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Threads are the vehicle for concurrency in many approaches to parallel programming. Threads
can be supported either by the operating system kernel or by user-level library code in the
application address space, but neither approach has been fully satisfactory.

This paper addresses this dilemma. First, we argue that the performance of kernel threads is

inherently worse than that of user-level threads, rather than this being an artifact of existing
implementations; managing parallelism at the user level is essential to high-performance

parallel computing. Next, we argue that the problems encountered in integrating user-level
threads with other system services is a consequence of the lack of kernel support for user-level

threads provided by contemporary multiprocessor operating systems; kernel threads are the
wrong abstraction on which to support user-level management of parallelism. Finally, we
describe the design, implementation, and performance of a new kernel interface and user-level

thread package that together provide the same functionality as kernel threads without compro-

mising the performance and flexibility advantages of user-level management of parallelism.
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1. INTRODUCTION

The effectiveness of parallel computing depends to a great extent on the

performance of the primitives that are used to express and control the

lparallelism within programs. Even a coarse-grained parallel program can
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exhibit poor performance if the cost of creating and managing parallelism is

high. Even a fine-grained program can achieve good performance if the cost

of creating and managing parallelism is low.

One way to construct a parallel program is to share memory between a

collection of traditional UNIX-like processes, each consisting of a single

address space and a single sequential execution stream within that address

space. Unfortunately, because such processes were designed for multipro-

gramming in a uniprocessor environment, they are simply too inefficient

for general-purpose parallel programming; they handle only coarse-grained

parallelism well.

The shortcomings of traditional processes for general-purpose parallel pro-

gramming have led to the use of threads. Threads separate the notion of a

sequential execution stream from the other aspects of traditional processes

such as address spaces and 1/0 descriptors. This separation of concerns yields

a significant performance advantage relative to traditional processes.

1.1 The Problem

Threads can be supported either at user level or in the kernel. Neither

approach has been fully satisfactory.

User-level threads are managed by runtime library routines linked into

each application so that thread management operations require no kernel

intervention. The result can be excellent performance: in systems such as

PCR [25] and FastThreads [2], the cost of user-level thread operations is

within an order of magnitude of the cost of a procedure call. User-level

threads are also flexible; they can be customized to the needs of the language

or user without kernel modification.
User-level threads execute within the context of traditional processes;

indeed, user-level thread systems are typically built without any modifica-

tions to the underlying operating system kernel. The thread package views

each process as a “virtual processor,” and treats it as a physical processor

executing under its control; each virtual processor runs user-level code that

pulls threads off the ready list and runs them. In reality, though, these
virtual processors are being multiplexed across real, physical processors by

the underlying kernel. “Real world” operating system activity, such as

multiprogramming, 1/0, and page faults, distorts the equivalence between

virtual and physical processors; in the presence of these factors, user-level

threads built on top of traditional processes can exhibit poor performance or

even incorrect behavior.
Multiprocessor operating systems such as Mach [21], Topaz [22], and V

[71 provide direct kernel support for multiple threads per address space.
Programming with kernel threads avoids the system integration problems

exhibited by user-level threads, because the kernel directly schedules each

application’s threads onto physical processors. Unfortunately, kernel threads,

just like traditional UNIX processes, are too heavyweight for use in many

parallel programs. The performance of kernel threads, although typically an

order of magnitude better than that of traditional processes, has been typi-

cally an order of magnitude worse than the best-case performance of user-level

ACM TransactIons on Computer Systems, Vol. 10, No 1, February 1992.



Scheduler Activations: Effective Kernel Support . 55

threads (e.g., in the absence of multiprogramming and 1/0). As a result,

user-level threads have ultimately been implemented on top of the kernel

threads of both Mach (CThreads [8]) and Topaz (WorkCrews [241). User-1evel

threads are built on top of kernel threads exactly as they are built on top of

traditional processes; they have exactly the same performance, and they

suffer exactly the same problems.

The parallel programmer, then, has been faced with a difficult dilemma:

employ user-level threads, which have good performance and correct behavior

provided the application is uniprogrammed and does no 1/0, or employ

kernel threads, which have worse performance but are not as restricted.

1.2 The Goals of this Work

In this paper we address this dilemma. We describe a kernel interface and

a user-level thread package that together combine the functionality of

kernel threads with the performance and flexibility of user-level threads.

Specifically,

—In the common case when thread operations do not need kernel interven-

tion, our performance is essentially the same as that achieved by the best

existing user-level thread management systems (which suffer from poor

system integration).

—In the infrequent case when the kernel must be involved, such as on

processor reallocation or 1/0, our system can mimic the behavior of a

kernel thread management system:

—No processor idles in the presence of ready threads.

—No high-priority thread waits for a processor while a low-priority thread

runs.

– When a thread traps to the kernel to block (for example, because of a

page fault), the processor on which the thread was running can be used

to run another thread from the same or from a different address space.

—The user-level part of our system is structured to simplify application-

specific customization. It is easy to change the policy for scheduling an

application’s threads, or even to provide a different concurrency model such

as workers [16], Actors [1], or Futures [10].

The difficulty in achieving these goals in a multiprogrammed multiproces-

sor is that the necessary control and scheduling information is distributed

between the kernel and each application’s address space. To be able to

allocate processors among applications, the kernel needs access to user-level

scheduling information (e. g., how much parallelism there is in each address

space). To be able to manage the application’s parallelism, the user-level

support software needs to be aware of kernel events (e. g., processor reallo-

cations and 1/0 request /completions) that are normally hidden from the

application.

1.3 The Approach

Our approach provides each application with a virtual multiprocessor, an

abstraction of a dedicated physical machine. Each application knows exactly
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how many (and which) processors have been allocated to it and has complete

control over which of its threads are running on those processors. The

operating system kernel has complete control over the allocation of proces-

sors among address spaces including the ability to change the number of

processors assigned to an application during its execution.

To achieve this, the kernel notifies the address space thread scheduler of

every kernel event affecting the address space, allowing the application to

have complete knowledge of its scheduling state. The thread system in each

address space notifies the kernel of the subset of user-level thread operations

that can affect processor allocation decisions, preserving good performance

for the majority of operations that do not need to be reflected to the kernel.

The kernel mechanism that we use to realize these ideas is called sched-

uler activations. A scheduler activation vectors control from the kernel to the

address space thread scheduler on a kernel event; the thread scheduler can

use the activation to modify user-level thread data structures, to execute

user-level threads, and to make requests of the kernel.

We have implemented a prototype of our design on the DEC SRC Firefly

multiprocessor workstation [22]. While the differences between scheduler

activations and kernel threads are crucial, the similarities are great enough

that the kernel portion of our implementation required only relatively

straightforward modifications to the kernel threads of Topaz, the native

operating system on the Firefly. Similarly, the user-level portion of our

implementation involved relatively straightforward modifications to Fast-

Threads, a user-level thread system originally designed to run on top of

Topaz kernel threads.

Since our goal is to demonstrate that the exact functionality of kernel

threads can be provided at the user level, the presentation in this paper

assumes that user-level threads are the concurrency model used by the

programmer or compiler. We emphasize, however, that other concurrency

models, when implemented at user level on top of kernel threads or processes,

suffer from the same problems as user-level threads—problems that are

solved by implementing them on top of scheduler activations.

2. USER-LEVEL THREADS: PERFORMANCE ADVANTAGES AND

FUNCTIONALITY LIMITATIONS

In this section we motivate our work by describing the advantages that

user-level threads offer relative to kernel threads, and the difficulties that

arise when user-level threads are built on top of the interface provided by
kernel threads or processes. We argue that the performance of user-level

threads is inherently better than that of kernel threads, rather than this

being an artifact of existing implementations. User-level threads have an

additional advantage of flexibility with respect to programming models and

environments. Further, we argue that the lack of system integration exhib-

ited by user-level threads is not inherent in user-level threads themselves,

but is a consequence of inadequate kernel support.
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2.1 The Case for User-Level Thread Management

It is natural to believe that the performance optimizations found in user-level

thread systems could be applied within the kernel, yielding kernel threads

that are as efficient as user-level threads without the compromises in func-

tionality. Unfortunately, there are significant inherent costs to managing

threads in the kernel:

— The cost of accessing thread management operations: With kernel threads,

the program must cross an extra protection boundary on every thread

operation, even when the processor is being switched between threads in

the same address space. This involves not only an extra kernel trap, but

the kernel must also copy and check parameters in order to protect itself

against buggy or malicious programs. By contrast, invoking user-level

thread operations can be quite inexpensive, particularly when compiler

techniques are used to expand code inline and perform sophisticated regis-

ter allocation. Further, safety is not compromised: address space bound-

aries isolate misuse of a user-level thread system to the program in which

it occurs.

– The cost of generality: With kernel thread management, a single underly-

ing implementation is used by all applications. To be general-purpose, a

kernel thread system must provide any feature needed by any reasonable

application; this imposes overhead on those applications that do not use a

particular feature. In contrast, the facilities provided by a user-level thread

system can be closely matched to the specific needs of the applications that

use it, since different applications can be linked with different user-level

thread libraries. As an example, most kernel thread systems implement

preemptive priority scheduling, even though many parallel applications

can use a simpler policy such as first-in-first-out [241.

These factors would not be important if thread management operations

were inherently expensive. Kernel trap overhead and priority scheduling, for

instance, are not major contributors to the high cost of UNIX-like processes.

However, the cost of thread operations can be within an order of magnitude

of a procedure call. This implies that any overhead added by a kernel

implementation, however small, will be significant, and a well-written user-

level thread system will have significantly better performance than a

well-written kernel-level thread system.

To illustrate this quantitatively, Table I shows the performance of example

implementations of user-level threads, kernel threads, and UNIX-like pro-

cesses, all running on similar hardware, a CVAX processor. FastThreads and

Topaz kernel threads were measured on a CVAX Firefly; Ultrix (DEC’S

derivative of UNIX) was measured on a CVAX uniprocessor workstation.

(Each of these implementations, while good, is not “optimal.” Thus, our

measurements are illustrative and not definitive).

The two benchmarks are Null Fork, the time to create, schedule, execute

and complete a process/thread that invokes the null procedure (in other
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Table 1, Thread Operation Latencies (ysec )

Topaz Ultrix

Operation FastThreads threads processes

Null Fork 34 948 11300
Signal-Wait 37 441 1840

words, the overhead of forking a thread), and Signal-Wait, the time for a

processlthread to signal a waiting process/thread, and then wait on a condi-

tion (the overhead of synchronizing two threads together). Each benchmark

was executed on a single processor, and the results were averaged across

multiple repetitions. For comparison, a procedure call takes about 7 ,usec. on

the Firefly, while a kernel trap takes about 19 psec.

Table I shows that while there is an order of magnitude difference in cost

between Ultrix process management and Topaz kernel thread management,

there is yet another order of magnitude difference between Topaz threads and

FastThreads. This is despite the fact that the Topaz thread code is highly

tuned with much of the critical path written in assembler.

Commonly, a tradeoff arises between performance and flexibility in choos-

ing where to implement system services [26]. User-level threads, however,

avoid this tradeoffi they simultaneously improve both performance and

flexibility. Flexibility is particularly important in thread systems since there

are many parallel programming models, each of which may require special-

ized support within the thread system. With kernel threads, supporting

multiple parallel programming models may require modifying the kernel,

which increases complexity, overhead, and the likelihood of errors in the

kernel.

2.2 Sources of Poor Integration in User-Level Threads Built on the Traditional

Kernel Interface

Unfortunately, it has proven difficult to implement user-level threads that

have the same level of integration with system services as is available with

kernel threads. This is not inherent in managing parallelism at the user

level, but rather is a consequence of the lack of kernel support in existing

systems. Kernel threads are the wrong abstraction for supporting user-level

thread management. There are two related characteristics of kernel threads

that cause difficulty:

—Kernel threads block, resume, and are preempted without notification to

the user level.

—Kernel threads are scheduled obliviously with respect to the user-level

thread state.

These can cause problems even on a uniprogrammed system. A user-level

thread system will often create as many kernel threads to serve as “virtual

processors” as there are physical processors in the system; each will be used

to run user-level threads. When a user-level thread makes a blocking 1/0

ACM TransactIons on Computer Systems, Vol. 10, No. 1, February 1992



Scheduler Activations: Effective Kernel Support . 59

request or takes a page fault, though, the kernel thread serving as its virtual

processor also blocks. As a result, the physical processor is lost to the address

space while the 1/0 is pending, because there is no kernel thread to run other

user-level threads on the just-idled processor.

A plausible solution to this might be to create more kernel threads than

physical processors; when one kernel thread blocks because its user-level

thread blocks in the kernel, another kernel thread is available to run

user-level threads on that processor. However, a difficulty occurs when the

1/0 completes or the page fault returns: there will be more runnable kernel

threads than processors, each kernel thread in the middle of running a

user-level thread. In deciding which kernel threads are to be assigned

processors, the operating system will implicitly choose which user-level

threads are assigned processors.

In a traditional system, when there are more runnable threads than

processors, the operating system could employ some kind of time-slicing to

ensure each thread makes progress. When user-level threads are running on

top of kernel threads, however, time-slicing can lead to problems. For exam-

ple, a kernel thread could be preempted while its user-level thread is holding

a spin-lock; any user-level threads accessing the lock will then spin-wait until

the lock holder is rescheduled. Zahorjan et al. [281 have shown that time-slic-

ing in the presence of spin-locks can result in poor performance. As another

example, a kernel thread running a user-level thread could be preempted to

allow another kernel thread to run that happens to be idling in its user-level

scheduler. Or a kernel thread running a high-priority user-level thread could

be rescheduled in favor of a kernel thread that happens to be running a

low-priority user-level thread.

Exactly the same problems occur with multiprogramming as with 1/0 and

page faults. If there is only one job in the system, it can receive all of the
machine’s processors; if another job enters the system, the operating system

should preempt some of the first job’s processors to give to the new job [231.

The kernel then is forced to choose which of the first job’s kernel threads, and

thus implicitly which user-level threads, to run on the remaining processors.

The need to preempt processors from an address space also occurs due to

variations in parallelism within jobs; Zahorjan and McCann [271 show that

the dynamic reallocation of processors among address spaces in response to

variations in parallelism is important to achieving high performance.

While a kernel interface can be designed to allow the user level to

influence which kernel threads are scheduled when the kernel has a choice

[5], this choice is intimately tied to the user-level thread state; the communi-

cation of this information between the kernel and the user-level negates

many of the performance and flexibility advantages of using user-level

threads in the first place.

Finally, ensuring the logical correctness of a user-level thread system built

on kernel threads can be difficult, Many applications, particularly those that

require coordination among multiple address spaces, are free from deadlock

based on the assumption that all runnable threads eventually receive proces-

sor time. When kernel threads are used directly by applications, the kernel
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satisfies this assumption by time-slicing the processors among all of the

runnable threads, But when user-level threads are multiplexed across a fixed

number of kernel threads, the assumption may no longer hold: because a

kernel thread blocks when its user-level thread blocks, an application can

run out of kernel threads to serve as execution contexts, even when there are

runnable user-level threads and available processors.

3. EFFECTIVE KERNEL SUPPORT FOR THE USER-LEVEL MANAGEMENT

OF PARALLELISM

Section 2 described the problems that arise when kernel threads are used by

the programmer to express parallelism (poor performance and poor flexibil-

ity) and when user-level threads are built on top of kernel threads (poor

behavior in the presence of multiprogramming and 1/0). To address these

problems, we have designed a new kernel interface and user-level thread

system that together combine the functionality of kernel threads with the

performance and flexibility of user-level threads.

The operating system kernel provides each user-level thread system with

its own virtual multiprocessor, the abstraction of a dedicated physical ma-

chine except that the kernel may change the number of processors in that

machine during the execution of the program. There are several aspects to

this abstraction:

–The kernel allocates processors to address spaces; the kernel has complete

control over how many processors to give each address space’s virtual

multiprocessor.

—Each address space’s user-level thread system has complete control over

which threads to run on its allocated processors, as it would if the applica-

tion were running on the bare physical machine.

–The kernel notifies the user-level thread system whenever the kernel

changes the number of processors assigned to it; the kernel also notifies the

thread system whenever a user-level thread blocks or wakes up in the

kernel (e.g., on 1/0 or on a page fault). The kernel’s role is to vector events

to the appropriate thread scheduler, rather than to interpret these events

on its own.

—The user-level thread system notifies the kernel when the application

needs more or fewer processors. The kernel uses this information to allo-

cate processors among address spaces. However, the user level notifies the

kernel only on those subset of user-level thread operations that might

affect processor allocation decisions. As a result, performance is not com-
promised; the majority of thread operations do not suffer the overhead of

communication with the kernel.

— The application programmer sees no difference, except for performance,

from programming directly with kernel threads. Our user-level thread

system manages its virtual multiprocessor transparently to the program-
mer, providing programmers a normal Topaz thread interface [41. (The

user-level runtime system could easily be adapted, though, to provide a

different parallel programming model).

ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992



Scheduler Activations: Effective Kernel Support . 61

In the remainder of this section we describe how kernel events are vectored

to the user-level thread system, what information is provided by the applica-

tion to allow the kernel to allocate processors among jobs, and how we handle

user-level spin-locks.

3.1 Explicit Vectoring of Kernel Events to the User-Level Thread Scheduler

The communication between the kernel processor allocator and the user-level

thread system is structured in terms of scheduler activations. The term

“scheduler activation” was selected because each vectored event causes the

user-level thread system to reconsider its scheduling decision of which threads

to run on which processors.

A scheduler activation serves three roles:

—It serves as a vessel, or execution context, for running user-level threads, in

exactly the same way that a kernel thread does.

—It notifies the user-level thread system of a kernel event.

–It provides space in the kernel for saving the processor context of the

activation’s current user-level thread, when the thread is stopped by the

kernel (e.g., because the thread blocks in the kernel on 1/0 or the kernel

preempts its processor).

A scheduler activation’s data structures are quite similar to those of a

traditional kernel thread. Each scheduler activation has two execution stacks

— one mapped into the kernel and one mapped into the application address

space. Each user-level thread is allocated its own user-level stack when it

starts running [2]; when a user-level thread calls into the kernel, it uses its

activation’s kernel stack. The user-level thread scheduler runs on the activa-

tion’s user-level stack. In addition, the kernel maintains an activation con-

trol block (akin to a thread control block) to record the state of the scheduler

activation’s thread when it blocks in the kernel or is preempted; the user-level

thread scheduler maintains a record of which user-level thread is running in

each scheduler activation.

When a program is started, the kernel creates a scheduler activation,

assigns it to a processor, and upcalls into the application address space at a

fixed entry point. The user-level thread management system receives the

upcall and uses that activation as the context in which to initialize itself and

run the main application thread. As the first thread executes, it may create

more user threads and request additional processors. In this case, the kernel

will create an additional scheduler activation for each processor and use it to

upcall into the user level to tell it that the new processor is available. The

user level then selects and executes a thread in the context of that activation.

Similarly, when the kernel needs to notify the user level of an event, the

kernel creates a scheduler activation, assigns it to a processor, and upcalls

into the application address space. Once the upcall is started, the activation

is similar to a traditional kernel thread— it can be used to process the event,

run user-level threads, and trap into and block within the kernel.
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Table II. Scheduler Activation Upcall Points

Add this processor (processor #)

Execute a mnnab!e user-level thread

Processor has been preempted (preempted activation # and its machine state)

Return to the ready list the user-ievei thread that was executing zn the

context of the preempted scheduler activation.

Scheduler activation has blocked (blocked activation #)

The blocked scheduler activation as no longer using itsprocessor.

Scheduler activation has unblocked (unblocked activation # and its machine state)

Return to the ready l~st the wet--level thread that was executing in the

context of the blocked scheduler act~uatton.

The crucial distinction between scheduler activations and kernel threads is

that once an activation’s user-level thread is stopped by the kernel, the

thread is never directly resumed by the kernel. Instead, a new scheduler

activation is created to notify the user-level thread system that the thread

has been stopped. The user-level thread system then removes the state of the

thread from the old activation, tells the kernel that the old activation can be

reused, and finally decides which thread to run on the processor. By contrast,

in a traditional system, when the kernel stops a kernel thread, even one

running a user-level thread in its context, the kernel never notifies the user

level of the event. Later, the kernel directly resumes the kernel thread (and

by implication, its user-level thread), again without notification. By using

scheduler activations, the kernel is able to maintain the invariant that there

are always exactly as many running scheduler activations (vessels for run-

ning user-level threads) as there are processors assigned to the address space.

Table II lists the events that the kernel vectors to the user level using

scheduler activations; the parameters to each upcall are in parentheses, and

the action taken by the user-level thread system is italicized. Note that

events are vectored at exactly the points where the kernel would otherwise

be forced to make a scheduling decision. In practice, these events occur in

combinations; when this occurs, a single upcall is made that passes all of the

events that need to be handled.

As one example of the use of scheduler activations, Figure 1 illustrates

what happens on an 1/0 request/completion. Note that this is the uncommon

case; in normal operation, threads can be created, run, and completed, all

without kernel intervention. Each pane in Figure 1 reflects a different time

step. Straight arrows represent scheduler activations, s-shaped arrows repre-

sent user-level threads, and the cluster of user-level threads to the right of

each pane represents the ready list.

At time Tl, the kernel allocates the application two processors. On each
processor, the kernel upcalls to user-level code that removes a thread from

the ready list and starts running it. At time T2, one of the user-level threads

(thread 1) blocks in the kernel. To notify the user level of this event, the
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Fig. 1. Example: 1/0 request/completion.

kernel takes the processor that had been running thread 1 and performs an

upcall in the context of a fresh scheduler activation. The user-level thread

scheduler can then use the processor to take another thread off the ready list

and start running it.

At time T3, the 1/0 completes. Again, the kernel must notify the user-level

thread system of the event, but this notification requires a processor. The

kernel preempts one of the processors running in the address space and uses

it to do the upcall. (If there are no processors assigned to the address space

when the 1/0 completes, the upcall must wait until the kernel allocates one).

This upcall notifies the user level of two things: the 1/0 completion and the

preemption. The upcall invokes code in the user-level thread system that (1)

puts the thread that had been blocked on the ready list and (2) puts the

thread that was preempted on the ready list. At this point, scheduler activa-

tions A and B can be discarded. Finally, at time T4, the upcall takes a thread

off the ready list and starts running it.

When a user level thread blocks in the kernel or is preempted, most of the

state needed to resume it is already at the user level —namely, the thread’s

stack and control block. The thread’s register state, however, is saved by

low-level kernel routines, such as the interrupt and page fault handlers; the

kernel passes this state to the user level as part of the upcall notifying the

address space of the preemption and/or 1/0 completion.

We use exactly the same mechanism to reallocate a processor from one
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address space to another due to multiprogramming. For example, suppose the

kernel decides to take a processor away from one address space and give it to

another. The kernel does this by sending the processor an interrupt, stopping

the old activation, and then using the processor to do an upcall into the new

address space with a fresh activation. The kernel need not obtain permission

in advance from the old address space to steal its processor; to do so would

violate the semantics of address space priorities (e. g., the new address space

could have higher priority than the old address space). However, the old

address space must still be notified that the preemption occurred. The kernel

does this by doing another preemption on a different processor still running

in the old address space. The second processor is used to make an upcall into

the old address space using a fresh scheduler activation, notifying the ad-

dress space that two user-level threads have been stopped. The user-level

thread scheduler then has full control over which of these threads should be

run on its remaining processors. (When the last processor is preempted from

an address space, we could simply skip notifying the address space of the

preemption, but instead, we delay the notification until the kernel eventually

reallocates it as a processor. Notification allows the user level to know which

processors it has been assigned, in case it is explicitly managing cache

locality).

The above description is over-simplified in several minor respects. First, if

threads have priorities, an additional preemption may have to take place

beyond the ones described above. In the example in Figure 1, suppose thread

3 is lower priority than both threads 1 and 2. In that case, the user-level

thread system can ask the kernel to preempt thread 3’s processor. The kernel

will then use that processor to do an upcall, allowing the user-level thread

system to put thread 3 on the ready list and run thread 2 instead. The user

level can know to ask for the additional preemption because it knows exactly

which thread is running on each of its processors.

Second, while we described the kernel as stopping and saving the context of

user-level threads, the kernel’s interaction with the application is entirely in

terms of scheduler activations. The application is free to build any other

concurrency model on top of scheduler activations; the kernel’s behavior is

exactly the same in every case. In particular, the kernel needs no knowledge

of the data structures used to represent parallelism at the user level.

Third, scheduler activations work properly even when a preemption or a

page fault occurs in the user-level thread manager when no user-level thread

is running. In this case, it is the thread manager whose state is saved by the

kernel. The subsequent upcall, in a new activation with its own stack, allows

the (reentrant) thread manager to recover in one way if a user-level thread is

running, and in a different way if not. For example, if a preempted processor

was in the idle loop, no action is necessary; if it was handling an event during

an upcall, a user-level context switch can be made to continue processing the

event. The only added complication for the kernel is that an upcall to notify

the program of a page fault may in turn page fault on the same location; the

kernel must check for this, and when it occurs, delay the subsequent upcall

until the page fault completes.
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Finally, a user-level thread that has blocked in the kernel may still need tO

execute further in kernel mode when the 1/0 completes. If so, the kernel

resumes the thread temporarily, until it either blocks again or reaches the

point where it would leave the kernel. It is when the latter occurs that the

kernel notifies the user level, passing the user-level thread’s register state as

part of the upcall.

3.2 Notifying the Kernel of User-Level Events Affecting Processor Allocation

The mechanism described in the last subsection is independent of the policy

used by the kernel for allocating processors among address spaces. Reason-

able allocation policies, however, must be based on the available parallelism

in each address space. In this subsection, we show that this information can

be efficiently communicated for policies that both respect priorities and

guarantee that processors do not idle if runnable threads exist. These con-

straints are met by most kernel thread systems; as far as we know, they are

not met by any user-level thread system built on top of kernel threads.

The key observation is that the user level thread system need not tell the

kernel about every thread operation, but only about the small subset that can

affect the kernel’s processor allocation decision. By contrast, when kernel

threads are used directly for parallelism, a processor traps to the kernel even

when the best thread for it to run next — a thread that respects priorities

while minimizing overhead and preserving cache context —is within the same

address space.

In our system, an address space notifies the kernel whenever it makes a

transition to a state where it has more runnable threads than processors, or

more processors than runnable threads. Provided an application has extra

threads to run and the processor allocator has not reassigned it additional

processors, then all processors in the system must be busy. Creating more

parallelism cannot violate the constraints. Similarly, if an application has

notified the kernel that it has idle processors and the kernel has not taken

them away, then there must be no other work in the system. The kernel need

not be notified of additional idle processors. (An extension to this approach

handles the situation where threads, rather than address spaces, have

globally meaningful priorities).

Table III lists the kernel calls made by an address space on these state

transitions. For example, when an address space notifies the kernel that it

needs more processors, the kernel searches for an address space that has

registered that has idle processors. If none are found, nothing happens, but

the address space may eventually get a processor if one becomes idle in the

future. These notifications are only hints: if the kernel gives an address space

a processor that is no longer needed by the time it gets there, the address

space simply returns the processor to the kernel with the updated informa-

tion. Of course, the user-level thread system must serialize its notifications to

the kernel, since ordering matters.

An apparent drawback to this approach is that applications may not be

honest in reporting their parallelism to the operating system. This problem is

not unique to multiprocessors: a dishonest or misbehaving program can
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Table III. Communication from the Address Space to the Kernel

Add more processors (additional # of processors needed)

Aliocate more processors to this address space and start

them running scheduler activattorw.

This processor is idle ()

Preempt thzs processor if another address space needs at.

consume an unfair proportion of resources on a multiprogrammed uniproces-

sor as well. In either kernel-level or user-level thread systems, multi-level

feedback can be used to encourage applications to provide honest information

for processor allocation decisions. The processor allocator can favor address

spaces that use fewer processors and penalize those that use more. This

encourages address spaces to give up processors when they are needed

elsewhere, since the priorities imply that it is likely that the processors will

be returned when they are needed. On the other hand, if overall the system

has fewer threads than processors, the idle processors should be left in the

address spaces most likely to create work in the near future, to avoid the

overhead of processor reallocation when the work is created.

Many production uniprocessor operating systems do something similar.

Average response time, and especially interactive performance, is improved

by favoring jobs with the least remaining service, often approximated by

reducing the priority of jobs as they accumulate service time. We expect a

similar policy to be used in multiprogrammed multiprocessors to achieve the

same goal; this policy could easily be adapted to encourage honest reporting

of idle processors.

3.3 Critical SectIons

One issue we have not yet addressed is that a user-level thread could be

executing in a critical section at the instant when it is blocked or preempted. 1

There are two possible ill effects: poor performance (e.g., because other

threads continue to test an application-level spin-lock held by the pre-empted

thread) [28], and deadlock (e.g., the preempted thread could be holding the

ready list lock; if so, deadlock would occur if the upcall attempted to place the

preempted thread onto the ready list). Problems can occur even when critical

sections are not protected by a lock. For example, FastThreads uses unlocked

per-processor (really, per-activation) free lists of thread control blocks to

improve latency [2]; accesses to these free lists also must be done atomically.

Prevention and recovery are two approaches to dealing with the problem of

inopportune preemption. With prevention, inopportune preemptions are

avoided through the use of a scheduling and locking protocol between the

kernel and the user level. Prevention has a number of serious drawbacks,

1The need for critical sections would be avoided if we were to use wait-free synchronization [11].
Many commercial architectures, however, do not provide the required hardware support (we
assume only an atomic test-and-set instruction); in addition, the overhead of wait-free synchro-
nization can be prohibitive for protecting anything but very small data structures.
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particularly in a multiprogrammed environment. Prevention requires the

kernel to yield control over processor allocation (at least temporarily) to the

user-level, violating the semantics of address space priorities. Prevention

is inconsistent with the efficient implementation of critical sections that we

will describe in Section 4.3. Finally, in the presence of page faults, pre-

vention requires “pinning” to physical memory all virtual pages that

might be touched while in a critical section; identifying these pages can be

cumbersome.

Instead, we adopt a solution based on recovery. When an upcall informs the

user-level thread system that a thread has been preempted or unblocked, the

thread system checks if the thread was executing in a critical section. (Of

course, this check must be made before acquiring any locks). If so, the thread

is continued temporarily via a user-level context switch. When the continued

thread exits the critical section, it relinquishes control back to the original

upcall, again via a user-level context switch. At this point, it is safe to place

the user-level thread back on the ready list. We use the same mechanism to

continue an activation if it was preempted in the middle of processing a

kernel event.

This technique is free from deadlock. By continuing the lock holder, we

ensure that once a lock is acquired, it is always eventually released, even in

the presence of processor preemptions or page faults. Further, this technique

supports arbitrary user-level spin-locks, since the user-level thread system is

always notified when a preemption occurs, allowing it to continue the spin-

lock holder. Although correctness is not affected, processor time may be

wasted spin-waiting when a spin-lock holder takes a page fault; a solution to

this is to relinquish the processor after spinning for a while [4].

4. IMPLEMENTATION

We have implemented the design described in Section 3 by modifying Topaz,

the native operating system for the DEC SRC Firefly multiprocessor worksta-

tion, and FastThreads, a user-level thread package.

We modified the Topaz kernel thread management routines to implement

scheduler activations. Where Topaz formerly blocked, resumed, or preempted

a thread, it now performs upcalls to allow the user level to take these actions

(see Table II). In addition, we modified Topaz to do explicit allocation of

processors to address spaces; formerly, Topaz scheduled threads obliviously to

the address spaces to which they belonged. We also maintained object code

compatibility; existing Topaz (and therefore UNIX) applications still run as

before.

FastThreads was modified to process upcalls, to resume interrupted critical

sections, and to provide Topaz with the information needed for its processor

allocation decisions (see Table III).

In all, we added a few hundred lines of code to FastThreads and about 1200

lines to Topaz. (For comparison, the original Topaz implementation of kernel

threads was over 4000 lines of code). The majority of the new Topaz code was

concerned with implementing the processor allocation policy (discussed

below), and not with scheduler activations per se.
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Our design is “neutral” on the choice of policies for allocating processors to

address spaces and for scheduling threads onto processors. Of course, some

pair of policies had to be selected for our prototype implementation; we

briefly describe these, as well as some performance enhancements and debug-

ging considerations, in the subsections that follow.

4.1 Processor Allocation Policy

The processor allocation policy we chose is similar to the dynamic policy of

Zahorjan and McCann [27]. The policy “space-shares” processors while re-

specting priorities and guaranteeing that no processor idles if there is work

to do. Processors are divided evenly among the highest priority address

spaces; if some address spaces do not need all of the processors in their share,

those processors are divided evenly among the remainder. Space-sharing

reduces the number of processor reallocations; processors are time-sliced only

if the number of available processors is not an integer multiple of the number

of address spaces (at the same priority) that want them.

Our implementation makes it possible for an address space to use kernel

threads, rather than requiring that every address space use scheduler activa-

tions. Continuing to support Topaz kernel threads was necessary to preserve

binary compatibility with existing (possibly sequential) Topaz applications.

In our implementation, address spaces that use kernel threads compete for

processors in the same way as applications that use scheduler activations.

The kernel processor allocator only needs to know whether each address

space could use more processors or has some processors that are idle. (An

application can be in neither state; for instance, if it has asked for a

processor, received it, and has not asked for another processor yet). The

interface described in Section 3.2 provides this information for address spaces

that use scheduler activations; internal kernel data structures provide it for

address spaces that use kernel threads directly. Processors assigned to ad-

dress spaces using scheduler activations are handed to the user-level thread

scheduler via upcalls; processors assigned to address spaces using kernel

threads are handed to the original Topaz thread scheduler. As a result, there

is no need for static partitioning of processors.

4.2 Thread Scheduling Policy

An important aspect of our design is that the kernel has no knowledge of an

application’s concurrency model or scheduling policy, or of the data struc-

tures used to manage parallelism at the user level. Each application is

completely free to choose these as appropriate; they can be tuned to fit the

application’s needs. The default policy in FastThreads uses per-processor

ready lists accessed by each processor in last-in-first-out order to improve

cache locality; a processor scans for work if its own ready list is empty. This

is essentially the policy used by Multilisp [10].

In addition, our implementation includes hysteresis to avoid unnecessary

processor reallocations; an idle processor spins for a short period before

notifying the kernel that it is available for reallocation.
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4.3 Performance Enhancements

While the design as just described is sufficient to provide user-level func-

tionality equivalent to that of kernel threads, there are some additional

considerations that are important for performance.

The most significant of these relates to critical sections, described in

Section 3.3. In order to provide temporary continuation of critical sections

when a user-level thread is preempted (or when it blocks in the kernel and

can be resumed), the user-level thread system must be able to check whether

the thread was holding a lock. One way to do this is for the thread to set a

flag when it enters a critical section, clear the flag when it leaves, and then

check to see if it is being continued. The check is needed so that the thread

being temporarily continued will relinquish the processor to the original

upcall when it reaches a safe place. Unfortunately, this imposes overhead on

lock acquisition and release whether or not a preemption or page fault occurs,

even though these events are infrequent. Latency is particularly important

since we use these continuable critical sections in building our user-level

thread system.

We adopt a different solution that imposes no overhead in the common

case; a related technique was used on a uniprocessor in the Trellis/Owl

garbage collector [17]. We make an exact copy of every low-level critical

section. We do this by delimiting, with special assembler labels, each critical

section in the C source code for the user-level thread package; we then

post-process the compiler-generated assembly code to make the copy. This

would also be straightforward to do given language and compiler support. At

the end of the copy, but not the original version of the critical section, we

place code to yield the processor back to the resumer. Normal execution uses

the original code. When a preemption occurs, the kernel starts a new

scheduler activation to notify the user-level thread system; this activation

checks the preempted thread’s program counter to see if it was in one of these

critical sections, and if so, continues the thread at the corresponding place in

the copy of the critical section. The copy relinquishes control back to the

original upcall at the end of the critical section. Because normal execution

uses the original code, and this code is exactly the same as it would be if we

were not concerned about preemptions, there is no impact on lock latency in

the common case. (In our implementation, occasionally a procedure call must

be made from within a critical section. In this case, we bracket the call, but

not the straight line path, with the setting and clearing of an explicit flag).

A second significant performance enhancement relates to the management

of scheduler activations. Logically, a new scheduler activation is created for

each upcall. Creating a new scheduler activation is not free, however, be-

cause it requires data structures to be allocated and initialized. Instead,

discarded scheduler activations can be cached for eventual reuse. The user-

level thread system can recycle an old scheduler activation by returning it to

the kernel as soon as the user-level thread it had been running is removed

from its context: in the case of preemption, after processing the upcall that

notifies the user level of the preemption; in the case of blocking in the kernel,

after processing the upcall that notifies the user level that resumption is
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possible. A similar optimization is used in many kernel thread implementa-

tions: kernel threads, once created, can be cached when destroyed to speed

future thread creations [131.

Further, discarded scheduler activations can be collected and returned to

the kernel in bulk, instead of being returned one at a time. Ignoring the

occasional bulk deposit of discards, our system makes the same number of

application-kernel boundary crossings on 1/0 or processor preemption as a

traditional kernel thread system. In a kernel thread system, one crossing is

needed to start an 1/0, and another is needed when the 1/0 completes. The

same kernel boundary crossings occur in our system.

4.4 Debugging Considerations

We have integrated scheduler activations with the Firefly Topaz debugger.

There are two separate environments, each with their own needs: debugging

the user-level thread system and debugging application code running on top

of the thread system.

Transparency is crucial to debugging–the debugger should have as little

effect as possible on the sequence of instructions being debugged. The kernel

support we have described informs the user-level thread system of the state of

each of its physical processors, but this is inappropriate when the thread

system itself is being debugged. Instead, the kernel assigns each scheduler

activation being debugged a logical processor; when the debugger stops or

single-steps a scheduler activation, these events do not cause upcalls into the

user-level thread system.

Assuming the user-level thread system is working correctly, the debugger

can use the facilities of the thread system to stop and examine the state of

application code running in the context of a user-level thread [181.

5. PERFORMANCE

The goal of our research is to combine the functionality of kernel threads

with the performance and flexibility advantages of managing parallelism at

the user level within each application address space. The functionality and

flexibility issues have been addressed in previous sections. In terms of

performance, we consider three questions. First, what is the cost of user-level

thread operations (e, g., fork, block and yield) in our system? Second, what

is the cost of communication between the kernel and the user level (speci-

fically, of upcalls)? Third, what is the overall effect on the performance of

applications?

5.1 Thread Performance

The cost of user-level thread operations in our system is essentially the same

as those of the FastThreads package running on the Firefly prior to our work

—that is, running on top of Topaz kernel threads, with the associated poor

system integration. Table IV adds the performance of our system to the data

for original FastThreads, Topaz kernel threads, and Ultrix processes con-

tained in Table I. Our system preserves the order of magnitude advantage
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Table IV. Thread Operation Latencies(Wsec)

FastThreads On FastThreads on
Operation Topaz threack Scheduler Activations ToPaz threads Ultrix processes

Null Fork 34 37 948 11300
Signal- Wait 37 42 441 1840

that user-level threads offer over kernel threads. There is a 3 psec. degrada-

tion in Null Fork relative to original FastThreads, which is due to increment-

ing and decrementing the number of busy threads and determining whether

the kernel must be notified. (This could be eliminated for a program running

on a uniprogrammed machine or running with sufficient parallelism that it

can inform the kernel that it always wants as many processors as are

available). There is a 5 psec. degradation in Signal-Wait, which is due to this

factor plus the cost of checking whether a preempted thread is being resumed

(in which case extra work must be done to restore the condition codes).

Although still an order of magnitude better than kernel threads, our perfor-

mance would be significantly worse without a zero-overhead way of marking

when a lock is held (see Section 4.3). Removing this optimization from

FastThreads yielded a Null Fork time of 49 ,usec. and a Signal-Wait time of

48 psec. (The Null Fork benchmark has more critical sections in its execution

path than does Signal-Wait.)

5.2 Upcall Performance

Thread performance (Section 5.1) characterizes the frequent case when ker-

nel involvement is not necessary. Upcall performance—the infrequent

case—is important, though, for several reasons. First, it helps determine the

“break-even” point, the ratio of thread operations that can be done at user

level to those that require kernel intervention, needed for user-level threads

to begin to outperform kernel threads. If the cost of blocking or preempting a

user-level thread in the kernel using scheduler activations is similar to the

cost of blocking or preempting a kernel thread, then scheduler activations

could be practical even on a uniprocessor. Further, the latency between when

a thread is preempted and when the upcall reschedules it determines how

long other threads running in the application may have to wait for a critical

resource held by the preempted thread.

When we began our implementation, we expected our upcall performance

to be commensurate with the overhead of Topaz kernel thread operations.

Our implementation is considerably slower than that. One measure of upcall

performance is the time for two user-level threads to signal and wait through

the kernel; this is analogous to the Signal-Wait test in Table IV, except that

the synchronization is forced to be in the kernel. This approximates the

overhead added by the scheduler activation machinery of making and com-

pleting an 1/0 request or a page fault. The signal-wait time is 2.4 millisec-

onds, a factor of five worse than Topaz threads.

We see nothing inherent in scheduler activations that is responsible for

this difference, which we attribute to two implementation issues. First,
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because we built scheduler activations as a quick modification to the existing
implementation of the Topaz kernel thread system, we must maintain more

state, and thus have more overhead, than if we had designed that portion of

the kernel from scratch. As importantly, much of the Topaz thread system is

written in carefully tuned assembler; our kernel implementation is entirely

in Modula-2 + . For comparison, Schroeder and Burrows [19] reduced SRC

RPC processing costs by over a factor of four by recoding Modula-2 + in

assembler. Thus, we expect that, if tuned, our upcall performance would be

commensurate with Topaz kernel thread performance. As a result, the ap-

plication performance measurements in the next section are somewhat

worse than what might be achieved in a production scheduler activation

implementation.

5.3 Application Performance

To illustrate the effect of our system on application performance, we mea-

sured the same parallel application using Topaz kernel threads, original

FastThreads built on top of Topaz threads, and modified FastThreads run-

ning on scheduler activations. The application we measured was an O(N log N)

solution to the N-body problem [3]. The algorithm constructs a tree represent-

ing the center of mass of each portion of space and then traverses portions of

the tree to compute the force on each body. The force exerted by a cluster of

distant masses can be approximated by the force that they would exert if they

were all at the center of mass of the cluster.

Depending on the relative ratio of processor speed to available memory,

this application can be either compute or 1/0 bound. We modified the

application to manage a part of its memory explicitly as a buffer cache for the

application’s data. This allowed us to control the amount of memory used by

the application; a small enough problem size was chosen so that the buffer

cache always fit in our Firefly’s physical memory. As a further simplifica-

tion, threads that miss in the cache simply block in the kernel for 50 msec.;

cache misses would normally cause a disk access. (Our measurements were

qualitatively similar when we took contention for the disk into account;

because the Firefly’s floating point performance and physical memory size

are orders of magnitude less than current generation systems, our measure-

ments are intended to be only illustrative. ) All tests were run on a six

processor CVAX Firefly.

First, we demonstrate that when the application makes minimal use of

kernel services, it runs as quickly on our system as on original FastThreads

and much faster than if Topaz threads were used. Figure 2 graphs the

application’s speedup versus the number of processors for each of the three

systems when the system has enough memory so that there is negligible 1/0

and there are no other applications running. (Speedup is relative to a

sequential implementation of the algorithm).

With one processor, all three systems perform worse than the sequential

implementation, because of the added overhead of creating and synchronizing

threads to parallelize the application. This overhead is greater for Topaz

kernel threads than for either user-level thread system.
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Fig.2. Speedup of N-Body application versus number ofprocessors, 100%ofmemory available.

As processors are added, the performance with Topaz kernel threads ini-

tially improves and then flattens out. In Topaz, a thread can acquire and

release an application lock on a critical section without trapping to the

kernel, provided there is no contention for the lock. If a thread tries to

acquire a busy lock, however, the thread will block in the kernel and be

rescheduled only when the lock is released. Thus, Topaz lock overhead is

much greater in the presence of contention. The good speedup attainedby

both user-level thread systems shows that the application has enough paral-

lelism; itisthe overhead ofkernel threads that prevents good performance.

Wemight be able to improve the performance ofthe application when using

kernel threads by restructuring it so that its critical sections are less ofa

bottleneck or perhaps byspinning fora short time atuser level ifthe lock is

busy before trapping to the kernel [121; these optimizations are less crucial if

the application is built with user-level threads.

The performance of original FastThreads and our system diverges slightly

with four or five processors. Even though no other applications were running

during our tests, the Topaz operating system has several daemon threads

which wake up periodically, execute for a short time, and then go back to

sleep. Because our system explicitly allocates processors to address spaces,

these daemon threads cause preemptions only when there are no idle proces-

sors available; this is not true with the native Topaz scheduler, which
controls the kernel threads used as virtual processors by original Fast-

Threads. When the application tries to use all of the processors of the

machine (in this case, six processors), the number of preemptions for both

user-level thread systems is similar. (The preemptions have only a small

impact on the performance of original FastThreads because of their short

duration).

Next, we show that when the application requires kernel involvement

because it does 1/0, our system performs better than either original Fast-
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Fig. 3. Execution time of N-Body application versus amount of available memory, 6

processors,

Threads or Topaz threads. Figure 3 graphs the application’s execution time

on six processors as a function of the amount of available memory.

For all three systems, performance degrades slowly at first, and then more

sharply once the application’s working set does not fit in memory. However,

application performance with original FastThreads degrades more quickly

than with the other two systems. This is because when a user-level thread

blocks in the kernel, the kernel thread serving as its virtual processor also

blocks, and thus the application loses that physical processor for the duration

of the 1/0. The curves for modified FastThreads and for Topaz threads

parallel each other because both systems are able to exploit the parallelism of

the application to overlap some of the 1/0 latency with useful computation.

As in Figure 2, though, application performance is better with modi-

fied FastThreads than with Topaz because most thread operations can be

implemented without kernel involvement.
Finally, while Figure 3 shows the effect on performance of application-

induced kernel events, multiprogramming causes system-induced kernel

events that result in our system having better performance than either

original FastThreads or Topaz threads. To test this, we ran two copies of the

N-body application at the same time on a six processor Firefly and then

averaged their execution times. Table V lists the resulting speedups for each

system; note that a speedup of three would be the maximum possible.

Table V shows that application performance with modified FastThreads is

good even in a multiprogrammed environment; the speedup is within 5% of

that obtained when the application ran uniprogrammed on three processors.

This small degradation is about what we would expect from bus contention

and the need to donate a processor periodically to run a kernel daemon

thread. In contrast, multiprogrammed performance is much worse with

either original FastThreads or Topaz threads, although for different reasons.

When applications using original FastThreads are multiprogrammed, the
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Table V. Speedup of N-Body Application, Multiprogramming Level = 2, 6 Processors,

100% of Memory Available

Topaz Original New
threads FastThreads FastThreads

1.29 1.26 2.4.5

operating system time-slices the kernel threads serving as virtual processors;

this can result in physical processors idling waiting for a lock to be released

while the lock holder is rescheduled. Performance is worse with Topaz

threads than with our system because common thread operations are more

expensive. In addition, because Topaz does not do explicit processor alloca-

tion, it may end up scheduling more kernel threads from one address space

than from the other; Figure 2 shows, however, that performance flattens out

for Topaz threads when more than three processors are assigned to the

application.

While the Firefly is an excellent vehicle for constructing proof-of-concept

prototypes, its limited number of processors makes it less than ideal for

experimenting with significantly parallel applications or with multiple, mul -

tiprogrammed parallel applications. For this reason, we are implementing

scheduler activations in C Threads and Mach; we are also porting Amber [6],

a programming system for a network of multiprocessors, onto our Firefly

implementation.

6. RELATED IDEAS

The two systems with goals most closely related to our own—achieving

properly integrated user-level threads through improved kernel support —are

Psyche [20] and Symunix [9]. Both have support for NUMA multiprocessors

as a primary goal: Symunix in a high-performance parallel UNIX implemen-

tation, and Psyche in the context of a new operating system.

Psyche and Symunix provide “virtual processors” as described in Sections

1 and 2, and augment these virtual processors by defining software inter-

rupts that notify the user level of some kernel events. (Software interrupts

are like upcalls, except that all, interrupts on the same processor use the

same stack and thus are not reentrant). Psyche has also explored the notion

of multimodal parallel programming in which user-defined threads of various
kinds, in different address spaces, can synchronize while sharing code and

data.

While Psyche, Symunix, and our own work share similar goals, the ap-

proaches taken to achieve these goals differ in several important ways.

Unlike our work, neither Psyche nor Symunix provides the exact functional-

ity of kernel threads with respect to 1/0, page faults and multiprogramming;

further, the performance of their user-level thread operations can be compro-

mised, We discussed some of the reasons for this in Section 2: these systems

notify the user level of some but not all of the kernel events that affect the
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address space. For example, neither Psyche nor Symunix notify the user level

when a preempted virtual processor is rescheduled. As a result, the user-level

thread system does not know how many processors it has or what user

threads are running on those processors.

Both Psyche and Symunix provide shared writable memory between the

kernel and each application, but neither system provides an efficient mecha-

nism for the user-level thread system to notify the kernel when its processor

allocation needs to be reconsidered. The number of processors needed by each

application could be written into this shared memory, but that would give no

efficient way for an application that needs more processors to know that some

other application has idle processors.

Applications in both Psyche and Symunix share synchronization state with

the kernel in order to avoid preemption at inopportune moments (e.g., while

spin-locks are being held). In Symunix, the application sets and later clears a

variable shared with the kernel to indicate that it is in a critical section; in

Psyche, the application checks for an imminent preemption before starting a

critical section. The setting, clearing, and checking of these bits adds to lock

latency, which constitutes a large portion of the overhead when doing high-

performance user-level thread management [2]. By contrast, our system has

no effect on lock latency unless a preemption actually occurs. Furthermore,

in these other systems the kernel notifies the application of its intention to

preempt a processor before the preemption actually occurs; based on this

notification, the application can choose to place a thread in a “safe” state and

voluntarily relinquish a processor. This mechanism violates the constraint

that higher priority threads are always run in place of lower priority threads.

Gupta et al. [9a] share our goal of maintaining a one-to-one correspondence

between physical processors and execution contexts for running user-level

threads. When a processor preemption or 1/0 completion results in there

being more contexts than processors, Gupta et al.’s kernel time-slices con-

texts until’ the application reaches a point where it is safe to suspend a

context. Our kernel eliminates the need for time-slicing by notifying the

application thread system of the event while keeping the number of contexts

constant.

Some systems provide asynchronous kernel 1/0 as a mechanism to solve

some of the problems with user-level thread management on multiprocessors

[9, 251. Indeed, our work has the flavor of an asynchronous 1/0 system: when
an 1/0 request is made, the processor is returned to the application, and

later, when the 1/0 completes, the application is notified. There are two

major differences between our work and traditional asynchronous 1/0 sys-

tems, though. First, and most important, scheduler activations provide a

single uniform mechanism to address the problems of processor preemption,

1/0, and page faults. Relative to asynchronous 1/0, our approach derives

conceptual simplicity from the fact that all interaction with the kernel is

synchronous from the perspective of a single scheduler activation. A sched-

uler activation that blocks in the kernel is replaced with a new scheduler

activation when the awaited event occurs. Second, while asynchronous 1/0

schemes may require significant changes to both application and kernel code,
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our scheme leaves the structure of both the user-level thread system and the

kernel largely unchanged.

Finally, parts of our scheme are related in some ways to Hydra [26], one of

the earliest multiprocessor operating systems, in which scheduling policy was

moved out of the kernel. However, in Hydra, this separation came at a

performance cost because policy decisions required communication through

the kernel to a scheduling policy server, and then back to the kernel to

implement a context switch. In our system, an application can set its own

policy for scheduling its threads onto its processors, and can implement this

policy without trapping to the kernel. Longer-term processor allocation deci-

sions in our system are the kernel’s responsibility, although as in Hydra, this

could be delegated to a distinguished application-level server.

7. SUMMARY

Managing parallelism at the user level is essential to high-performance

parallel computing, but kernel threads or processes, as provided in many

operating systems, are a poor abstraction on which to support this. We have

described the design, implementation and performance of a kernel interface

and a user-level thread package that together combine the performance of

user-level threads (in the common case of thread operations that can be

implemented entirely at user level) with the functionality of kernel threads

(correct behavior in the infrequent case when the kernel must be involved).

Our approach is based on providing each application address space with

a virtual multiprocessor in which the application knows exactly how

many processors it has and exactly which of its threads are running on

those processors. Responsibilities are divided between the kernel and each

application address space:

–Processor allocation (the allocation of processors to address spaces) is done

by the kernel.

—Thread scheduling (the assignment of an address space’s threads to its

processors) is done by each address space.

—The kernel notifies the address space thread scheduler of every event

affecting the address space.

–The address space notifies the kernel of the subset of user-level events that

can affect processor allocation decisions.

The kernel mechanism that we use to implement these ideas is called

scheduler activations. A scheduler activation is the execution context for

vectoring control from the kernel to the address space on a kernel event. The

address space thread scheduler uses this context to handle the event, e.g., to

modify user-level thread data structures, to execute user-level threads, and to

make requests of the kernel. While our prototype implements threads as the

concurrency abstraction supported at the user level, scheduler activations are

not linked to any particular model; scheduler activations can support any

user-level concurrency model because the kernel has no knowledge of user-

level data structures.

ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992.



78 . T. E. Anderson et al.

ACKNOWLEDGMENTS

We would like to thank Andrew Black, Mike Burrows, Jan Edler, Mike

Jones, Butler Lampson, Tom LeBlanc, Kai Li, Brian Marsh, Sape Mullender,

Dave Redell, Michael Scott, Garret Swart, and John Zahorjan for their

helpful comments. We would also like to thank the DEC Systems Research

Center for providing us with their Firefly hardware and software.

REFERENCES

1. AGHA, G. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cmabridge, Mass. 1986.

2, ANDERSON, T , LAZOWSKA, E., AND LEVY, H. The performance implications of thread man-
agement alternatives for shared memory multiprocessors. IEEE Trans. Comput. 38, 12 (Dee.

1989), 1631-1644. Also appeared in Proceedings of the 1989 ACM SIGME’Z’RICS and

Performance ’89 Conference on Measurement and Modeling of Computer Systems (Oakland,

Calif., May 1989), pp. 49-60.

3, BARNES, J., AND HUT, P. A hierarchical O(N log N) force-calculation algorithm. Nature 324

(1986), 446-449.

4. BIRRELL, A., GUTTAG, J., HORNING, J., AND LEVIN, R. Synchronization primitives for a

multiprocessor: A formal specification. In Proceedings of the 11th ACM Symposium cm

Operating Systems Principles (Austin, Tex., Nov. 1987), pp. 94-102.

5. BLACK, D. Scheduling support for concurrency and parallelism in the Mach operating

system. IEEE Comput. Msg. 23, 5 (May 1990), 35-43.

6. CHASE, J., AMADOFt, F., LAZOWSIiA, E., LEVY) H., AND LITTLEFIELD, R. The Amber system:

Parallel programming on a network of multiprocessors. In Proceedings of the 12th ACM

Symposwm on Operating Systems Principles (Litchtield Park, Ariz., Dee 1989), pp. 147-158.

7. CHERITON, D. The V distributed system. Commun ACM. 31, 3 (Mar. 1988), 314-333.

8. DRAVES, R., AND COOPER, E. C Threads. Tech. Rep. CMU-CS-88-154, School of Computer

Science, Carnegie Mellon Umv., June 1988.

9. EDLER, J., LIPKIS, J,, AND SCHONBERG, E Process management for highly parallel UNIX

systems. In Proceedings of the USENIX Workshop on UNIX and Supereomputers (Sept.

1988), Pp. 1-17.

9A. GUPTA, A , TUCKER, A., AND STEVENS, L Making effective use of shared-memory multipro-

cessors: The process control approach Tech. Rep. CSL-TR-91-475A, Computer Systems

Laboratory, Stanford Univ., July 1991.

10. HAI,STEAD, R, Multilisp: A language for concurrent symbolic computation. ACM Trans.

Program. Lang. Syst. 7, 4 (Oct. 1985), 501-538.

11. HERLIHY, M. A methodology for implementing highly concurrent data structures. In Pro-

ceedings of the 2nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (Seattle, Wash., Mar 1990), pp. 197-206.

12. KARLIN, A., LI, K., MANASSE, M., AND OWrC~I, S. Empirical studies of competitive spinning

for a shared-memory multiprocessor In Proceedings of the 13th ACM Symposium on

Operating Systems Principles (Pacific Grove, Calif., Oct. 1991), pp. 41-55.

13 LAMPSON, B., AND REDELL, D. Experiences with processes and monitors in Mesa Comm un.

ACM. 23, 2 (Feb. 1980), 104-117.

14. Lo, S.-P., AND GLIGOR, V. A comparative analysis of multiprocessor scheduling algorithms.

In Proceedings of the 7th International Conference on Distributed Computing Systems (Sept.

1987), pp 356-363.

15, MARSH, B., SCOTT, M., LEBLANC, T , AND MAR~ATOS, E. First-class user-level threads. In

Proceedings of the 13th ACM Symposium on Operating Systems Prlnclples (Pacific Grove,

Calif, Oct. 1991), pp.110-121.

16. MOELLER-NIELSEN, P., AND STAUNSTRUP, J. Problem-heap: A paradigm for multiprocessor

algorithms. Parallel Cornput. 4, 1 (Feb. 1987), 63-74.

17. Moss, J., AND KOHLER, W. Concurrency features for the Trellis/Owl language. In Proceed-

ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992



Scheduler Activations: Effective Kernel Support . 79

ings of European Conference on Object-Oriented Programming 1987 (ECOOP 87) (June 1987),
pp. 171-180.

18. REDELL, D. Experience with Topaz teledebugging. In Proceedings of the ACM
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging (Madison, Wise., May

1988), pp. 35-44.
19. SCHROEDER,M., AND BURROWS, M. Performance of Firefly RPC. ACM Trans. Cwnput. SW

8, 1 (Feb. 1990), 1-17.

20. SCOTT, M., LEBLANC, T., AND MARSH, B. Multi-model parallel programming in Psyche. In
Proceedings of the 2nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (Mar. 1990), pp. 70-78.
21. TEVANIAN, A., RASHID, R., GOLUB, D., BLACK, D., COOPER, E., AND YOUNG, M. Mach

Threads and the Unix Kernel: The battle for control. In Proceedings of the 1987 USENIX

Summer Conference (1987), pp. 185-197.

22. THACKER, C., STEWART, L., AND SATTERTHWAITE, JR., E. Firefly: A multiprocessor worksta-
tion. IEEE Trans. Comput. 37, 8 (Aug. 1988), 909-920.

23. TUCKER, A., AND GUPTA, A. Process control and scheduling issues for multiprogrammed
shared memory multiprocessors. In Proceedings of the 12th ACM Sympo.mum on Operating

Systems Principles (Litchfield Park, Ariz., Dec. 1989), pp. 159-166.

24. VANDEVOORDE, M., AND ROBERTS, E. WorkCrews: An abstraction for controlling paral-
lelism. Int. J. Parallel Program. 17, 4 (Aug. 1988), 347-366.

25. WEISER, M., DEMERS, A., AND HAUSER, C. The portable common runtime approach to

interoperability. In Proceedings of the 12th ACM Symposium on Operating Systems Princi-

ples (Litchfield Park, Ariz., Dec. 1989), pp. 114-122.

26. WULF, W., LEVIN, R., AND HARBISON, S. Hydra/ C.mmp: An Experimental Computer Sys-

tem. McGraw-Hillj New York, 1981.

27. ZAHORJAN, J., AND MCCANN, C. Processor scheduling in shared memory multiprocessors. In

Proceedings of the 1990 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (Boulder, Colo., May 1990), pp. 214-225.

28. ZAHORJAN, J., LAZOWSKA, E., AND EAGER, D. The effect of scheduling discipline on spin

overhead in shared memory multiprocessors. IEEE Trans. Parallel Distrib. Syst. 2, 2 (Apr.

1991), 180-198.

Received June 1991; revised August 1991; accepted September 1991

ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992.


