Multiprocessor Systems

Chapter 8, 8.1

ssss

Learning Outcomes

* An understanding of the structure and limits of
multiprocessor hardware.

* An appreciation of approaches to operating system
support for multiprocessor machines.

* An understanding of issues surrounding and
approaches to construction of multiprocessor
synchronisation primitives.

ssss

CPU clock-rate increase slowing

10,000.00

1,000.00

100.00

10.00

1.00 — o o

0.10

1960 1970 1980 1990 2000 2010 2020

———
Year E . B unsw

vvvvvv

Multiprocessor System

* We will look at shared-memory multiprocessors
* More than one processor sharing the same memory

* A single CPU can only go so fast
* Use more than one CPU to improve performance

* Assumes
* Workload can be parallelised
* Workload is not I/O-bound or memory-bound

* Disks and other hardware can be expensive
e Can share hardware between CPUs

L3
.
2
5520

UNSW

ssss

Amdahl’s law

* Given a proportion P of a program that can
be made parallel, and the remaining serial
portion (1-P), speedup by using 1V process

e

1 Processor 2 Pro essors

~————
Sefial ‘.'

RN

Serial Parallel

“hew

Amdahl’s law

* Given a proportion P of a program that can
be made parallel, and the remaining serial
portion (1-P), speedup by using N processors

1 Processor

Parallel
50

Ime

Speedup =1/(0.5 + 0) :@/‘\

r_\ i

ssssss

Types of Multiprocessors (MPs)

* UMA MP

* Uniform Memory Access
* Access to all memory occurs at the same speed for all processors.

~
* NUMA MP

* Non-uniform memory access

* Access to some parts of memory is faster for some processors than other parts of
memory

 We will focus on UMA

~

Bus Based UMA

Simplest MP is more than one processor on a single bus connect to

memory

* Bus bandwidth becomes a bottleneck with more than just a few CPUs

Shared memory

\

CPU

J

M

vvvvvv

Bus Based UMA

* Each processor has a cache to reduce its need for access to memory
* Hope is most accesses are to the local cache
* Bus bandwidth still becomes a bottleneck with many CPUs

)
)
\

vvvvvv

Cache Consistency

* What happens if one CPU writes to addres
in its cache) and another CPU reads from t
what is in its cache)?

: (and it is stored
e same address (and gets

CPU CPU M
b

Cache J_

vvvvvv

Cache Consistency

e Cache consistency is usually handled by the hardware.

* Writes to one cache propagate to, or invalidate appropriate entries on other
caches

e Cache transactions also consume bus bandwidth

vvvvvv

Multi-core Processor

CPU Core

CPU Core

Bus Interface

and
L2 Caches

Bus

vvvvvv

Bus Based UMA

* With only a single shared bus, scalability can be limited by the bus
bandwidth of the single bus
e Caching only helps so much

e Alternative bus architectures do exist.
* They improve bandwidth available
* Don’t eliminate constraint that bandwidth is limited

ssss

Summary

* Multiprocessors can

* Increase computation power beyond that available from a
single CPU

* Share resources such as disk and memory

* However
* Assumes parallelizable workload to be effective
e Assumes not I/O bound

* Shared buses (bus bandwidth) limits scalability
e Can be reduced via hardware design

* Can be reduced by carefully crafted software behaviour
* Good cache locality together with limited data sharing where possible

ssss

Question

* How do we construct an OS for a multiprocessor?
* What are some of the issues?

Each CPU has its own OS?

* Statically allocate physical memory to each CPU

* Each CPU runs its own independent OS

* Share peripherals
* Each CPU (0S) handles its processes system calls

CPU 1

Has
private
OS

CPU 2

Has
private
OS

CPU 3

Has
private
oS

CPU 4

Has
private
OS

Memory

1 2

 Data | Data

/O

3 4
Data | Data

OS code

Each CPU has its own OS

* Used in early multiprocessor systems to ‘get them going’
e Simpler to implement
* Avoids CPU-based concurrency issues by not sharing
* Scales — no shared serial sections
* Modern analogy, virtualisation in the cloud.

/O

CPU 1 CPU 2 CPU 3 CPU 4 Memory
1
Has Has Has Has Data Dita
private private private private 3 | 4
OS OS oS OS Data | Data
QS code

Issues

* Each processor has its own scheduling queue
* We can have one processor overloaded, and the rest idle

* Each processor has its own memory partition

* We can a one processor thrashing, and the others with free
memory
* No way to move free memory from one OS to another

CPU 1 CPU 2 CPU 3 CPU 4 Memory l/O
1
Has Has Has Has Data Dita
private private private private 3 | 4
OS OS oS OS Data | Data
QS code

Symmetric Multiprocessors (SMP)

* OS kernel run on all processors

* Load and resource are balance between all processors
* Including kernel execution

* [ssue: Real concurrency in the kernel
* Need carefully applied synchronisation primitives to avoid disaster

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and

shared OS shared OS shared OS shared OS 0S O

Locks

Symmetric Multiprocessors (SMP)

* One alternative: A single mutex that make the entire kernel a
large critical section

* Only one CPU can be in the kernel at a time

* The “big lock” becomes a bottleneck when in-kernel processing exceeds
what can be done on a single CPU

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs

users and users and users and users and

shared OS| [shared OS| [shared OS| |shared OS oS O

\

Locks

Symmetric Multiprocessors (SMP)

 Better alternative: identify largely independent parts of the
kernel and make each of them their own critical section
* Allows more parallelism in the kernel

* Issue: Difficult task
* Code is mostly similar to uniprocessor code

* Hard part is identifying independent parts that don’t interfere with each
other

* Remember all the inter-dependencies between OS subsystems.

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and

shared OS shared OS shared OS shared OS oS O

\ -

Symmetric Multiprocessors (SMP)

* Example:
* Associate a mutex with independent parts of the kernel

* Some kernel activities require more than one part of the kernel
* Need to acquire more than one mutex
* Great opportunity to deadlock!!!!
* Results in potentially complex lock ordering schemes that must be

adhered to
CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and

shared OS shared OS shared OS shared OS oS O

N —

Symmetric Multiprocessors (SMP)

* Example:
* Given a “big lock” kernel, we divide the kernel into two independent
parts with a lock each
* Good chance that one of those locks will become the next bottleneck

* Leads to more subdivision, more locks, more complex lock acquisition rules
» Subdivision in practice is (in reality) making more code multithreaded (parallelised)

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and

shared OS shared OS shared OS shared OS 0S o

N -

Real life Scalability Example

 Early 1990’s, CSE wanted to run 80 X-Terminals off one or
more server machines

* Winning tender was a 4-CPU bar-fridge-sized machine with

_256MofRAM__ Q
e Eventual confin 512M of R
* Machine ran finein all pre-sessi g

__-\

Real life Scalability Example

 Students + assignment deadline = machine unusable

ssss

Real life Scalability Example

* To fix the problem, the tenderer supplied more CPUs to
improve performance (number increased t0 8) ——=—
* No change????

 Eventuall chine was replaced with
. Threizza— ox-sized machines, each with 256M RAM

e Cheaper overall

e Why? {

vvvvvv

26l UNSW

Real life Scalability Example

* Paper: /

* Ramesh Balan and Kurt Gollhardt, “A Scalable Implementation of
Virtual Memory HAT Layer for Shared Memory Multiprocessor
Machines”, Proc. 1992 Summer USENIX conference

* Adding more CPUs simply added them to the wait queue for the VM
locks, and made others wait longer

* The 2 CPU machines did not generate that much lock (

contention and performed proportionally better.

Lesson Learned

* Building scalable multiprocessor kernels is hard
* Lock contention can limit overall system performance

ssss

SMP Linux similar evolution

m Single kernel big lock (1996) /%

* Linux 2.2 Big lock with interrupthandling locks
* Linux 2.4 Big lock plus some subsystem locks (
é- Linux 2.6 most code nowutside the big lock, datal\/

based locking, lots of s€alability tuning, etc, etc..

* Big lock removed @n kernel version 2.6.39

2o [UNSW

vvvvvv

Multiprocessor Synchronisation

* Given we need synchronisation, how can we achieve it on a
multiprocessor machine?
* Unlike a uniprocessor, disabling interrupts does not work.
* It does not prevent other CPUs from running in parallel
* Need special hardware support

ssss

Recall Mutual Exclusion
with Test-and-Set —

2. o

enter_region:

TSL REGISTER,LOCK =— | copy lock to register and set lock to 1
CMP REGISTER,#0 € — | was lock zero?
L JNE enter_region | if it was non zero, lock was set, so loop

& RET | return to caller; critical region entered

leave region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the
TSL instruction

Test-and-Set

* Hardware guarantees that the instruction executes atomically on a
CPU.
* Atomically: As an indivisible unit.
* The instruction can not stop half way through

Test-and-Set on SMP

* It does not work without some extra hardware support

Word
1000 is

CPU 1 Memory CPU 2

initially O

| i

Puzs‘@—a’f/J

4. CPU 2 writes a 1 \

vvvvvv

Test-and-Set on SMP

e A solution:

* Hardware blocks all other CPUs from accessing the bus
during the TSL instruction to prevent memory accesses by
any other CPU.

* TSL has mutually exclusive access to memory for duration of
instruction.

Word
CPU 1 1000 is Memory CPU 2
initially O

0 Y (f
/ | \ 1l /
\‘\\ 1 CPll]reads a0)‘ U 2 read

R ——

3.CPU 1 writes a 1 4. CPU 2 writes a 1 \

Bus

vvvvvv

20 i UNSW

Test-and-Set on SMP

» Test-and Set is a busy-wait synchronisation primitive
* Called a spinlock

* |ssue: ;)
* Lock contentier! leads to spinning on the lock

* Spinning on a lock requires blocking the bus which slows all other CPUs down
other CPUs need a lock or not

* Independen OfW e

e Causes bus contention

vvvvvv

Test-and-Set on SMP

* Caching does not help reduce bus contention

e Either TSL still blocks the bus<&

* Or TSL requires exclusive access to an entry in the local

cache

* Requires invalidation of same entry in other caches, and loading

entry into local cache

* Many CPUs performing TSL simply bounce a single exclusive entry

between all caches using the bus

CPU CPU| | CPU
1 I | || |
/l"
aclhe ache
cace | lach

CPU

Reducing Bus Contention

* Read before TSL
* Spin reading the lock variable waiting start:

for it to change _
« When it does, use TSL to acquire the while (lock == 1); %

lock (-,r = TSL(l@R’Y (N

* Allows lock to be shared read-only in if (r ==
all caches until its released

* no bus traffic until actual release

goto start;

* No race conditions, as acquisition i

UL

CPU ul [cpul [crul [m_

‘ Cache Cache ‘

Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, Vol 1, No. 1, 1990

ssss

Compares Simple Spinlocks

* Test and Set

void lock (volatile lock t *1) {
while (test and set(l)) ; /

}

 Read before Test and Set

void lock (volatile lock t *1) {
while (*1 == BUSY || test and set(l))

}

Benchmark

for 1 = .. 1,000,000 {

[lock (1) 0‘

crit section() ?\
unlock () A

compute () g____,
}

* Compute chosen from uniform random distribution
of mean 5 times critical section

* Measure elapsed time on Sequent Symmetry (20
CPU 30386, coherent write-back invalidate caches)

ssss

Elapsed time (sec.)

10 4

T i T -
9 13 17
number of processors

— ideal
= =nin tosikeol
= snin on read

41

UNSW

SYDNEY

Results

 Test and set performs poorly once there is enough CPUs to
cause contention for lock
* Expected

* Read before Test and Set performs better
* Performance less than expected
* Still significant contention on lock when CPUs notice release and all
attempt acquisition
* Critical section performance degenerates
* Critical section requires bus traffic to modify shared structure

* Lock holder competes with CPU that’s waiting as they test and set,
so the lock holder is slower

* Slower lock holder results in more contention

Spinning Locks versus Blocking Locks

[spinlock_acquire spinlock_release J
Spinlock

——I:——«:———

Time

lock_acquire
Blocking Lock ’ ’

=) — - — —\em@—— -

Time

lock_release J

vvvvvv

Uniprocessor: Spinning versus Blocking

e ___gia_q.f _________

Thread A

Thread A
Time saved by
. not spinning
Blocking Locl) = ”

vvvvvv

Spinning versus Blocking and Switching

* Spinning (busy-waiting) on a lock makes no sense
ond uniprocessor
* The was no other running process to release the lock

* Blocking and (eventually) switching to the lock holder is
the only sensible option.

* On SMP systems, the decision to spin or block is not
as clear.

* The lock is held by another running CPU and will be freed
without necessarily switching away from the requestor

ssss

Multiprocessor: Spinning versus Blocking

cPU1 — T T T T/
[N
Spinlock
-\/‘ [-
Uy @ —————— -|:)q»ﬁ: —————————
—
Time ey | Time saved by

spinning

cPUL T ———— —a)mm@ 1 ———————-—

Blocking Lock

CPU 2
Thread A

CPU 2
Thread B

ssssss

CPU1

CPU 2

cbulr T T T T T T

Blocklng Lock Time saved by

not spinning

CPU 2
Thread A

CPU 2
Thread B

vvvvvv

Spinning versus Switching

* Blocking and switching

* to another process takes time
 Save context and restore another
 Cache contains current process not new process
* Adjusting the cache working set also takes time
e TLB is similar to cache

* Switching back when the lock is free encounters the same again
* Spinning wastes CPU time directly

e Trade off

* If lock is held for less time than the overhead of switching to and
back

=>It’s more efficient to spin

—=>Spinlocks expect critical sections to be short
—>No waiting for I/O within a spinlock
—>No nesting locks within a spinlock

Preemption and Spinlocks

* Critical sections synchronised via spinlocks are expected to
be short
* Avoid other CPUs wasting cycles spinning

* What happens if the spinlock holder is preempted at end of
holder’s timeslice
* Mutual exclusion is still guaranteed

= Spinlock implementations disable interrupts in addition to
acquiring locks to avoid lock-holder preemption

