Processes and Threads

Learning Outcomes

* An understanding of fundamental concepts of

processes and threads

Figure 3.1 Snapshot of Example Execution (Figure

at Instruction Cycle 13

Figure 3.2 Traces of Processes of Figure 3.1

1 B unsw 2 Busw
Major Requirements of an Processes and Threads
Operating System
« Interleave the execution of several processes to maximize * Processes:
processor utilization while providing reasonable response « Also called a task or job
time « Execution of an individual program
« Allocate resources to processes * “Owner” of resources allocated for program execution
. L . * Encompasses one or more threads
* Support interprocess communication and user creation of hread
o .
processes Threads:
* Unit of execution
* Can be traced
« list the sequence of instructions that execute
* Belongs to a process
* Executes within it.
3 Eunsw 4 Eusw
Address Main Memory Program Coun
o E Logical Execution Trace
100
Dispatcher
5000 8000 12000
X 5000 5001 8001 12001
Execution snapshot of Process A 5002 8002 12002
three single-threaded 5003 8003 12003
- 5004 12004
processes (No Virtual 5000 5003 12005
Memory) 5006 12006
5007 12007
Process B 5008 12008
5009 12000
12000 5010 12010
5011 12011
Process C
(a) Trace of Process A (b) Trace of Process B (c) Trace of Process ('
5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Time out

Combined Traces
,,,,,,,,,,,,,,,,,,,,, Time out

(Actual CPU Instructions) ; 13?
9 2
w10z
1104
105
13 5000

What are the shaded e e—

sections? 16 3003 A 100
rrrrrrrrrrrrrrrrrr 1O request £ 101
710 B 02
10l M 103
10z 45 104
o 103 %6 105
i 104 4 12006
2 105 8 12007
12000 9 12008
24 12001 50 12009
312002 S 12010
% 12003 5212011

100 = Starting address of dispateher program

shaded areas indicate execution of dispatcher pocess;
First and thizd eobumns count instruction cycles;
sacond and fousth cobuns show address of instructionbeing executed

Summary: The Process Model

One program counter

Four program counters

Process

A
L switch wD — —
B 3
fol — =
&
c Bl — -
L Al — —
L Time —
(a) (b) ()

* Multiprogramming of four programs

* Conceptual model of 4 independent, sequential processes
(with a single thread each)

*Only one program active at any instant

8 UNSW
Figure 33 Combined Trace of Processes of Figure 3.1 S
7 8
j
1
i Process and thread models of selected OSes
1
1
1
s e ! o i *Single process, single thread
one thread 1 multiple threads . MSDOS
e
! *Single process, multiple threads
: * 0S/161 as distributed
: * Multiple processes, single thread
. « Traditional UNIX
: *Multiple processes, multiple threads
1
e i e oroe ' ol foeast e pocess » Modern Unix (Linux, Solaris), Windows
Note: Literature (incl. Textbooks) often do not cleanly
5 distinguish between processes and threads (for
= Instruction trace . .
historical reasons)
Figure 4.1 Threads and Processes [ANDE97]
10 B unsw
9 10
Process Creation Process Termination
Principal events that cause process creation Conditions which terminate processes
1. System initialization 1. Normal exit (voluntary)
* Foreground processes (interactive programs) 2 Error exit (voluntary)
« Background processes .
« Email server, web server, print server, etc. 3. Fatal error (involuntary)
* Called a daemon (unix) or service (Windows) 4 Killed by another process (involuntary)
2. Execution of a process creation system call by a running
process
* New login shell for an incoming ssh connection
3. Userrequest to create a new process
4. Initiation of a batch job
Note: Technically, all these cases use the same system
mechanism to create new processes.
" UNSW 12 UNSW
11 12

Implementation of Processes

« A processes’ information is stored in a
process control block (PCB)

* The PCBs form a process table p7

* Reality can be more complex (hashing, 6
chaining, allocation bitmaps,...)

P5
P4
P3
P2
P1
PO

Implementation of Processes

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Process management Memory File

Registers Pointer to text segment Root directory
Program counter Pointer to data segment Working directory
Program status word Pointer to stack segment | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Example fields of a process table entry

13 B unsw 14 B unsw
13 14
Process/Thread States Some Transition Causing Events
Running - Ready
* Voluntary Yield ()
1. Process blocks for input * End of timeslice
2. Scheduler picks another process Running - Blocked
3. Scheduler picks this process e .
i * Waiting for input
4. Input becomes available)
* File, network,
* Waiting for a timer (alarm signal)
* Waiting for a resource to become available
* Possible process/thread states
* running
* blocked
* ready
« Transitions between states shown
15 UNSW 16 UNSW
15 16
Scheduler The Ready Queue
* Sometimes also called the dispatcher
* The literature is also a little inconsistent on with terminology. Queus
: Enter Dispatch Exit
* Has to choose a Ready process to run y =m—b Processor -
* How?
« Itis inefficient to search through all processes
Pause
(b) Queulng diagram
17 UNSW 18 UNSW

17

18

What about blocked processes?

* When an unblocking event occurs, we also wish to avoid
scanning all processes to select one to make Ready

Using Two Queues

Ready Queue Release
Admit Dispatch
LI e
Timeout
Blocked Queue
Event Event Wait
Occurs
(a) Single blocked queue
19 [UNSW 20 i UNSW
19 20
Ready Queue Release
D h
Anmit. P =N Threads
[The Thread Model
Timeout Process 1 Proce‘ss 1 ProoTss1 Process
-t \ |
Event 1 Queue \ 1
Event 1 Event 1 Walt User
Ocecurs w0 space
Event 2 Queue Thread Thread
Event 2 Event 2 Walt
Oceurs Ko { Kermel Kernel
= (9)
¥ @ (0)
¥
Event n Queue (a) Three processes each with one thread
Eventn - Brenn Al (b) One process with three threads
Occurs
(b) Multiple blocked queues 22 @ UNsW
21 22
The Thread Model — Separating execution from Threads Analogy
the environment.
Per process items Per thread items
Address space Program counter
Global variables Registers
Open files Stack
Child processes State
Pending alarms
Signals and signal handlers
Accounting information
PrcTess
* Items shared by all threads in a process l
* Items private to each thread @
Thread
Kernel 24 L)"Nwéw
23 24

Single-Threaded Restaurant

e Take Order
Arrives

Blocking
Wait for operations delay
Customer .

all activities

Multithreaded Restaurant

Wat for
Customer
Fries Finish

Assemble
Order

Note: Ignoring synchronisation issues for now

Burger Cook

25 S UNSwW 26 uNsw
25 26
Multithreaded Restaurant Finite-State Machine Model
with more worker threads (Event-based model)
Input
Events Non-Blocking
actions
=
waitfor External
Burger Cook cutomer | activities
28 i UNSW
27 28
Observation: Computation State The Thread Model
Thread 2
Thread Model Finite State (Event) Model Thread 1 Thread 3
A\ /
E t; ; ; / [—~Process
5 @ 5 a { $
&M ﬁ‘w Thread 1's — E E B — Thread 3's stack
= & = ek
« State implicitly stored on the e« State explicitly managed by Kernel
stack. program
Each thread has its own stack
29 B unsw 30 Funsw
29 30

Thread Model

¢ Local variables are per thread
« Allocated on the stack
*Global variables are shared between all threads
* Allocated in data section
« Concurrency control is an issue
* Dynamically allocated memory (malloc) can be
global or local
« Program defined (the pointer can be global or local)

Thread Usage

=
Kernel

Keyboard Disk

A word processor with three threads

31 B unsw 32 Bunsw
31 32
Thread Usage Thread Usage
Web server process
while (TRUE) { while (TRUE) {
i get_next_request(&buf); wait_for_work(&buf)
Dispateher thread handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)
Worker thread User read_page_from_disk(&buf, &page);
space return_page(&page);
Web page cache (a) (b)
* Rough outline of code for previous slide
Kernel (a) Dispatcher thread
Kernel space " . "
(b) Worker thread — can overlap disk I/O with execution of other threads
Network
connection
A multithreaded Web server
33 G unsw 34 unsw
33

34

Thread Usage

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

Summarising “Why Threads?”

* Simpler to program than a state machine
* Less resources are associated with them than a complete
process
* Cheaper to create and destroy
* Shares resources (especially memory) between them
« Performance: Threads waiting for /O can be overlapped
with computing threads
* Note if all threads are compute bound, then there is no performance
improvement (on a uniprocessor)
* Threads can take advantage of the parallelism available on
machines with more than one CPU (multiprocessor)

35

36

