Welcome to OS @ UNSW

COMP3231/9201/3891/9283
(Extended) Operating Systems
Dr. Kevin Elphinstone

System Software Structure

Hardware
Compiled C Code
System Libraries
System Calls
Operating System

Why Learn Operating Systems?

- Understand the whole software stack
- Develop OS code
- Develop concurrent code
- Application performance
 - Understand operating system behaviour and how best to interface with it.
 - Diagnose system performance issues.

Major OS Topics

Processes and Threads
Memory and Virtual Memory Management
Multiprocessors
Scheduling
I/O
File Systems
Concurrency and Deadlock
Operating System

Operating System
Compiled C Code
System Libraries
System Calls
Hardware

Python Code
Compiled C Code
System Libraries
System Calls
Operating System

CSE Careers Fair
Network with a range of future employers, hear from industry guest speakers and attend workshops
From 12pm, Tuesday 23 February
Legion Hall, Scientia
Registration: sci/cse/CareersFair2020
How will we learn about Operating Systems?

Lectures
- Introduce OS theory and case studies

Tutorials
- Re-enforce theory
- Provide guidance on the assignments

Assignments
- Opportunity to write real OS code
 - OS/161 is a simplified UNIX-clone intended for teaching
- Consist of the following
 - Warm-up exercise
 - Concurrency and synchronisation
 - OS Structure involving system calls and file system
 - Memory management

Overview of Course Outline

Pre-requisites
- COMPXXXX Data structures and algorithms
 - Stacks, queues, hash tables, lists, trees, heaps,...
- COMPXXXX Microprocessor and Interfacing or Computer Systems Fundamentals
 - Assembly programming
 - Mapping of high-level procedural language to assembly language
 - Interrupts

Assumed Knowledge
- Computing Theory and Background
 - Basic computer architecture
 - CPUs, memory, buses, registers, machine instructions, interrupts/exceptions.
 - Common OS algorithms and data structures
 - Lists, lists, maps, hashing, tree, sorting, searching...
 - Ability to read assembly language
 - Exposure to programming using low-level systems calls (e.g. reading and writing files)
- Practical computing background
 - Capable UNIX command line users
 - Familiar with the git revision control system
 - Competent C programmers
 - Understand pointers, pointer arithmetic, function pointers, memory allocation (malloc)
 - The dominant language for OS (and embedded systems) implementation.
 - Comfortable navigating around a large-ish existing code base.
 - Able to debug an implementation.

Why does this fail?

```c
void set(int *x)
{
    *x = 1;
}

void thingy()
{
    int x;
    set(&x);
    printf("%d %d\n", *x);
}
```
Why does this fail?

```c
void set(int *x)
{
    *x = 1;
}

void thingy()
{
    int a;
    set(&a);
    printf("%d %d\n",a);
}
```

Lectures

- Common for all courses (3231/3891/9201/9283)
- The lecture notes will be available on the course web site
 - http://www.cse.unsw.edu.au/~cs3231
 - Available prior to lectures, when possible.
 - Slide numbers for note taking, when not.
- The lecture notes and textbook are NOT a substitute for attending lectures.
- Video might be....
- Will attempt to have "video" available, barring technical hitches.
 - Echo360 is a backup

Extended OS Comp3891/9283

- Starts in week 2
- A combination of:
 - Examination of topics in more depth
 - Looking at research in areas (past/present)
 - OS/161 internals in more depth
 - Stuff that used to fit
- Separate Assessment
 - 80%-ish of final exam common with base course
 - 20%-ish targeted to extended students
 - Advanced assignment component part of the assessment
- Assumes the tutorials are not challenging enough
 - Effectively replaces the tutorial with extra interactive lecture.

Tutorials

- Start in week 2
- Attendance is strongly recommended
 - but not marked.
- Tutorial questions cover a broad range of examples
 - Answers available online the week after.
- Use the tutorial to focus where needed
 - Review the questions beforehand
 - We’ll experiment with prioritising with online polls or similar

Assignments

- Assignments form a substantial component of your assessment.
- They are challenging!!!!
 - Because operating systems are challenging
- We will be using OS/161,
 - an educational operating system
 - developed by the Systems Group At Harvard
 - With local changes.
 - It contains roughly 20,000 lines of code and comments
 - Comments are part of the documentation
Assignments
• Don’t underestimate the time needed to do the assignments.
 • 80% is understanding
 • 20% programming
• Avoid
 • 1% understanding
 • 9% programming
• 90% debugging
• If you start a couple days before they are due, you will be late.
• To encourage you to start early,
 • Bonus 2% of awarded mark per day early, capped at 10%
 • See course outline for exact details
 • Read the fine print!!!!

Assignment Submission Times

Historical Assignment Submission Statistics

Assignments
• Late penalty
 • 4% of total assignment value per day
 • Assignment is worth 10%
 • You get 18, and are 2 days late
 • Final mark = 18 – (20% * 0.04 * 2) = 16.4
• Assignments are only accepted up to one week late
 • >5 days = 0
 • Additionally, advanced versions of the assignment 2 & 3
• Warmup assignment (ASST0)
 • Done individually
 • Available NOW!!
• ASST2 and ASST3 are in pairs
 • Info on how to pair up available soon
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0
• Assignments are only accepted up to one week late
 • >5 days = 0

Assignment 0
• Warm-up exercise due in week 4
 • It’s a warm-up to have you familiarize yourself with the environment and easy marks.
 • Practice with git revision control
 • Practice submitting a solution
 • Practice using code browser/editor
 • Do not use it as a gauge for judging the difficulty of the following assignments.

Assignments
Submission test failed. Continue with submission (y/n)? y
• Lazy/careless submitter penalty: 15%
• Submitted the wrong assignment version penalty: 15%
• Assuming we can validly date the intended version
Assignments

• To help you with the assignments
 • We dedicate a tutorial per-assignment to discuss issues related to the assignment
 • Prepare for them!!!!!

Group Work Policy

• Groups of two
 • Group members do not have to be in the same tutorial
 • Group assignments will be marked as a group
 • Including ‘groups’ of one.
 • Group members are expected to contribute equally to each assignment.
 • No “I’ll do the 2nd if you do the 3rd assignment”
 • We accept statements of unequal contributions and do adjust marks of the lesser contributor down.
 • Submissions are required to have significant contributions attributable to individual group members.
 * E.g. verifiable using the git revision control system

Plagiarism

• We take cheating seriously!!!
• We systematically check for plagiarised code
 • Penalties are generally enough to make it difficult to pass
• We can google as easy as you can
 • Some solutions are wrong
 • Some are greater scope than required at UNSW
 • You do more than required
 • Makes your assignment stick out as a potential plagiarism case
 • We do vary UNSW requirements

Exams

• There is NO mid-session
• The final written exam is 2 hours
• Supplementary exam are available according to UNSW & school policy, not as a second chance.
 • Medical or other special consideration only

Assessment*

• Exam Mark Component
 • Max mark of 100
 • Based solely on the final exam
• Class Mark Component
 • Max mark of 100
• 100% Assignments
 * Course outline is authoritative.

The final assessment is a weighted geometric mean of 60% exam (E) and 40% class (C) component.

\[M = e^{\frac{60 \ln E + 40 \ln C}{100}} \]

Additionally, minimum of 40 required in exam (E) and class (C) components to pass.
Assessment

• You need to perform reasonably consistently in both exam and class components.
• Geometric mean only has significant effect with significant variation.
• Reserve the right to moderate marks, and moderate courses individually if required.
 • Warning: We have not moderated marks in the past.

Textbook

References

• A. Silberschatz and P.B. Galvin, Operating System Concepts, 5th, 6th, or 7th edition, Addison Wesley
• A. Tannenbaum, A. Woodhull, Operating Systems: Design and Implementation, 2nd edition Prentice Hall
• John O’Gorman, Operating Systems, MacMillan, 2000
• Uresh Vahalla, UNIX Internals: The New Frontiers, Prentice Hall, 1996
• McKusick et al., The Design and Implementation of the 4.4 BSD Operating System, Addison Wesley, 1996

Piazza Forums

• Forum for Q/A about assignments and course
 • Ask questions there for the benefit of everybody
 • Share your knowledge for the benefit of your peers
 • Look there before asking

 • https://piazza.com/
 • Longer link on class web page
 • You will have received an invite from them to your UNSW email address.
 • z8888888@unsw.edu.au
 • Please join and contribute.
 • You don’t have to join the “Piazza Network”
 • You opt-in or opt-out in Account Settings

You can control volume of Piazza mail

• Select your preferred latency of notification

Piazza Etiquette

• You are probably not the first to experience the problem, so see if the question is answered before asking again.
• Add to an existing post if directly related
• Start a new post for a separate issue
 • Try to have an accurate title
 • Avoid adding an unrelated question to a hot topic because you just happen to be there when you had the thought. It makes it hard to find for others.
 • Avoid bitmaps (screenshots)
 • Bitmaps are not searchable so you limit the chances of fellow students finding your post, and indirectly make us less enthusiastic about providing a detailed answer to your non-searchable post.
• Provide some context
 • Cut-n-paste the error if appropriate, and include the preceding output to provide a chance for others to understand what is going on. Mention the OS/machine/environment you’re using if it’s not clear from the cut-n-paste.
• Mark follow-ups resolved if they are!
 • Don’t leave follow-ups unresolved if you have fixed your issue.
 • Leave follow-ups unresolved if they are!
 • I filter using ‘unresolved’ to find outstanding issues, I won’t find them unless they are marked unresolved.
 • You’re very welcome to post if you know the answer to an issue.
 • The course staff do not have a monopoly on answers, nor do we monitor the forum 24hrs a day. A quick answer can make somebody’s day (or at least avoid wasting it). A responsive forum can be an awesome resource for the entire course.
Enforcing standards

• Don’t be offended if we move your post to the “sin bin”
 • Simply post again following the guide

Consultations/Questions

• Questions should be directed to the forum.
 • Admin and Personal queries can be directed to the class account cs3231@cse.unsw.edu.au
 • Don’t PM me in Piazza
 • We reserve the right to ignore email sent directly to us (including tutors) if it should have been directed to the forum.
 • Consultation Times
 • See course web site.
 • Must email (cs3231@cse) at least an hour in advance and show up on time.
 • If we get at least one email, we’ll run the consult.

What next?

https://wiki.cse.unsw.edu.au/cs3231cgi/Checklist

Startup Checklist

• Watch the online introductory lecture.
• Submit any pre-requisite assignments by the first lecture.
• Join Piazza (you should have received an invite sent to fln@unsw.edu.au)
• Assignments are uploaded to this site. Make sure you download them.
• Make sure theitches are working on the device you plan to use (see Setup Overview)
• Set up your own Setup Overview
• Choose an editor capable of code browsing (see Setup Overview)
• Complete Assignment 1