
1

COMP3891/9283 Extended 

OS



Variations of Process 

Abstractions
• “Solaris Zones: Operating System Support for 

Consolidating Commercial Workloads”

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Problem

Within many IT organizations, driving up system utilization (and saving 
money in the process) has become a priority. In the lean economic 
times following the post dot-com downturn, many IT managers are

electing to adopt server consolidation as a way of life. They are trying 
to improve on typical data center server utilizations of 15-30%

• Context:
– Hardware supported virtualization was still restricted to specialized servers

• Intel VT-x release 2005

– Software virtualization had significant overheads
• Memory footprint of multiple operating systems

• Lack of sharing

• Performance penalty for emulating I/O



Barriers

• Server-class applications written assuming 
a machine to itself

– Clashing network ports

– Clashing user IDs

– Hard-coded log/config file locations

• One application should not interfere with 
another



Security

• Privilege escalation

– Bug in application can result rest of system 

compromised

• Runs as ‘root’

– How to run two mutually distrusting applications?

• Administration requires root

– What about mutually distrusting administrators?

• Root for one application environment should be 

less than root for the machine



Solaris Zones

• A baked in solution

– Part of the operating system

• “Applications can be run within zones with no 

changes, and with no significant performance 

impact for either the performance of the 

application or the base operating system”

• Virtualises user-kernel boundary (not the 

hardware platform)



Interface Levels



Overview



Design Requirements

• Each zone can provide a rich (and 
different) set of customized services, and 
to the outside world, it appears that 
multiple distinct systems are available. 

• Each zone has a distinct root password 
and its own administrator.

9



Design Requirements

• Basic process isolation is also demonstrated; 

– A process in one non-global zone cannot locate, examine, or 
signal a process in another zone. 

• Each zone is given access to at least one logical network 

interface;

– applications running in distinct zones cannot observe the 
network traffic of the other zones even though their respective 
streams of packets travel through the same physical interface. 

• Finally, each zone is provided a disjoint portion of the file 

system hierarchy, to which it is confined.

10



Design Requirements

• The global zone encloses the three non-global 

zones and has visibility into and control over 

them.

• Practically speaking, the global zone is not 

different from a traditional UNIX system;

– root generally remains omnipotent and omniscient. 

– The global zone always exists, and acts as the 

‘‘default’’ zone in which all processes are run if no 

non-global zones have been setup

11



To address these design principles, we divided the zones architecture into five principal 

components.

• A state model that describes the lifecycle of the zone, and the actions that comprise 

the transitions.

• A configuration engine, used by administrators to describe the future zone to the 

system. This allows the administrator to describe the ‘platform,’’ or those parameters 

of the zone that are controlled by the global administrator, in a persistent fashion.

• Installation support, which allows the files that make up the zone installation to be 

deployed into the zone path. This subsystem also enables patch deployment and 

upgrades from one operating system release to another.

• The application environment, the ‘‘sandbox’’ in which processes run. For example, in 

Figure 3 each zone’s application environment is represented by the large shaded 

box.

• The virtual platform, comprised of the set of platform resources dedicated to the 

zone.

12



Specifics

• Process Model

– Per-zone namespace with no visibility 

between non-global zones

• Accounting

– Legacy accounting formats made it tricky, 

modified accounting to be intra-zone.

• Networking

– Global zone multi-homed server

– Each IP associated with a specific zone
13



Specific

• Filesystem

– Use loopback filesystem to mount part of 

global filesystem namespace

– High degree sharing

• Device

– Generally discouraged

• Device semantics generally unclear 

– Compare /dev/null to /dev/kmem

– /dev/log an exception

14



Resource Management

• CPU

– Global fair scheduler can schedule zones

– Scheduler within a zone can further share

• Memory still to come ☺

15



Performance

• Timesharing workload related to loopback 
file system

16



Drawbridge

• Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, 

Reuben Olinsky, and Galen C. Hunt. 2011. Rethinking 

the library OS from the top down. In Proceedings of the 

sixteenth international conference on Architectural 

support for programming languages and operating 

systems (ASPLOS XVI).

17



Library OS

• OS refactored to run in the 

context of the application

– From the application 

perspective it looks like an OS 

(Windows in this case)

• The underlying OS API is 

smaller

– Easier to get correct

– Easier to make secure

18



Pico process

• An isolated process with 
different system call interface 
to normal processes

– A security monitor in this case

– Could be something else?

19



Windows Subsystem for Linux

20


