Welcome to OS @ UNSW

COMP3231/9201/3891/9283
(Extended) Operating Systems
Dr. Kevin Elphinstone
Operating Systems

Chapter 1 – 1.3
Chapter 1.5 – 1.9
Learning Outcomes

• High-level understand what is an operating system and the role it plays
• A high-level understanding of the structure of operating systems, applications, and the relationship between them.
What is an Operating System?
What is a traffic light?

- A signalling device that controls the flow of traffic
 - Defined in terms of the role it plays
- A signalling device consisting of three lights mounted at an intersection
 - Defined in terms of what it is
Block Diagram of Haswell Platform Architecture

Processor

- PCI Express* 3.0
- Digital Display Interface (DDI) (3 interfaces)
- Intel Flexible Display Interface (Intel FDI) (x2)
- Direct Media Interface 2.0 (DMI 2.0) (x4)

System Memory

- 1333 / 1600 MT/s
- 2 DIMMs / CH (Note: 2 DIMMs / CH is not supported on all SKUs.)

Platform Controller Hub (PCH)

- USB 3.0 (up to 6 Ports)
- USB 2.0 (8 Ports)
- SATA, 6 GB/s (up to 6 Ports)
- SPI Flash
- Trusted Platform Module (TPM) 1.2

Analog Display (VGA)

- Integrated LAN
- PCI Express* 2.0 (up to 8 Ports)

- Intel High Definition Audio (Intel HD Audio)

LPC

- SMBus 2.0

GPIOs

Super IO / EC

UNSW Sydney

http://www.pcquest.com
Role 1: The Operating System is an Abstract Machine

- Extends the basic hardware with added functionality
- Provides high-level abstractions
 - More programmer friendly
 - Common core for all applications
 - E.g. Filesystem instead of just registers on a disk controller
- It hides the details of the hardware
 - Makes application code portable
Users

Disk

Memory

CPU

Network

Bandwidth
Role 2: The Operating System is a Resource Manager

• Responsible for allocating resources to users and processes

• Must ensure
 • No Starvation
 • Progress
 • Allocation is according to some desired policy
 • First-come, first-served; Fair share; Weighted fair share; limits (quotas), etc...

• Overall, that the system is efficiently used
Structural (Implementation) View: the Operating System is the software in Privileged mode.
Operating System Kernel
• Portion of the operating system that is running in privileged mode
• Contains fundamental functionality
 • Whatever is required to implement other services
 • Whatever is required to provide security
• Contains most-frequently used functions
• Also called the nucleus or supervisor
The Operating System is Privileged

• Applications should not be able to interfere or bypass the operating system
 • OS can enforce the “extended machine”
 • OS can enforce its resource allocation policies
 • Prevent applications from interfering with each other
Delving Deeper: The Structure of a Computer System

Kernel Mode
- Operating System
- Memory
- Device
- Device

User Mode
- Application
- System Libraries

Kernel = Privileged Mode
The Structure of a Computer System

OS interacts via load and store instructions to all memory, CPU and device registers, and interrupts.
The Structure of a Computer System

Applications interact with themselves and via function calls to library procedures.
The Structure of a Computer System

Interaction via System Calls

User Mode

Kernel Mode

Device

OS

Memory
Privilege-less OS

• Some Embedded OSs have no privileged component
 • e.g. PalmOS, Mac OS 9, RTEMS
• Can implement OS functionality, but cannot enforce it.
 • All software runs together
 • No isolation
 • One fault potentially brings down entire system
A Note on System Libraries

System libraries are just that, libraries of support functions (procedures, subroutines)

• Only a subset of library functions are actually system calls
 • `strcmp()`, `memcpy()`, are pure library functions
 • manipulate memory within the application, or perform computation
 • `open()`, `close()`, `read()`, `write()` are system calls
 • they cross the user-kernel boundary, e.g. to read from disk device
 • Implementation mainly focused on passing request to OS and returning result to application

• System call functions are in the library for convenience
 • try `man syscall` on Linux
Operating System Software

• Fundamentally, OS functions the same way as ordinary computer software
 • It is machine code that is executed (same machine instructions as application)
 • It has more privileges (extra instructions and access)

• Operating system relinquishes control of the processor to execute other programs
 • Reestablishes control after
 • System calls
 • Interrupts (especially timer interrupts)
Operating System Internal Structure?
Classic Operating System Structure

- The layered approach
 a) Processor allocation and multiprogramming
 b) Memory Management
 c) Devices
 d) File system
 e) Users
 - Each layer depends on the inner layers
The Monolithic Operating System Structure

• Also called the “spaghetti nest” approach
 • Everything is tangled up with everything else.
• Linux, Windows,
However, some reasonable structure usually prevails.
