Virtual Memory

Learning Outcomes
- An understanding of page-based virtual memory in depth.
 - Including the R3000’s support for virtual memory.

Memory Management Unit (or TLB)

Typical Address Space Layout
- Stack region is at top, and can grow down
- Heap has free space to grow up
- Text is typically read-only
- Kernel is in a reserved, protected, shared region
- 0-th page typically not used, why?

Page-based VM
- **Virtual Memory**
 - Divided into equal-sized pages
 - A mapping is a translation between
 - A page and a frame
 - A page and null
 - Mappings defined at runtime
 - They can change
 - Address space can have holes
 - Process does not have to be contiguous in physical memory
- **Physical Memory**
 - Divided into equal-sized frames

Programmer’s perspective: logically present
System’s perspective: Not mapped, data on disk

- A process may be only partially resident
 - Allows OS to store individual pages on disk
 - Saves memory for infrequently used data & code
- What happens if we access non-resident memory?
Page Faults

- Referencing an invalid page triggers a page fault
 - An exception handled by the OS
- Broadly, two standard page fault types
 - Illegal Address (protection error)
 - Signal or kill the process
 - Page not resident
 - Get an empty frame
 - Load page from disk
 - Update page (translation) table (enter frame #, set valid bit, etc.)
 - Restart the faulting instruction

Shared Pages

- Private code and data
 - Each process has own copy of code and data
 - Code and data can appear anywhere in the address space
- Shared code
 - Single copy of code shared between all processes executing it
 - Code must not be self modifying
 - Code must appear at same address in all processes

Page Table Structure

- Page table is (logically) an array of frame numbers
 - Index by page number
- Each page-table entry (PTE) also has other bits
PTE Attributes (bits)
- Present/Absent bit
 - Also called valid bit, it indicates a valid mapping for the page
- Modified bit
 - Also called dirty bit, it indicates the page may have been modified in memory
- Reference bit
 - Indicates the page has been accessed
- Protection bits
 - Read permission, Write permission, Execute permission
 - Or combinations of the above
- Caching bit
 - Use to indicate processor should bypass the cache when accessing memory
 - Example: to access device registers or memory

Address Translation
- Every (virtual) memory address issued by the CPU must be translated to physical memory
 - Every load and every store instruction
 - Every instruction fetch
- Need Translation Hardware
- In paging system, translation involves replace page number with a frame number

Virtual Memory Summary
- programs use virtual addresses
- virtual to physical mapping by MMU
 - first check if page present (present/absent bit)
 - if yes: address in page table form MSBs in physical address
 - if no: bring in the page from disk \(\rightarrow\) page fault

Page Tables
- Assume we have
 - 32-bit virtual address (4 Gbyte address space)
 - 4 KByte page size
 - How many page table entries do we need for one process?
- Problem:
 - Page table is very large
 - Access has to be fast, lookup for every memory reference
 - Where do we store the page table?
 - Registers?
 - Main memory?

Page Tables
- Page tables are implemented as data structures in main memory
- Most processes do not use the full 4GB address space
 - e.g., 0.1 – 1 MB text, 0.1 – 10 MB data, 0.1 MB stack
- We need a compact representation that does not waste space
 - But is still very fast to search
- Three basic schemes
 - Use data structures that adapt to sparsity
 - Use data structures which only represent resident pages
 - Use VM techniques for page tables (details left to extended OS)
Two-level Page Table

• 2nd-level page tables representing unmapped pages are not allocated – Null in the top-level page table

Example Translations

Alternative: Inverted Page Table

Alternative: Inverted Page Table (IPT)

• “Inverted page table” is an array of page numbers sorted (indexed) by frame number (it’s a frame table).

• Algorithm
 – Compute hash of page number
 – Extract index from hash table
 – Use this to index into inverted page table
 – Match the PID and page number in the IPT entry
 – If match, use the index value as frame # for translation
 – If no match, get next candidate IPT entry from chain field
 – If NULL chain entry ⇒ page fault
Properties of IPTs

• IPT grows with size of RAM, NOT virtual address space
• Frame table is needed anyway (for page replacement, more later)
• Need a separate data structure for non-resident pages
• Saves a vast amount of space (especially on 64-bit systems)
• Used in some IBM and HP workstations

Given \(n \) processes

• how many page tables will the system have for
 – ‘normal’ page tables
 – inverted page tables?

Another look at sharing…

Improving the IPT: Hashed Page Table

• Retain fast lookup of IPT
 – A single memory reference in best case
• Retain page table sized based on physical memory size (not virtual)
 – Enable efficient frame sharing
 – Support more than one mapping for same frame

Hashed Page Table

Best-case lookup: one memory reference
Hashed Page Table

<table>
<thead>
<tr>
<th>PID</th>
<th>VPN offset</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x5</td>
<td>0x123</td>
</tr>
</tbody>
</table>

Sharing Example

<table>
<thead>
<tr>
<th>PID</th>
<th>VPN offset</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x5</td>
<td>0x123</td>
</tr>
</tbody>
</table>

Sizing the Hashed Page Table

- HPT sized based on physical memory size
- With sharing
 - Each frame can have more than one PTE
 - More sharing increases number of slots used
 - Increases collision likelihood
- However, we can tune HPT size based on:
 - Physical memory size
 - Expected sharing
 - Hash collision avoidance.
 - HPT a power of 2 multiple of number of physical memory frame

VM Implementation Issue

- Performance?
 - Each virtual memory reference can cause two physical memory accesses
 - One to fetch the page table entry
 - One to fetch/store the data
 - Intolerable performance impact!!
- Solution:
 - High-speed cache for page table entries (PTEs)
 - Called a translation look-aside buffer (TLB)
 - Contains recently used page table entries
 - Associative, high-speed memory, similar to cache memory
 - May be under OS control (unlike memory cache)

Translation Lookaside Buffer

- Given a virtual address, processor examines the TLB
- If matching PTE found (TLB hit), the address is translated
- Otherwise (TLB miss), the page number is used to index the process’s page table
 - If PT contains a valid entry, reload TLB and restart
 - Otherwise, (page fault) check if page is on disk
 - If on disk, swap it in
 - Otherwise, allocate a new page or raise an exception
TLB properties

- Page table is (logically) an array of frame numbers
- TLB holds a (recently used) subset of PT entries
 - Each TLB entry must be identified (tagged) with the page # it translates
 - Access is by associative lookup:
 • All TLB entries’ tags are concurrently compared to the page#
 • TLB is associative (or content-addressable) memory

TLB properties

- TLB may or may not be under direct OS control
 - Hardware-loaded TLB
 • On miss, hardware performs PT lookup and reloads TLB
 • Example: x86, ARM
 - Software-loaded TLB
 • On miss, hardware generates a TLB miss exception, and exception handler reloads TLB
 • Example: MIPS, Itanium (optionally)
- TLB size: typically 64-128 entries
- Can have separate TLBs for instruction fetch and data access
- TLBs can also be used with inverted page tables (and others)

TLB and context switching

- TLB is a shared piece of hardware
- Normal page tables are per-process (address space)
- TLB entries are process-specific
 - On context switch need to flush the TLB (invalidate all entries)
 - or tag entries with address-space ID (ASID)
 • called a tagged TLB
 • used (in some form) on all modern architectures
 • TLB entry: ASID, page #, frame #, valid and write-protect bits

TLB effect

- Without TLB
 - Average number of physical memory references per virtual reference
 \[= 2 \]
- With TLB (assume 99% hit ratio)
 - Average number of physical memory references per virtual reference
 \[= .99 \times 1 + 0.01 \times 2 \]
 \[= 1.01 \]

Recap - Simplified Components of VM System

Virtual Address Spaces
- 3 processes

Page Tables for 3 processes

Inverted Page Table

Physical Memory

CPU

TLB

Frame Pool

Recap - Simplified Components of VM System

Virtual Address Spaces
- 3 processes

Page Tables for 3 processes

Inverted Page Table

Physical Memory

CPU

TLB

Frame Pool
Recap - Simplified Components of VM System

- CPU
- TLB
- Frame Pool
- Physical Memory
- Virtual Address Spaces (3 processes)

MIPS R3000 TLB

- EntryHi Register (TLB key fields)
- EntryLo Register (TLB data fields)

- N = Not cacheable
- D = Dirty = Write protect
- G = Global (ignore ASID in lookup)

- V = valid bit
- 64 TLB entries
- Accessed via software through Cooperator 0 registers

- Accessible via EntryHi and EntryLo

R3000 Address Space Layout

- kseg0:
 - 512 megabytes
 - Fixed translation window to physical memory
 - TLB not used
 - Cacheable
 - Only kernel-mode accessible

- kseg1:
 - 512 megabytes
 - Fixed translation window to physical memory
 - TLB not used
 - Not cacheable
 - Only kernel-mode accessible

- kseg2
- kseg1
- kseg0
- kuseg

R3000 Address Space Layout

- kuseg:
 - 2 gigabytes
 - TLB translated (mapped)
 - Cacheable (depending on 'N' bit)
 - User-mode and kernel mode accessible
 - Page size is 4K

- kseg0
- kseg1
- kseg2
- kuseg