
Non-examinable Learning
Outcomes 

• An appreciation that the abstract interface to
the system can be at different levels.
– Virtual machine monitors (VMMs) provide a low-

level interface

• An understanding of trap and emulate

• Knowledge of the difference between type 1
(native) and type 2 VMMs (hosted)

Virtual Machines

References:

Smith, J.E.; Ravi Nair; , "The architecture of virtual machines,"
Computer , vol.38, no.5, pp. 32- 38, May 2005

Chapter 7 – 7.3 Textbook “Modern Operating Systems”, 4th ed.

All of chapter 7, if you’re interested.

Observations
• Operating systems provide well defined

interfaces
– Abstract hardware details

• Simplify

• Enable portability across hardware differences

• Hardware instruction set architectures
are another will defined interface
– Example AMD and Intel both implement

(mostly) the same ISA

– Same software can run on both

Interface Levels

Instruction Set Architecture

• Interface between software and
hardware
– label 3 + 4

• Divided between privileged and
un-privileged parts
– Privileged a superset of the un-

privileged

Application Binary
Interface

• Interface between
programs ↔ hardware
+ OS
– Label 2+4

• Consists of system call
interface + un-
privileged ISA

Application Programming
Interface

• Interface between high-level
language ↔ libraries +
hardware + OS

• Consists of library calls + un-
privileged ISA
– Syscalls usually called

through library.

• Portable via re-compilation
to other systems supporting
API
– or dynamic linking

Some Interface Goals

• Support deploying software across all
computing platforms.
– E.g. software distribution across the

Internet

• Provide a platform to securely share
hardware resources.
– E.g. cloud computing

OS is an extended virtual
machine

• Multiplexes the “machine” between
applications
– Time sharing, multitasking, batching

• Provided a higher-level machine for
– Ease of use

– Portability

– Efficiency

– Security

– Etc….

Abstraction versus Virtualisation

Process versus System
Virtual Machine

JAVA – Higher-level Virtual
Machine

• write a program once, and run it
anywhere
– Architecture independent

– Operating System independent

• Language itself was clean,
robust, garbage collection

• Program compiled into bytecode
– Interpreted or just-in-time

compiled.

– Lower than native performance

Comparing Conventional code
execution versus

Emulation/Translation

Aside: Just In-Time
compilation (JIT)

JAVA and the Interface
Goals

• Support deploying software across all
computing platforms.

• Provide a platform to securely share
hardware resources.

Issues

• Legacy applications

• No isolation nor resource management
between applets

• Security
– Trust JVM implementation? Trust

underlying OS?

• Performance compared to native?

Is the OS the “right” level of
extended machine?

• Security
– Trust the underlying OS?

• Legacy application and OSs

• Resource management of existing
systems suitable for all applications?
– Performance isolation?

• What about activities requiring “root”
privileges

Virtual Machine Monitors

Also termed a hypervisor

• Provide scheduling and resource
management

• Extended “machine” is the actual
machine interface.

IBM VM/370

• CMS a light-weight, single-user OS

• VM/370 multiplex multiple copies of
CMS

Advantages

• Legacy OSes (and
applications)

• Legacy hardware
• Server consolidation

– Cost saving
– Power saving

• Server migration
• Concurrent OSes

– Linux – Windows
– Primary – Backup

• High availability

• Test and Development
• Security

– VMM (hopefully) small
and correct

• Performance near bare
hardware
– For some applications

Native (Type 1) vs. Hosted
(Type 2) Hypervisor

Applications Applications

Guest OS Guest OS

Hypervisor

VM1 VM2

Physical Machine

Applications Applications

Guest OS Guest OS

Hypervisor App

VM1 VM2

Physical Machine

Host Operating System

Host OS
Applications

Type 1 (Native) Hypervisor

• Hypervisor (VMM) runs in most
privileged mode of processor
– Manage hardware directly

– Also termed classic…, bare-
metal…, native…

• Guest OS runs in non-privileged
mode
– Hypervisor implements a virtual

kernel-mode/virtual user-mode

– Or, CPU provides three privilege
levels (e.g. Intel VT-x)

• What happens when guest OS
executes native privileged
instructions?

Applications Applications

Guest OS Guest OS

Hypervisor

VM1 VM2

Physical Machine

Type 2 (Hosted) Hypervisor
• Hypervisor runs as user-mode

process above the privileged
host OS
– Also termed hosted hypervisor

• Again, provides a virtual kernel-
mode and virtual user-mode

• Can leverage device support of
existing host OS.

• What happens when guest OS
execute privileged instructions?

Applications Applications

Guest OS Guest OS

Hypervisor App

VM1 VM2

Physical Machine

Host Operating System

Host OS
Applications

Hosted Hypervisor Details
• Jeremy Sugerman, Ganesh

Venkitachalam and Beng-Hong Lim,
“Virtualizing I/O Devices on VMware
Workstation's Hosted Virtual Machine
Monitor”, USENIX ATC 2001

• Hypervisor application installs driver (part
of the hypervisor) into the Host OS

• Driver intercepts hypervisor related
activities from Hyp. App.

• It “world switches” when guest OS needs
to runs

– Unloads Host OS state from processor

– Loads hypervisor state and gives it control of
machine

• Hypervisor “world switches” when Host
OS is needed

– Regularly to allow interactivity with Host OS.

– When hypervisor needs Host OS service (e.g. file
system)

Applications

Guest OS

Hypervisor

VM World

Physical Machine

Host OS

Host OS
Applications

Hyp.
Driver

Host World

Hypervisor
App

Gerald J. Popek and Robert P. Goldberg (1974). "Formal
Requirements for Virtualizable Third Generation

Architectures". Communications of the ACM 17 (7): 412 –421.

• Sensitive Instructions
– The instructions that attempt to change the configuration of the processor.

– The instructions whose behaviour or result depends on the configuration of the
processor.

• Privileged Instructions
– Instructions that trap if the processor is in user mode and do not trap if it is in system

mode.

• Theorem
– Architecture is virtualisable if sensitive instructions are a subset of privileged

instructions.

Example: mtc0/mfc0 MIPS

• mfc0: load a value in the system coprocessor
– Can be used to observer processor configuration

• mtc0: store a value in the system coprocessor
– Can be used to change processor configuration

• Example: disable interrupts
mfc0 r1, C0_Status
andi r1, r1, CST_IEc
mtc0 r1, C0_Status

• Sensitive?

• Privileged?

Approach: Trap & Emulate?

Example: cli/sti x86

• CLI: clear interrupt flag
– Disable interrupts

• STI: set interrupt flags
– Enable interrupts

• Sensitive?

• Privileged?

X86 POPF

• Pop top of stack and store in EFLAGS
register
– IF bit disables interrupts

X86 POPF

• Is not privileged (does not trap)
– In kernel mode – enable/disables interrupts

– In user-mode – silently ignored

• POPF is not virtualisable

• X86 (pre VT extensions) is not
virtualisable

Taxonomy of Virtual
Machines

What is System/161?

