
Non-examinable Learning 
Outcomes 

• An appreciation that the abstract interface to 
the system can be at different levels.
– Virtual machine monitors (VMMs) provide a low-

level interface

• An understanding of trap and emulate

• Knowledge of the difference between type 1 
(native) and type 2 VMMs (hosted)



Virtual Machines

References:

Smith, J.E.; Ravi Nair; , "The architecture of virtual machines," 
Computer , vol.38, no.5, pp. 32- 38, May 2005

Chapter 7 – 7.3 Textbook “Modern Operating Systems”, 4th ed.

All of chapter 7, if you’re interested.



Observations
• Operating systems provide well defined 

interfaces
– Abstract hardware details

• Simplify

• Enable portability across hardware differences

• Hardware instruction set architectures 
are another will defined interface
– Example AMD and Intel both implement 

(mostly) the same ISA

– Same software can run on both



Interface Levels



Instruction Set Architecture

• Interface between software and 
hardware
– label 3 + 4

• Divided between privileged and 
un-privileged parts
– Privileged a superset of the un-

privileged



Application Binary 
Interface

• Interface between 
programs ↔ hardware 
+ OS
– Label 2+4

• Consists of system call 
interface + un-
privileged ISA



Application Programming  
Interface

• Interface between high-level 
language ↔ libraries + 
hardware + OS

• Consists of library calls + un-
privileged ISA
– Syscalls usually called 

through library.

• Portable via re-compilation 
to other systems supporting 
API
– or dynamic linking



Some Interface Goals

• Support deploying software across all 
computing platforms.
– E.g. software distribution across the 

Internet

• Provide a platform to securely share 
hardware resources.
– E.g. cloud computing



OS is an extended virtual 
machine

• Multiplexes the “machine” between 
applications
– Time sharing, multitasking, batching

• Provided a higher-level machine for
– Ease of use

– Portability

– Efficiency

– Security

– Etc….



Abstraction versus Virtualisation



Process versus System
Virtual Machine



JAVA – Higher-level Virtual 
Machine

• write a program once, and run it 
anywhere
– Architecture independent

– Operating System independent

• Language itself was clean, 
robust, garbage collection

• Program compiled into bytecode
– Interpreted or just-in-time 

compiled.

– Lower than native performance



Comparing Conventional code 
execution versus 

Emulation/Translation



Aside: Just In-Time 
compilation (JIT)



JAVA and the Interface 
Goals

• Support deploying software across all 
computing platforms.

• Provide a platform to securely share 
hardware resources.



Issues

• Legacy applications

• No isolation nor resource management 
between applets

• Security
– Trust JVM implementation? Trust 

underlying OS?

• Performance compared to native?



Is the OS the “right” level of 
extended machine?

• Security
– Trust the underlying OS?

• Legacy application and OSs

• Resource management of existing 
systems suitable for all applications?
– Performance isolation?

• What about activities requiring “root” 
privileges



Virtual Machine Monitors

Also termed a hypervisor

• Provide scheduling and resource 
management

• Extended “machine” is the actual 
machine interface.



IBM VM/370

• CMS a light-weight, single-user OS

• VM/370 multiplex multiple copies of 
CMS 



Advantages

• Legacy OSes (and 
applications)

• Legacy hardware
• Server consolidation

– Cost saving
– Power saving

• Server migration
• Concurrent OSes

– Linux – Windows
– Primary – Backup

• High availability

• Test and Development
• Security

– VMM (hopefully) small 
and correct

• Performance near bare 
hardware
– For some applications



Native (Type 1) vs. Hosted 
(Type 2) Hypervisor
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Type 1 (Native) Hypervisor

• Hypervisor (VMM) runs in most 
privileged mode of processor
– Manage hardware directly

– Also termed classic…, bare-
metal…, native…

• Guest OS runs in non-privileged 
mode
– Hypervisor implements a virtual 

kernel-mode/virtual user-mode

– Or, CPU provides three privilege 
levels (e.g. Intel VT-x)

• What happens when guest OS 
executes native privileged 
instructions?
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Type 2 (Hosted) Hypervisor
• Hypervisor runs as user-mode 

process above the privileged 
host OS
– Also termed hosted hypervisor

• Again, provides a virtual kernel-
mode and virtual user-mode

• Can leverage device support of 
existing host OS.

• What happens when guest OS 
execute privileged instructions?
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Hosted Hypervisor Details
• Jeremy Sugerman, Ganesh 

Venkitachalam and Beng-Hong Lim, 
“Virtualizing I/O Devices on VMware 
Workstation's Hosted Virtual Machine 
Monitor”, USENIX ATC 2001

• Hypervisor application installs driver (part 
of the hypervisor) into the Host OS

• Driver intercepts hypervisor related 
activities from Hyp. App.

• It “world switches” when guest OS needs 
to runs

– Unloads Host OS state from processor

– Loads hypervisor state and gives it control of 
machine

• Hypervisor “world switches” when Host 
OS is needed

– Regularly to allow interactivity with Host OS.

– When hypervisor needs Host OS service (e.g. file 
system)
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Gerald J. Popek and Robert P. Goldberg (1974). "Formal 
Requirements for Virtualizable Third Generation 

Architectures". Communications of the ACM 17 (7): 412 –421.

• Sensitive Instructions
– The instructions that attempt to change the configuration of the processor.

– The instructions whose behaviour or result depends on the configuration of the 
processor.

• Privileged Instructions
– Instructions that trap if the processor is in user mode and do not trap if it is in system 

mode. 

• Theorem
– Architecture is virtualisable if sensitive instructions are a subset of privileged 

instructions.



Example: mtc0/mfc0 MIPS

• mfc0: load a value in the system coprocessor
– Can be used to observer processor configuration

• mtc0: store a value in the system coprocessor
– Can be used to change processor configuration

• Example: disable interrupts
mfc0 r1, C0_Status
andi r1, r1, CST_IEc
mtc0 r1, C0_Status

• Sensitive?

• Privileged?



Approach: Trap & Emulate?



Example: cli/sti x86

• CLI: clear interrupt flag
– Disable interrupts

• STI: set interrupt flags
– Enable interrupts

• Sensitive?

• Privileged?



X86 POPF

• Pop top of stack and store in EFLAGS 
register
– IF bit disables interrupts



X86 POPF

• Is not privileged (does not trap)
– In kernel mode – enable/disables interrupts

– In user-mode – silently ignored

• POPF is not virtualisable

• X86 (pre VT extensions)  is not 
virtualisable



Taxonomy of Virtual 
Machines



What is System/161?


