Computer Hardware Review
(Memory Hierarchy)
Chapter 1.4

Learning Outcomes
• Understand the concepts of memory hierarchy and caching, and how they affect performance.

Operating Systems
• Exploit the hardware available
• Provide a set of high-level services that represent or are implemented by the hardware.
• Manages the hardware reliably and efficiently
• Understanding operating systems requires a basic understanding of the underlying hardware

Memory Hierarchy
• Going down the hierarchy
• Decreasing cost per bit
• Increasing capacity
• Increasing access time
• Decreasing frequency of access to the memory by the processor
• Hopefully
• Principle of locality!!!!!!

Caching as a general technique
• Given two-levels of data storage: small and fast, versus large and slow,
• Can speed access to slower storage by using intermediate-speed storage as a cache.

A hardware approach to improving system performance?

CPU Registers
Fast

Cache Memory (SRAM)
Fast

Main Memory (DRAM)
Slow
CPU Cache

- CPU cache is fast memory placed between the CPU and main memory
- 1 to a few cycles access time compared to RAM access time of tens – hundreds of cycles
- Holds recently used data or instructions to save memory accesses.
- Matches slow RAM access time to CPU speed if high hit rate
- Is hardware maintained and (mostly) transparent to software
- Sizes range from few kB to tens of MB.
- Usually a hierarchy of caches (2–5 levels), on- and off-chip.

Performance

- What is the effective access time of memory subsystem?
- Answer: It depends on the hit rate in the first level.

Effective Access Time

\[T_{eff} = H \times T_1 + (1 - H) \times T_2 \]

- \(T_1 \): access time of memory 1
- \(T_2 \): access time of memory 2
- \(H \): hit rate in memory 1
- \(T_{eff} \): effective access time of system

Example

- Cache memory access time 1ns
- Main memory access time 10ns
- Hit rate of 95%

\[T_{eff} = 0.95 \times 10^{-9} + (1 - 0.95) \times (10^{-9} + 10 \times 10^{-9}) = 1.5 \times 10^{-9} \]

Moving-Head Disk Mechanism

- Disk can read/write data relatively fast
 - 15,000 rpm drive - 80 MB/sec
 - 1 KB block is read in 12 microseconds
- Access time dominated by time to locate the head over data
 - Rotational latency
 - Half one rotation is 2 milliseconds
 - Seek time
 - Full inside to outside is 8 milliseconds
 - Track to track 5 milliseconds
 - 2 milliseconds is 164KB in “lost bandwidth”
A OS approach to improving system performance?

CPU Registers
Fast

Main Memory (DRAM)
Fast

Hard disk
Slow…

A Strategy: Avoid Waiting for Disk Access

• Keep a subset of the disk’s data in main memory
⇒ OS uses main memory as a cache of disk contents

Application approach to improving system performance

Web browser
Fast

Hard disk
Fast

Internet
Slow…

A Strategy: Avoid Waiting for Internet Access

• Keep a subset of the Internet’s data on disk
⇒ Application uses disk as a cache of the Internet