a costly operation that impacts IPC per-
formance. Therefore L4 avoids it and switches directly to
the newly runnable IPC destination, often disregarding rel-
evant scheduling criteria, such as priority of other threads
in the system.

The advantages of direct switch in the IPC path are three-
fold: (i) the overhead involved in calling the scheduler in the
performance-critical IPC path is avoided, (ii) the latency of
reaction to events delivered via IPC is reduced (also the
interrupt fastpath performs a direct switch), and (iii) the
cache working set may be reduced.

The first benefit does not warrant further explanation. The
second benefit is advantageous (e.g. during interrupt han-
dling) as it gives a process the opportunity to service the
interrupt earlier, and therefore potentially request the next
I/O operation earlier, improving I/O utilisation. The third
benefit occurs as a client and server which interact closely
can share the cache without the scheduler interfering by pol-
luting the cache with the correct scheduling of a third pro-
cess.

Direct process switch was first proposed by Liedke [10] to
improve microkernel IPC performance. However, it makes
the real-time schedulability analysis for any specific schedul-
ing policy difficult, if not impossible, as the scheduler is not
involved in the majority of scheduling decisions. In fact,
scheduling decisions due to IPCs happen a few thousands of
times per second, one or two orders of magnitude more fre-
quently than those due to the scheduler running after times-
lice preemptions, which happens a few hundreds of times per
second.

Historically, direct switch has also been applied inconsis-
tently in L4. To decide which process should run some L4
implementations consider the priorities of the communicat-
ing processes and the type of IPC performed, others do not,
but all of them bypass the scheduler on the critical path.
Ruocco [18] provides a detailed analysis of the direct switch

behaviours in two recent kernels of the L4 family, and their
implications for priority-driven real-time scheduling.

Notably, also the real-time OS QNX Neutrino seems to per-
form a direct switch in synchronous IPCs when data transfer
is involved [16]:

Synchronous message passing

This inherent blocking synchronizes the execu-
tion of the sending thread, since the act of re-
questing that the data be sent also causes the
sending thread to be blocked and the receiving
thread to be scheduled for execution. This hap-
pens without requiring explicit work by the ker-
nel to determine which thread to run next (as
would be the case with most other forms of IPC).
Execution and data move directly from one con-
text to another.

2.3 Lazy Queueing
When performing a remote procedure call (RPC) over syn-
chronous IPC, the sender thread blocks after sending the
message, and the waiting receiver thread is unblocked af-
ter receiving the message. The blocking and unblocking of
threads results in ready queue manipulation. The blocked
thread must be removed from the ready queue, and the un-
blocked thread must be inserted in the ready queue. If two
threads interact in a tight client-server loop, this happens
continuously, undoing work just performed, and then per-
forming it again.

Lazy queueing consists of the kernel deferring work in the
hope that it is eventually unneeded. L4 performs lazy queue
management with the following two techniques:

1. A blocking thread is not immediately removed from
the ready queue. Its removal is deferred until the
scheduler is called. The scheduler then removes any
blocked thread(s) it encounters in the course of search-
ing the next thread to run in the ready queue.

2. The kernel preserves the invariant that at least all
ready threads not currently running must be in the
ready queue. The currently running thread is not re-
quired to be in the ready queue.

If the currently running thread is preempted (changes
state from running to ready), it is added to the queue
if it is not already present. Thus, switching briefly to
a newly runnable thread does not require adding it to
the ready queue.

In L4, the combination of these two techniques ensures
that when IPC results in just one thread blocking and an-
other running, short-lived updates that elide each other are
avoided, and unavoidable queue maintenance is deferred as
much as possible. The ready queue is finally updated when
the messaging is preempted and the scheduler runs, typi-
cally as a result of timeslice exhaustion or a blocking IPC
to a busy thread.



The pros of lazy queueing are saving the direct cost of the
queue management, the indirect cost of an increased num-
ber of cache lines polluted by the queue manipulation, and
avoiding the potential pollution of TLB entries, depending
on the architecture and virtual memory mapping.

While lazy queueing cannot result in more overall processing
performed compared to strict queue management, it does de-
fer queue maintenance to the scheduler, where the scheduler
may encounter (and remove) blocked threads in the ready
queue. The number of blocked threads encountered is diffi-
cult to predict, resulting in latency of scheduling operations
also being difficult to predict.

Finally, a note on terminology. Liedtke [10] calls lazy schedul-
ing what in this paper we call lazy queueing. We use the lat-
ter term to avoid confusion with direct process switch, which
can be considered a form of lazy scheduling. That said, in
the L4 community and literature the term ‘lazy scheduling’
is sometimes used loosely to indicate a generic optimisation
in scheduling, and thus can refer to direct process switch,
lazy queueing, or even both optimisations.

2.4 Related Work
While there is a body of work on IPC performance, and on
real-time kernels, besides the analysis mentioned above [18],
there is little in the literature on the trade-off between the
two IPC optimisations described, and a kernel’s ability to
support real-time workloads. The most relevant is Stein-
berg et al., who proposed extending L4’s IPC mechanism to
donate scheduling context in order to support various classes
of real-time scheduling disciplines, including priority inheri-
tance, and reservation-based realtime systems on L4 [20].

They augment L4’s IPC to do the book keeping required to
track dependencies and time-slice donations. This work is
complementary to our work in that they also demonstrate
the need to modify their microkernel’s IPC implementa-
tion to achieve their desired scheduling behaviour. They
acknowledge that performance is an issue, and argue qual-
itatively that their system’s approach adds little overhead.
However, no quantitative results are given and their base-
line IPC overhead is up to an order of magnitude higher
than the costs we have quantified. Given a highly optimised
IPC, on a favourable architecture, it is unclear that their
changes would continue to be “little overhead”.

2.5 Summary
In this section we have argued that IPC performance is im-
portant, and described two optimisations used in the L4
microkernel to reduce the direct and indirect costs of IPC,
but with a detrimental effect on real-time workloads. Direct
switch comes at the expense of the system no longer strict-
ing adhering to its own scheduling policy — especially in
the case of priority-driven scheduling — and precluding the
schedulability analysis of a real-time system. Lazy queueing
can increase latency in pathological cases.

In the remainder of the paper we quantify the cost in terms
of performance of direct switch and lazy queueing by bench-
marking the standard kernel, then removing selectively each
optimisation, and finally both of them. We aim to clarify
the trade-off between using and not using the two optimisa-

tions, to offer microkernel designers and users an educated
choice between performance and predictability.

3. EXPERIMENTS
We performed three experiments to quantify performance
differences between various optimisation configurations. The
first was to instrument the kernel to collect statistics on
number of IPCs, context switches, queueing operations, and
scheduler invocations to determine how often queueing or
scheduling is avoided. The second experiment microbench-
marks the IPC performance directly by timing repeated ping-
pong messages. The third experiment measures throughput
for individual components of the Re-aim benchmark suite
running on a paravirtualised Linux, which, in turn, runs on
the microkernel. Each experiment is described in more de-
tail in the following sections.

For this paper we used L4-embedded N2 v1.3.0 [15], derived
from L4::Ka Pistachio 0.4 [6], as a representative microker-
nel for experimentation. Both of them feature both the di-
rect switch and lazy queueing optimisations described ear-
lier. The hardware platform we used was a Gumstix Connex
400xm, which has an XScale PXA255 clocked at 400 MHz,
and 64 MB of RAM. In addition to L4-embedded, we also
use the Iguana operating system personality running on L4,
together with Wombat (a version of Linux paravirtualised to
run on Iguana on L4), to provide a system for higher-level
benchmarking. Further details follow in Section 3.2.

3.1 Kernel Internal Scheduler Interface
To experiment with various combinations of scheduler op-
timisations, we constructed an internal scheduling interface
within the L4 kernel that allows a compile-time selection of
schedulers with different optimisations.

Scheduling in L4 is scattered through various parts of its
source code, where scheduling decisions are made implicitly
in the source each time two threads interact. For instance,
when two threads communicate using IPC, the IPC code
determines which thread should execute next at the conclu-
sion of the operation without involving the scheduler, often
— but not always — by directly comparing the priorities of
the two threads.

The creation of an internal interface involved refactoring the
code to remove the implicit scheduling decisions, which can
then be centralised and performed explicitly according to a
uniform and easily changeable policy.

One significant impact of this centralisation of scheduling
was that the highly-optimised assembly language IPC path
(known as the fastpath) was disabled. Instead, IPC is routed
to a slower C language path, which uses the new internal
interface.

Each of the new scheduler interface calls that involve a
schedule operation also takes an additional parameter we
termed a scheduling hint. Scheduling hints were introduced
to allow the same interface to support both the behaviour
of existing L4 implementations, which often dictate which
thread is to be scheduled next, while also allowing other
scheduling policies to be implemented, such as strict prior-
ity observance.



Listing 1 illustrates three different scheduling hints that were
required to mimic the existing behaviour of L4: (i) a hint
indicating that the highest priority thread in the system
should be scheduled; (ii) a hint that the most recently en-
queued thread should be scheduled (in the case of IPC, this
emulates direct process switch); and (iii) a hint indicating
that either the currently running thread or the most recently
enqueued thread should be scheduled, whichever has the
highest priority (used in the case of send-only IPC or in-
terrupts).

/∗ Hin t s d e s c r i b i n g t r a d i t i o n a l L4 behav i ou r ∗/
typede f enum {

/∗ Schedu l e h i g h e s t p r i o r i t y th r ead ∗/
HINT HIGHEST PRIORITY ,

/∗ Schedu l e most r e c e n t l y enqueued th r ead ∗/
HINT NEW,

/∗ Schedu l e the c u r r e n t or j u s t−enqueued th r ead ∗/
HINT CURRENT OR NEW,

} h i n t t ;

/∗ Ready queue man i pu l a t i o n s ∗/
vo id enqueue ( t c b t ∗ ) ;
vo id dequeue ( t c b t ∗ ) ;
vo id swap ( t c b t ∗ , t c b t ∗ ) ;

/∗ Request s c h e d u l e r to per fo rm a con t e x t sw i t ch ∗/
vo id sched ( h i n t t ) ;

/∗ Manipu la te r eady queues and per fo rm a sw i t ch ∗/
vo id enqueue sched ( t c b t ∗ , h i n t t ) ;
vo id dequeue sched ( t c b t ∗ , h i n t t ) ;
vo id swap sched ( t c b t ∗ , t c b t ∗ , h i n t t ) ;

Listing 1: The new L4 internal scheduling API

In addition to the hints, there are four functions which:
enqueue or dequeue a thread in the ready queue, atomi-
cally block one thread and start another (swap), and sched-
ule which chooses which thread to run next, and context
switches to it. There are also three more interface functions
which are clearly combinations of the previous four.

3.1.1 Measured Schedulers
In our experiments we investigated five variants of the L4-
embedded kernel. The first variant was an unmodified L4-
embedded kernel Unmod. As mentioned earlier, this kernel
features an optimised assembly IPC path which was not used
for the remainder of the measured variants, as we are yet to
write assembly language versions of the measured schedulers
that would be suitable for inclusion on an assembly language
IPC path. Unmod simply represents a best case for com-
parison to gauge the effect the C internal kernel scheduling
interface has on IPC performance.

The other four variants we investigated used the internal
scheduling interface, described in detail in Section 3.1. These
four variants implement combinations of either direct pro-
cess switching (DS) or full scheduling (FS), and lazy queue-
ing (LQ) or eager queueing (EQ). The combinations are as
follows:

DS/LQ L4 with the scheduler bypassed during IPC (direct

switch) with lazy queue management;

FS/EQ L4 with a full scheduler call in the IPC path to-
gether with eager queue management;

FS/LQ L4 with a full scheduler call in the IPC path to-
gether with lazy queue management;

DS/EQ L4 with the scheduler bypassed during IPC (direct
switch) with eager queue management.

Note that the DS/LQ kernel variant reproduces the schedul-
ing behaviour of the Unmod kernel using the new internal
scheduling API. Therefore, the difference between DS/LQ
and Unmod reflects the overhead of the C-based scheduler
interface, and the lack of an optimised assembly IPC path.
Obviously excluding Unmod, the remaining four variants
are similarly implemented and are directly comparable.

3.2 Benchmarks
We compared the four scheduler variants (together with the
unmodified kernel) using three approaches. Firstly, we mea-
sured the number of raw operations to determine how much
queue and scheduling avoidance occurs when the optimisa-
tions are applied. Secondly, we directly measured the cost
of raw IPC. Thirdly, we measured how the scheduler vari-
ants impact on the throughput of a para-virtualised version
of Linux. A more detailed description of the specific bench-
marks begins in Section 3.2.2, but before that we describe
in more detail Wombat, our para-virtualised Linux environ-
ment, together with the Re-aim benchmark suite.

3.2.1 Wombat and Re-aim
To measure the effect on overall system performance of the
scheduler variants we use Wombat [8], a paravirtualised ver-
sion of Linux running on top of L4/Iguana [5]. A Wombat
system is structured as depicted in Figure 2. The Iguana em-
bedded OS acts as a virtual machine monitor for Wombat.
Iguana provides services such as address spaces, threads, and
some services (such as device drivers) that run as Iguana
applications. Linux is modified by providing an L4/Iguana
CPU architecture which, instead of performing direct low-
level, privileged CPU operations, it uses IPC to request
Iguana to provide threads and provide and manipulate ad-
dress spaces for Linux processes running on Wombat, and
to Wombat itself.

Overall system performance will depend on (i) the cost
of propagating native system-call exceptions as IPCs from
Linux applications to the Wombat instance acting as a Linux
server for the Linux applications, and (ii) the cost of IPC to
the Iguana virtual machine monitor when Wombat requires
changes to the low-level hardware artifacts. Thus any varia-
tion in raw IPC costs may be visible depending on the level
of interaction between Iguana, Wombat, and Linux (appli-
cations) processes.

To determine the relative performance of Wombat, we used
the Re-aim benchmark suite [21]. Re-aim provides two modes
of determining system performance. First, Re-aim has a
single-user mode which measures the throughput of a series
of operations, such as the number of TCP/IP operations



Figure 2: Wombat, Iguana OS and L4.

performed per second, number of processes created per sec-
ond, the number of floating point operations per second, and
so on.

Second, Re-aim has a multi-user mode which attempts to
simulate real-world workloads. We ran the full Re-aim multi-
user benchmark with five processes, each of which car-
ries out a series of tasks in a pseudo-random order exer-
cising both the CPU and kernel. In order to ensure the
results were reproducible, we modified the Re-aim bench-
mark source code to seed its random number generator on
the child-number of the benchmark processes, instead of the
normally used Linux process-id.

Note that Wombat and Re-aim use a RAM disk to back the
file system, so no real I/O occurs in the benchmarks.

3.2.2 Avoiding Work
This specific experiment uses the multi-user Re-aim bench-
mark described above. The scheduler variant is DS/LQ,
but it has been modified to keep statistics such as number
of IPCs, total actual enqueue and dequeue operations, and
also total number of operations that would have occurred
with eager queueing. This instrumentation is only included
for this particular experiment, and only counts events. The
instrumentation is not used in cases where we measure per-
formance elsewhere in the paper.

The statistics can be used to determine how many enqueue,
dequeue and scheduler operations are avoided, to illustrate
the effectiveness of the technique.

3.2.3 Ping Pong
This microbenchmark consists of ping pong, where a low-
priority client sends a message of a fixed length to a high-
priority server, which then in turn responds immediately
back with a message of the same length. The benchmark
directly measures L4 and thus is independent of Wombat
and Iguana.

We benchmark 1 000 000 iterations of ping pong using the
cycle counter in the performance monitoring unit of the
PXA255, and the average number of cycles of a single IPC

Benchmark Task
brk_test Carry out the brk syscall in a

loop.
creat_clo Create and then close files in

a loop.
dgram_pipe Send and receive random-

length datagram packets.
dir_rtns_1 Carry out various directory

querying syscalls.
exec_test Create children with fork,

which in turn carry out an
exec.

fork_test Create and wait for child pro-
cesses using fork and wait.

link_test Create and destroy hard links
to individual files.

misc_rtns_1 Carry out miscellaneous Unix
query syscalls.

page_test Allocate and deallocate mem-
ory with sbrk.

pipe_cpy Send and receive random-
length packets over a Unix
pipe.

shared_memory Perform semaphore opera-
tions and read/write opera-
tions on shared memory.

shell_rtns Execute simple shell scripts in
a loop.

signal_test Send and catch Unix signals
in a loop.

stream_pipe Send and receive random
amounts of data of a Unix
stream.

udp_test Send and receive random-
length UDP packets over
loopback.

Table 1: Descriptions of the Re-aim single-user
benchmark tasks tested.

is determined. The process is repeated for messages of var-
ious lengths. The final number of cycles counted includes
both the time required for the user-level threads to call the
kernel and the time spent in the kernel performing the IPC
operation. We run this benckmark for each of the kernel
configurations we have.

3.2.4 Re-aim Throughput
Our last experiment takes selected single-user throughput
benchmarks from the Re-aim suite. The throughput is de-
termined by counting the number of completed activities in
an interval of approximately 10 seconds (the cycle-counter
on the PXA255 is used to get an accurate measurement of
the length of the interval). The specific activity counted
was dependant on the actual benchmark component under
test. For example, the UDP test counts the number of pack-
ets sent and received. Each benchmark specific throughput
was an average of 4 runs. Each runs was closely consistent
with the others, the standard deviation was always less than
0.5 percent , and the average standard deviation was 0.08
percent.



Table 1 briefly describes the selected benchmarks. The se-
lection excludes the CPU oriented benchmarks whose per-
formance is largely independent of the underlying operating
system architecture and implementation and thus not rele-
vant for this paper.

4. RESULTS
Operation Result
Benchmark Length (seconds) 222.16
IPCs 1450474
Average IPC Length (32-bit words) 6.26
Eager enqueue operations 1509011
Actual enqueue operations 62482
At a deferred time 19719
Enqueue operations avoided 95.86%
Eager dequeue operations 1509056
Actual dequeue operations 62482
At a deferred time 40289
Dequeue operations avoided 95.86%
Context switches 1571609
Scheduling queue lookups 80749
Queue lookups avoided 94.86%

Table 2: Breakdown of L4 operations for the Re-aim
multi-user ‘all tests’ benchmark
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Figure 3: Raw IPC costs for various scheduler im-
plementations.

4.1 Work Avoidance
Table 2 summarises the results of our experiment on work
avoidance. The table is divided into 4 sections: general
statistics of the Re-aim multi-user benchmark, enqueue op-
erations, dequeue operations, and scheduler invocations. We
see that the overall benchmark takes 222 seconds to run, av-
eraging one IPC per 150 microseconds, which is every 62000
cycles. As Figure 1 suggests, in this inter-IPC cycle range,
small variations in IPC duration should have a very small
effect on the overall run-time of Re-aim, unless IPC costs
become substantially greater than 1000 cycles.

Looking at the queueing results, we see that the application
of lazy queue management reduces the number of queue op-
erations substantially. We see that 96% of queue operations
are avoided altogether with the technique, even when we in-
clude queueing operations that are not avoided entirely and

are only deferred to a later point in time. The scheduling
results show a similar percentage (95%) of scheduler invoca-
tions are avoided by the direct process switch technique.

Summarising, we see that direct process switching and lazy
queue management are very effective in avoiding scheduling
and queueing costs. However, given the infrequency of IPC
in the Re-aim multi-user benchmark, we don’t expect to
see IPC overheads greater that a percentage point or two
on average. However, we will see later that some of the
individual benchmarks do vary significantly.

4.2 Ping Pong
Figure 3 shows the results of the ping pong benchmark for
the 5 kernels. We see that Unmod kernel with its assembly
IPC path is significantly faster (174 cycles for a zero-sized
message) than DS/LQ (289 cycles) despite implementing
the same algorithm.

This difference is attributable to two factors. The first fac-
tor is the assembly only IPC path in Unmod avoids prepar-
ing the kernel stack to call C, and avoids preserving the C
compiler function calling convention on a context switch.
The second factor is that the C path used in DS/LQ is a
modified version of a slower IPC path (the IPC slowpath),
also written in C. While the fastpath can handle only a
frequently-used subset of all IPC cases, the slowpath can
handle all of them.

Examining the four directly comparable results for the ker-
nels with different combinations of direct switch and lazy
queueing, we have the following results for zero-sized mes-
sages: DS/LQ 289, DS/EQ 350, FS/LQ 359, and FS/EQ
419. We see that direct switching saves 70 cycles off the IPC
path, and lazy queue management saves 60 cycles off the IPC
path. We see that there are comparatively large savings to
be made to the raw cost of IPC by using both optimisation
techniques.

4.3 Re-aim performance
The results for the single-user Re-aim benchmarks are shown
in Figure 4. We see throughput results for the individual
benchmark tests within the suite, normalised to the through-
put of Unmod. The influence IPC performance has over
the individual benchmarks varies from virtually no influence
in the case of dir_rtns_1 and shell_rtns_2, to a signifi-
cant difference of a 17% reduction in throughput for the
shared_memory, when comparing the assembly path kernel
Unmod to the slowest C path kernel FS/EQ.

Now examining comparable results, we see the biggest
differences (between DS/LQ and FS/EQ) is in the
shared_memory benchmark, with a reduction of 5% in
throughput. The average reduction in throughput was 2.5%
for all the individual benchmarks.

5. CONCLUSIONS
We have described and motivated two general IPC optimisa-
tions that have historically been used in the L4 microkernel:
direct process switching and lazy queueing. We have argued
that the optimisations have negative consequences on real-
time predictability as they undermine the scheduling policy,
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and defer a difficult-to-predict amount of work for when the
scheduler is eventually invoked.

However, we also determined via measurement that these
optimisations avoided scheduling related activity from IPC
in over 95% of IPC invocations. The consequent improve-
ment in best-effort system performance was dependent of
the relative costs of IPC and scheduling activity, and the
frequency of IPC invocation.

When we quantified their effect on the overall system per-
formance, we found that the performance gains are modest.
As expected, the overhead of IPC depends on its frequency.
Removing the optimisations reduced system throughput by
2.5% on average, 5% in the worst case. Thus the case for
including the optimisations at the expense of real-time pre-
dictability is weak for the cases we examined. For much
higher IPC rate applications, it might still be worthwhile.

We acknowledge two weak points in our comparison that
we intend to address in future work. Firstly, the work was
done in C, which for IPC incurs a substantial overhead com-
pared to the optimised assembly version. The sensitivity of
IPC overhead to scheduler implementation may change in
a faster assembler-only implementation. Secondly, we only
examine the PXA255: other processor architectures and im-
plementations have much larger or smaller relative IPC cost
to which the results may be sensitive to.

However, our results confirm that the trade-off between per-
formance and real-time predictability exists. For the cases
we investigated, which are designed to model Unix system

use, the performance gain is small, and unjustified when
considering the loss of predictable scheduler behaviour.
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[3] Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Sebastian Schönberg, and Jean Wolter. The
performance of µ-kernel-based systems. In Proceedings
of the 16th ACM Symposium on OS Principles, pages
66–77, St. Malo, France, October 1997.

[4] Wilson C. Hsieh, M. Frans Kaashoek, and William E.
Weihl. The persistent relevance of IPC performance:
New techniques for reducing the IPC penalty. In
Workshop on Workstation Operating Systems, pages
186–190, 1993.

[5] Iguana OS. URL
http://www.ertos.nicta.com.au/iguana/.

[6] L4Ka Team. L4Ka::Pistachio kernel.
http://l4ka.org/projects/pistachio/.

[7] Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale,
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