Scheduler Activations
Learning Outcomes

• An understanding of hybrid approaches to thread implementation

• A high-level understanding of scheduler activations, and how they overcome the limitations of user-level and kernel-level threads.
User-level Threads

User Mode

Kernel Mode

Scheduler

Process A

Scheduler

Process B

Scheduler

Process C
User-level Threads

✓ Fast thread management (creation, deletion, switching, synchronisation...)

✗ Blocking blocks all threads in a process
 • Syscalls
 • Page faults

✗ No thread-level parallelism on multiprocessor
Kernel-Level Threads

User Mode

Kernel Mode

Scheduler

Process A

Process B

Process C
Kernel-level Threads

✗ Slow thread management (creation, deletion, switching, synchronisation...)
 • System calls
✓ Blocking blocks only the appropriate thread in a process
✓ Thread-level parallelism on multiprocessor
Performance

<table>
<thead>
<tr>
<th>Operation</th>
<th>FastThreads</th>
<th>Topaz threads</th>
<th>Ultrix processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null Fork</td>
<td>34</td>
<td>948</td>
<td>11300</td>
</tr>
<tr>
<td>Signal-Wait</td>
<td>37</td>
<td>441</td>
<td>1840</td>
</tr>
</tbody>
</table>
Hybrid Multithreading

User Mode

Kernel Mode

Scheduler

Process A

Scheduler

Process B

Scheduler

Process C
Hybrid Multithreading

✓ Can get real thread parallelism on multiprocessor
✗ Blocking still a problem!!!
Scheduler Activations

• First proposed by [Anderson et al. 91]
• Idea: Both schedulers co-operate
 • User scheduler uses system calls
 • Kernel scheduler uses upcalls!

• Two important concepts
 • Upcalls
 • Notify user-level of kernel scheduling events
 • Activations
 • A new structure to support upcalls and execution
 • approximately a kernel thread
 • As many running activations as (allocated) processors
 • Kernel controls activation creation and destruction
Upcalls
Scheduler Activations

• Instead of

User Space

Kernel Space

Hardware

CPU time wasted

syscall

I/O request

interrupt

• …rather use the following scheme:

User Space

Kernel Space

Hardware

CPU used

upcall

upcall
Upcalls to User-level scheduler

• **New** (processor #)
 • Allocated a new virtual CPU
 • Can schedule a user-level thread

• **Preempted** (activation # and its machine state)
 • Deallocated a virtual CPU
 • Can schedule one less thread

• **Blocked** (activation #)
 • Notifies thread has blocked
 • Can schedule another user-level thread

• **Unblocked** (activation # and its machine state)
 • Notifies a thread has become runnable
 • Must decided to continue current or unblocked thread
Working principle

- Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Working principle

- Blocking syscall scenario on 2 processors

![Diagram showing process and preempt scenario]
Working principle

• Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Working principle

• Blocking syscall scenario on 2 processors
Scheduler Activations

• Thread management at user-level
 • Fast
• Real thread parallelism via activations
 • Number of activations (virtual CPUs) can equal CPUs
• Blocking (syscall or page fault) creates new activation
 • User-level scheduler can pick new runnable thread.
• Fewer stacks in kernel
 • Blocked activations + number of virtual CPUs
Performance

Table IV. Thread Operation Latencies (μsec.)

<table>
<thead>
<tr>
<th>Operation</th>
<th>FastThreads on Topaz Threads</th>
<th>FastThreads on Scheduler Activations</th>
<th>Topaz threads</th>
<th>Ultrix processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null Fork</td>
<td>34</td>
<td>37</td>
<td>948</td>
<td>11300</td>
</tr>
<tr>
<td>Signal-Wait</td>
<td>37</td>
<td>42</td>
<td>441</td>
<td>1840</td>
</tr>
</tbody>
</table>
Performance (compute-bound)

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.
Performance
(I/O Bound)

Fig. 3. Execution time of N-Body application versus amount of available memory, 6 processors.
Adoption

• Adopters
 • BSD “Kernel Scheduled Entities”
 • Reverted back to kernel threads
 • Variants in Research OSs: K42, Barreelfish
 • Digital UNIX
 • Solaris
 • Mach
 • Windows 64-bit User Mode Scheduling

• Linux -> kernel threads
Fig. 1. Example: I/O request/completion.