Chapter 6

Deadlocks

6.1. Resources

6.2. Introduction to deadlocks

6.3. The ostrich algorithm

6.6. Deadlock prevention

6.4. Deadlock detection and recovery
6.5. Deadlock avoidance

6.7. Other issues

1 55 UNSW

Learning Outcomes

* Understand what deadlock is and how it can occur when
giving mutually exclusive access to multiple resources.

* Understand several approaches to mitigating the issue of
deadlock in operating systems.

* Including deadlock prevention, detection and recovery, and deadlock
avoidance.

Resources

* Examples of computer resources

* printers
* tape drives
* Tables in a database

* Processes need access to resources in reasonable order

* Preemptable resources
* can be taken away from a process with no ill effects

* Nonpreemptable resources
 will cause the process to fail if taken away

Resources & Deadlocks

* Suppose a process holds resource A and requests
resource B
* at same time another process holds B and requests A
* both are blocked and remain so - Deadlocked

* Deadlocks occur when ...

* processes are granted exclusive access to devices, locks, tables,
etc..

» we refer to these entities generally as resources

4 5 UNSW

Resource Access

* Sequence of events required to use a resource

1. request the resource
2. use the resource
3. release the resource

« Must wait if request is denied
* requesting process may be blocked
 may fail with error code

Two example resource usage patterns

semaphore res 1, res 2;

void proc A() {
down (&res_1) ;
down (&res_2) ;
use both res();
up (&res_2) ;
up (&res 1) ;

}

void proc B() {
down (&res_1) ;
down (&res_2) ;
use both res();
up (&res_2) ;
up (&res_1) ;

semaphore res 1, res 2;

void proc A() {
down (&res_1) ;
down (&res_2) ;
use both res();
up (&res_2) ;
up (&res_1) ;

}

void proc B() {
down (&res_2) ;
down (&res 1) ;
use both res();
up (&res_1) ;
up (&res_2) ;

Introduction to Deadlocks

* Formal definition :
A set of processes is deadlocked if each process in the set is waiting
for an event that only another process in the set can cause

* Usually the event is release of a currently held resource

* None of the processes can ...
°run
* release resources
* be awakened

[y

g

w

Four Conditions for Deadlock

Mutual exclusion condition
each resource assigned to 1 process or is available

Hold and wait condition
process holding resources can request additional

No preemption condition
previously granted resources cannot be forcibly taken
away
Circular wait condition
e must be a circular chain of 2 or more processes

e eachis waiting for resource held by next member of the
chain

Deadlock Modeling

* Modeled with directed graphs

T N

“ T U

: ® \©/
)

(@) (b)

* resource R assigned to process A
* process B is requesting/waiting for resource S
* process C and D are in deadlock over resources T and U

Deadlock Modeling

1. Arequests R
2. Brequests S
3. Crequests T
4. Arequests S
5. Brequests T
6. C requests R
deadlock

(d)

A

Request R
Request S
Release R
Release S

(@)

®©

i

(e)

i

(h)

B

Request S
Request T
Release S
Release T

(b)

©

L

C

Request T
Request R
Release T
Release R

(c)

bid

()

N

R

S

T

(i)

How deadlock occurs

Deadlock Modeling

1. Arequests R
2.Crequests T . @ . A . @
3. Arequests S e e e
4. C requests R
5. Areleases R

R

6. Areleases S
no deadlock

(k) () (m))

(0) (p) Q)

How deadlock can be avoided " W

Deadlock

Strategies for dealing with Deadlocks
1. justignore the problem altogether
2. prevention
. negating one of the four necessary conditions
3, detection and recovery
a. dynamic avoidance
careful resource allocation

Approach 1: The Ostrich Algorithm

* Pretend there is no problem

* Reasonable if
» deadlocks occur very rarely
e cost of prevention is high
* Example of “cost”, only one process runs at a time
* UNIX and Windows takes this approach for some of
the more complex resource relationships they
manage

*|t’s a trade off between

* Convenience (engineering approach)
* Correctness (mathematical approach)

Approach 2: Deadlock Prevention

* Resource allocation rules prevent deadlock by prevent one
of the four conditions required for deadlock from occurring
* Mutual exclusion
* Hold and wait
* No preemption
e Circular Wait

14 UNSW

Approach 2

Deadlock Prevention
Attacking the Mutual Exclusion Condition

* Not feasible in general
* Some devices/resource are intrinsically not shareable.

Attacking the Hold and Wait Condition

* Require processes to request resources before starting
* a process never has to wait for what it needs

* |ssues

* may not know required resources at start of run
* = not always possible
* also ties up resources other processes could be using

* Variations:
* process must give up all resources if it would block holding a resource
* then request all immediately needed
* prone to livelock

Livelock

* Livelocked processes are not blocked, change state regularly,
but never make progress.

* Example: Two people passing each other in a corridor that
attempt to step out of each other’s way in the same
direction, indefinitely.

* Both are actively changing state
* Both never pass each other.

Deadlock example

void proc_A() {
lock _acquire(&res 1);
lock_acquire(&res _2);
use_both res();
lock _release(&res 2);
lock release(&res 1);

void proc_B() {
lock _acquire(&res 2);
lock _acquire(&res _1);
use_both res();
lock _release(&res 1);
lock _release(&res 2);

Livelock example

void proc A() { void proc B() {
lock acquire(&res 1); lock acquire(&res 2);
while(try lock(&res 2) == FAIL) { while(try lock(&res 1) == FAIL) {
lock release(&res _1); lock release(&res _2);
wait fixed time(); wait fixed time();
lock_acquire(&res_1); lock_acquire(&res_2);
} }
use_both_res(); use_both_res();
lock release(&res 2); lock release(&res 1);
lock release(&res 1); lock release(&res 2);
} }

Attacking the No Preemption Condition

* This is not a viable option

* Consider a process given the printer
* halfway through its job

* now forcibly take away printer
o 11?7

20 & UNSW

Attacking the Circular Wait Condition

1. Imagesetter @

2. Scanner T A
3. Plotter

4. Tape drive i L
5. CD Rom drive :

(a) (b)

* Numerically ordered resources

21 UNSW

Attacking the Circular Wait Condition

* The displayed deadlock
cannot happen

* If A requires 1, it must acquire
it before acquiring 2

* Note: If B has 1, all higher
numbered resources must be
free or held by processes who
doesn’t need 1

* Resources ordering is a
common technique in

A

\

22 UNSW

Example

YYYYYY

Summary of approaches to deadlock prevention

Condition Approach
* Mutual Exclusion * Not feasible
* Hold and Wait * Request resources initially

* Take resources away
* No Preemption * Order resources
* Circular Wait

24 UNSW

Approach 3: Detection and Recovery

* Need a method to determine if a system is deadlocked.

* Assuming deadlocked is detected, we need a method of
recovery to restore progress to the system.

Approach 3
Detection with One Resource of Each Type

9

O—E—O—01— O—E—
U O S G
|

S e

(@) (b)

* Note the resource ownership and requests
* A cycle can be found within the graph, denoting deadlock

What about resources with multiple units?

* Some examples of multi-unit resources
* RAM
* Blocks on a hard disk drive
e Slots in a buffer

* We need an approach for dealing with resources that consist
of more than a single unit.

Detection with Multiple Resources of Each Type

Resources in existence

Current allocation matrix

(E,.E,,E,, ..., E)

Request matrix

Resources available
(A1, A2, A3= Am)

C,y Gy Cpz - Gy Ry Ry Ry - R
C,, 22 23 " Vom R, 22 23 R,

Cj _Cn1 Cn2 CnS T Cnm_ _Rn‘l I:{n2 RnS CT an_
Row n is current allocation Row 2 is what process 2 needs

to process n

Data structures needed by deadlock detection algorithm

Note the following invariant

Sum of current resource allocation + resources available =
resources that exist

ZC +A4,=E,

l_

YYYYYY

Detection with Multiple Resources of Each Type

a2 &5 & e & &
N & & & NI £ & &
QEJ N rg?' <= & L ra?' 5
<3 Q\G 2y QQ ,@Q Q\ﬁ ef QQ
E=(4 2 3 1) A=(2 1 0 0)
Current allocation matrix Request matrix
cC 010 2 0 0 1
cC=|12 0 0 1 R=(1 0 1 0
1 2 0 21 00

An example for the deadlock detection algorithm

30 W5 UNSW

Detection Algorithm

1. Look for an unmarked process Pi, for which the i-th row
of R is less than or equal to A

2. If found, add the i-th row of Cto A, and mark Pi. Go to
step 1

3. If no such process exists, terminate.
Remaining processes are deadlocked

31 [UNSW

Example Deadlock Detection

E=4 2 3 1) A=2 1 0 0
0 0 1 0) (2 0 0 1)
C=|2 0 0 1 R={1 01 0
01 2 0, 2 1 0 0,

Example Deadlock Detection

E=4 2 3 1) A=2 1 0 0
0 0 1 0) 2 0 0 1)
C=|2 0 0 1 R=[1 01 0

0 1 2 o) - 2 1 0 0,

33 W5 UNSW

Example Deadlock Detection

E=4 2 3 1) A=2 2 2 0
0 0 1 0) (2 0 0 1)
C=|2 0 0 1 R={1 01 0
=) (0 1 2 0, 2 1 0 0,

34 55 UNSW

Example Deadlock Detection

E=@4 2 3 1 A=2 2 2 0)
(0 0 1 0) 20 0 1)
C=|2 0 0 1 1 0 1 O

35 5 UNSW

Example Deadlock Detection

E=4 2 3 1) A=@4 2 2 1)

0 0 1 0) 20 0 1
==C=(2 0 0 1| HEmmp 1 0 1 0
=) (0 1 2 0, 2 1 0 0,

36 5 UNSW

Example Deadlock Detection

E=4 2 3 1) A=4 2 2 1

(0 0 1 0) (2 0 0 1)
=¢=|2 0 0 1 R={1 01 0
=) (0 1 2 0 2 1 0 0,

Example Deadlock Detection

E=(4 2 3 1) A=(4 2 2 1)

0 0 1 0) mmmmEp(2 0 0 1)
==C=2 0 0 1 R=[1 01 0
=) (0 1 2 0 2 1 0 0

38 W5 UNSW

Example Deadlock Detection

E=(4 2 31 A=A 2 3 1)
=> (0 0 1 0) 2 0 0 1)
=<C=(2 0 0 1 R=l1 01 0
=) (0 1 2 0 2 1 0 0,

Example Deadlock Detection

* Algorithm terminates with no unmarked processes
* We have no dead lock

40 S5 UNSW

Example 2: Deadlock Detection

* Suppose, P3 needs a CD-ROM as well as 2 Tapes and a
Plotter

E=4 2 3 1) A=2 1 0 0
0 0 1 0) (2 0 0 1)
C=|2 0 0 1 R={1 01 0
01 2 0, 2 1 0 1,

41 UNSW

Recovery from Deadlock

* Recovery through preemption
* take a resource from some other process
» depends on nature of the resource

* Recovery through rollback
* checkpoint a process periodically
* use this saved state

* restart the process if it is found deadlocked
* No guarantee is won’t deadlock again

Recovery from Deadlock

* Recovery through killing processes
 crudest but simplest way to break a deadlock
* kill one of the processes in the deadlock cycle
* the other processes get its resources
* choose process that can be rerun from the beginning

Approach 4
Deadlock Avoidance

* Instead of detecting deadlock, can we simply avoid it?

* YES, but only if enough information is available in advance.
* Maximum number of each resource required

44 UNSW

Deadlock Avoidance
Resource Trajectories

B ® u (Both processes
inter / , finished)
Jm— \
Plotter s ; k\\\\

Two process resource trajectories

45 [UNSW

Deadlock Avoidance
Resource Trajectories

B] ;1 ('B}?ttlj ;orocesses
Printer s | |
17 %% N\
| ;§$w\r A
Plotter Tr' e é TU nsafe State
i)
;- T -c: |4 P |3 |4 *
Printer —e e
- > Plotter

Two process resource trajectories

a6 [# UNSW

Safe and Unsafe States

* A state is safe if
* The system is not deadlocked

* There exists a scheduling order that results in every process running
to completion, even if they all request their maximum resources
immediately

Safe and Unsafe States

Note: We have 10 units of the

resource
Has Max Has Max Has Max Has Max Has Max
3 9 3 9 3 9 3 9 3 9
B 2 4 B 4 4 B 0 - B 0 - B 0 -
2 £ 2 7 2 7 7 7 0 -
Free: 3 Free: 1 Free:5 Free: 0 Free: 7
(a) (b) (c) (d) (e)

Demonstration that the state in (a) is safe

Safe and Unsafe States

A requests one extra unit resulting in (b)

Has Max Has Max Has Max Has Max

3 9 4 9 4 9 4 9

B | 2 4 B 2 4 B 4 4 B| —| —

2 7 2 7 2 7 2 7
Free: 3 Free: 2 Free: 0 Free: 4
(a) (b) (c) (d)

Demonstration that the state in b is not safe

29 [# UNSW

Safe and Unsafe State

* Unsafe states are not necessarily deadlocked
* With a lucky sequence, all processes may complete

* However, we cannot guarantee that they will complete
(not deadlock)

 Safe states guarantee we will eventually complete
all processes

* Deadlock avoidance algorithm
* Only grant requests that result in safe states

50 5 UNSW

Bankers Algorithm

e Modelled on a Banker with Customers

* The banker has a limited amount of money to loan customers
* Limited number of resources

* Each customer can borrow money up to the customer’s credit limit
* Maximum number of resources required

e Basic Idea

* Keep the bank in a safe state

* So all customers are happy even if they all request to borrow up to their
credit limit at the same time.
e Customers wishing to borrow such that the bank would enter an unsafe
state must wait until somebody else repays their loan such that the the
transaction becomes safe.

51 s UNSW

YYYYYY

The Banker's Algorithm for a Single Resource

Has Max Has Max Has Max
A 0 6 A 1 6 A 1 6
B 0 5 B 1 5 B 2 5
C 0 4 C 2 4 C 2 4
D 0 7 D 4 "] D 4 7
Free: 10 Free: 2 Free: 1
(a) (b) (c)
* Three resource allocation states - R
e safe
e safe B requests one
. ¢ more, should we
unsate grant it?
N J

Banker's Algorithm for Multiple Resources

&S L e Qgé\ & &L e <29®
FE&EFF FELF &
Q‘K &fb‘ Q\ %0 O Q'K &Qy Q\ ®0 O
Al3|]0]|1]1 Aj1|1]0|oO0 E = (6342)
Blo|1]|ofo Blo|1[1]2 ifé?ggg;
cp1|11]11]0 Cj|3|1]|]0]|O
D110 1 DJofjO0|1]0
EJO|O]O0]O El12|1]1]0
Resources assigned Resources still needed

* Example of banker's algorithm with multiple resources
* Problem is structured similar to deadlock detection with multiple resources.
* Example in tutorial

Bankers Algorithm is not commonly used in
practice

* It is difficult (sometimes impossible) to know in advance
* the resources a process will require
* the number of processes in a dynamic system

54 [UNSW

Starvation

* A process never receives the resource it is waiting for, despite the
resource (repeatedly) becoming free, the resource is always
allocated to another waiting process.

* Example: An algorithm to allocate a resource may be to give the resource to
the shortest job first

* Works great for multiple short jobs in a system
* May cause a long job to wait indefinitely, even though not blocked.

* One solution:
* First-come, first-serve policy

