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Learning Outcomes

« Appreciate the need for memory management in
operating systems, understand the limits of fixed
memory allocation schemes.

« Understand fragmentation in dynamic memory
allocation, and understand dynamic allocation
approaches.

« Understand how program memory addresses relate to
physical memory addresses, memory management in
base-limit machines, and swapping

« An overview of virtual memory management, including
paging and segmentation.

B
L THE UNIVERSITY OF 2
S NEW SOUTH WALES



Process

« One or more threads of execution

» Resources required for execution

— Memory (RAM)
* Program code (“text”)
 Data (initialised, uninitialised, stack)
 Buffers held in the kernel on behalf of the process
— Others
« CPU time
* Files, disk space, printers, etc.
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OS Memory Management

» Keeps track of what memory is in use and
what memory Is free

 Allocates free memory to process when
needed

— And deallocates it when they don'’t

* Manages the transfer of memory between
RAM and disk.
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Memory Hierarchy

 Ideally, programmers
want memory that is

e g

>

L

— Fast cache
— Large | __ D
— Nonvolatile —
+ Not possible ;
 Memory
management magneﬁcdisk

coordinates how
memory hierarchy is
used.
— Focus usually on
RAM < Disk
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OS Memory Management

» Two broad classes of memory
management systems

— Those that transfer processes to and from
external storage during execution.
« Called swapping or paging
— Those that don't
« Simple

« Might find this scheme in an embedded device,
dumb phone, or smartcard.

? THE UNIVERSITY OF
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Basic Memory Management
Monoprogramming without Swapping or Paging

OxFFF ...

Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0

(a) (b) ()

Three simple ways of organizing memory
=3 - an operating system with one user process
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Monoprogramming

« Okay if
— Only have one thing to do
— Memory available approximately equates to
memory required
» Otherwise,
— Poor CPU uitilisation in the presence of I/O
waiting
— Poor memory utilisation with a varied job mix

==
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* Recall, an OS aims to
— Maximise memory utilisation

— Maximise CPU utilization
* (ignore battery/power-management issues)

« Subdivide memory and run more than one
process at oncel!ll

— Multiprogramming, Multitasking

BL| THE UNIVERSITY OF 2
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Modeling Multiprogramming

20% 1/0O wait
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Degree of multiprogramming

% CPU utilization as a function of number of processes in
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General problem: How to divide
memory between processes?

« Given a workload, how to we
— Keep track of free memory?
— Locate free memory for a new process?

« Overview of evolution of simple memory
management

— Static (fixed partitioning) approaches

« Simple, predicable workloads of early
computing

— Dynamic (partitioning) approaches

» More flexible computing as compute power and
complexity increased.

* Introduce virtual memory
— Segmentation and paging

L] THE UNIVERSITY OF
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Problem: How to divide memor

* One approach
— divide memory into fixed
equal-sized partitions
— Any process <= partition size
can be loaded into any
partition S
— Partitions are free or busy

e
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Simple MM: Fixed, equal-sized
partitions —

* Any unused space in the
partition is wasted
— Called internal fragmentation

 Processes smaller than main
memory, but larger than a
partition cannot run.

-“.- THE UNIVERSITY OF
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Simple MM: Fixed, variable-sized

partitions

« Divide memory at boot time into a
selection of different sized
partitions

— (Can base sizes on expected
workload

« Each partition has queue:

— Place process in queue for smallest
partition that it fits in.

— Processes wait for when assigned
partition is empty to start

Multiple
input queues

[H

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

(@)

800K

700K

400K

200K

100K
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e |[ssue

— Some partitions may
be idle

« Small jobs available,
but only large partition
free

« Workload could be
unpredicatable
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Alternative queue strategy

« Single queue, search
for any jobs that fit

« Small jobs in large Pariifian4
partition if necessary
— Increases internal _ g Partition 3
] nput queue
memory fragmentation

Partition 2

Partition 1

Operating

system

(b)




Fixed Partition Summary

Simple
Easy to implement

Can result in poor memory utilisation
— Due to internal fragmentation

» Used on IBM System 360 operating system
(OS/MFT)

— Announced 6 April, 1964

« Still applicable for simple embedded systems
— Static workload known in advance

==
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Dynamic Partitioning

 Partitions are of variable length

— Allocated on-demand from ranges of free
memory

* Process is allocated exactly what it needs
— Assumes a process knows what it needs

=2
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Dynamic Partitioning

* In previous diagram

— We have 16 meg free in total, but it can't be used to
run any more processes requiring > 6 meg as it is
fragmented

— Called external fragmentation
 We end up with unusable holes

B THE UNIVERSITY OF 21
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Recap: Fragmentation

« External Fragmentation:

— The space wasted external to the allocated memory
regions.

— Memory space exists to satisfy a request, but it is
unusable as it is not contiguous.
* Internal Fragmentation:

— The space wasted internal to the allocated memory
regions.

— allocated memory may be slightly larger than
requested memory; this size difference is wasted
memory internal to a partition.

NEW SOUTH WALES



Dynamic Partition Allocation
Algorithms

» Also applicable to malloc() -like in-application
allocators

« Given a region of memory, basic requirements
are:

— Quickly locate a free partition satisfying the request
* Minimise CPU time search

— Minimise external fragmentation
— Minimise memory overhead of bookkeeping

— Efficiently support merging two adjacent free
partitions into a larger partition

B THE UNIVERSITY OF 23




Classic Approach

» Represent available memory as a linked list of
available “holes”.
— Base, size

— Kept in order of increasing address
« Simplifies merging of adjacent holes into larger holes.

— Can be stored in the “holes” themselves

Address

Size

Address

Link

Size

Address

? THE UNIVERSITY OF
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Link

Size

Link
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Coalescing Free Partitions with Linked

Aﬂm ates

7@ [ A

X

X

2

Four neighbor combinations for the terminating

process X
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Dynamic Partitioning Placement
Algorithm

* First-fit algorithm
— Scan the list for the first entry that fits

- If greater in size, break it into an allocated and free part
* Intent: Minimise amount of searching performed

— Aims to find a match quickly

— Generally can result in smaller holes at the front end
of memory that must be searched over when trying to
find a free block.

— May have lots of unusable holes at the beginning.
« External fragmentation

— Tends topreserve lar
/ Address Address

"| Size / Size
Link Link
==
S| THE UNIVERSITY O

NEW SOUTH WALES

locks at the end of memory
Address Address

Size Size
Link / Link
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Dynamic Partitioning Placement
Algorithm

* Next-fit
— Like first-fit, except it begins its search from the point
in list where the last request succeeded instead of at
the beginning.
« Spread allocation more uniformly over entire memory

— More often allocates a block of memory at the end of memory
where the largest block is found

« The largest block of memory is broken up into smaller blocks
— May not be able to service larger requgst as well as first fit.

Address Address Address Address
> Size / Size Size Size /
Link Link / Link [ ik
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Dynamic Partitioning Placement
Algorithm

+ Best-fit algorithm

— Chooses the block that is closest in size to the
request

— Poor performer
« Has to search complete list
— does more work than first- or next-fit

« Since smallest block is chosen for a process, the smallest
amount of external fragmentation is left

— Create lots of unusable holes

Address Address Address Address

Size Size Size Size
il / il / Bink / Bink

A 4
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Dynamic Partitioning Placement
Algorithm

« Worst-fit algorithm

— Chooses the block that is largest in size (worst-fit)
« (whimsical) idea is to leave a usable fragment left over

— Poor performer
« Has to do more work (like best fit) to search complete list
» Does not result in significantly less fragmentation

Address Address Address Address

Size Size Size Size
il / il / Bink / Bink

FL| THE UNIVERSITY OF 59
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§3M 1 A0

120 First Fit 1211
22M
= Best Fit
Last 1
allocated M Q/
block (14K) _
Lt | Litky |

148 D Free block

Mext Fit

i) Before

Figure 7.5 Example Memory Configuration Before
and After Allocation of 16 Mbyte Block




Dynamic Partition Allocation
Algorithm

e Summary

— First-fit and next-fit are generally better than the others and
easiest to implement

* You should be aware of them

— simple solutions to a still-existing OS or application function —
memory allocation.

* Note: Largely have been superseded by more complex
and specific allocation strategies

— Typical in-kernel allocators used are lazy buddy, and slab
allocators
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Compaction

« We can reduceq—z =

external fragmentatlo&
by compaction

— Shuffle memory contents
to place all free memory
together in one large
block.

— Only if we can relocate

running programs?
e Pointers?

—

— Generally requires
| __hardware support




Some Remaining Issues with Dynamic
Partitioning

* We have ignored —

— Relocation

« How does a process run in
different locations in memory?

— Protection —=

« How do we prevent processes
interfering with each other

—3
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Example Logical Address-Space

Layout

+ Logical
addresses refer
to specific
locations within
the program

« Once running,
these address
must refer to real
physical memory

* When are logical
addresses bound
to physical?

T
SL| THE UNIVERSITY OF
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Process confrol
information

Increasing —
address
values

hlﬁﬂmﬂullnﬂ Blckjy 0%0000 é

Entry point
o program

)]

Belerence
b0 data

Current top
of stack

v

OXFFFF Q*

Figure 7.1 Addressing Requirements for a Process



When are memory
addresses bound?

« Compile/link time

— Compiler/Linker binds the
addresses

— Must know “run” location at
compile time

— Recompile if location changes
« Load time

— Compiler generates relocatable
code

— Loader binds the addresses at
load time

« Run time

— Logical compile-time addresses
translated to physical addresses
by special hardware.

e

other
object
modules

source
program

compiler or
assembler

linkage
editor

load
module

loader

.

. time)
image

in-memo .
binar y execution
y time (run
memory



Hardware Support for Runtime Binding
and Protection

« For process B to run using logical
addresses

— Process B expects to access addresses
from zero to some limit of memory size

limit

B THE UNIVERSITY OF 36




Hardware Support for Runtime Binding
and Protection

» For process B to run using logical
addresses
— Need to add an appropriate offset to its
logical addresses
» Achieve relocation
» Protect memory “lower” than B limit I

— Must limit the maximum logical address B
can generate

* Protect memory “higher” than B

base

- THE UNIVERSITY OF
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Hardware Support for Relocation and
Limit Registers

limit relocation
register register

logical l physical
address address
< > memory

trap; addressing error

L THE UNIVERSITY OF 38




Base and Limit Registers

OXFFFF

. Also called
limit = 0x2000

— Base and bound registers
— Relocation and limit registers
« Base and limit registers
— Restrict and relocate the currently OXgFFFI

. limit
active pProcess 0x8000
— Base and limit registers must be
changed at
« Loadtime
* Relocation (compaction time)
« On a context switch

OXIFFF Process B
0x0000 base

- THE UNIVERSITY OF
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Base and Limit Registers

OXFFFF

* Also called
limit = 0x3000

— Base and bound registers
— Relocation and limit registers

« Base and limit registers

— Restrict and relocate the currently
active process

— Base and limit registers must be
changed at OX6FFFIO><2FFF

Process C

« Load time limit
. . . 0x4000

* Relocation (compaction time)

 On a context switch

0x0000

0x0000




Base and Limit Registers
* Pro
— Supports protected multi-processing (-tasking)

« Cons

— Physical memory allocation must still be
contiguous

— The entire process must be in memory

— Do not support partial sharing of address
spaces

 No shared code, libraries, or data structures
between processes

] THE UNIVERSITY OF 41
NEW SOUTH WALES




Timesharing

OXFFFF

« Thus far, we have a system suitable for
a batch system

— Limited number of dynamically allocated
processes

« Enough to keep CPU utilised
— Relocated at runtime
— Protected from each other

« But what about timesharing?

— We need more than just a small number of
processes running at once

— Need to support a mix of active and inactive
processes, of varying longevity

L] THE UNIVERSITY OF
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Swapping

» A process can be swapped temporarily out of memory to
a backing store, and then brought back into memory for
continued execution.

« Backing store — fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images.

« Can prioritize — lower-priority process is swapped out so
higher-priority process can be loaded and executed.

« Major part of swap time is transfer time; total transfer
time is directly proportional to the amount of memory
swapped.

— slow

B
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s

Schematic View of Swapping

operating
system

user
space

main memory

@ swap out

@ swap in

process

backing store
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So far we have assumed a

process Is smaller than memory

What can we do if a process is larger than
main memory?

7
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Overlays

« Keep in memory only those instructions
and data that are needed at any given
time.

» Implemented by user, no special support
needed from operating system

* Programming design of overlay structure
IS complex

B
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Overlays for a Two-Pass Assembler
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common
routines

overlay
driver
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Virtual Memory

* Developed to address the issues identified with
the simple schemes covered thus far.

 Two classic variants
— Paging
— Segmentation

« Paging is now the dominant one of the two

« Some architectures support hybrids of the two
schemes
— E.g. Intel IA-32 (32-bit x86)

Rl THE UNIVERSITY OF 48
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Virtual Memory - Paging

Partition physical memory into small
equal sized chunks

— Called frames
Divide each process’s virtual (logical)
address space into same size chunks
— Called pages

— Virtual memory addresses consist of a
page number and offset within the page

OS maintains a page table
— contains the frame location for each page

— Used by to translate each virtual address
to physical address

— The relation between
virtual addresses and physical memory
addresses is given by page table

Process’s physical memory does not
have to be contiguous

@] THE UNIVERSITY OF
el NEW SOUTH WALES

Virtual
address
space

60K-64K
56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
0K-4K

} Virtual page

N2l ]|Oo]lhR|lW| XXX XN XX X]x

N

Physical
memory
address

28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K

}\OK-4K

Page frame



Frame

Main memory Main memory Main memory
number

0 0 A 0 A

1 1 ALl 1 A.l

2 2 Al 2 Al

3 3 Al 3 Al

E E 4 POSENE OSSN
5 5 5 NN
6 6 6 N
7 7 7

B B &

9 9 9
1) 11} 11
11 11 11
12 12 12
13 13 13
14 14 14
(a) Filleen Available Frames (b Load Process A (b Load Process B

Figure 7.9 Assignment of Process Pages to Free Frames
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Paging

* No external fragmentation
« Small internal fragmentation (in last page)

 Allows sharing by mapping several pages
to the same frame

» Abstracts physical organisation
— Programmer only deal with virtual addresses

* Minimal support for logical organisation
— Each unit is one or more pages

=
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Memory Management Unit
(also called Translation Look-aside Buffer — TLB)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU 1=
/ Memory \ Disk
_ management emory controller
unit
"\ } l Bus

X

The MMU sends physical
addresses to the memory

The position and function of the MMU
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MMU Operation

QOutgoing
[1]1]o]o|ofo]ofofofoo]o]1]0]0] physical
. z y address
E R i (24580)
15| 000 0
14 000 |0
13 000 |0
Assume for now that 12[ 000 |0
the page table is N T
contained wholly in o e
. e -bit oftset
regISterS W|th|n the I::l:ﬂg -~ 3 ggg g copied directly
— 1 i i from input
MMU in practice it s 0015 il
IS not 50 o011 [1
4 100 |1
3| 000 1
2[ 110 [ 1] 110 |
1| 001 1 . .
resen
0] 010 1 Iabsent bit
Virtual page = 2 is used
as an index into the
page table Incoming
. iy A N virtual
dd
|o|o|1|o|o|o|o|o|i|o|o|o|o|1|o|o| address

Internal operation of simplified MMU with 16 4 KB pages
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Virtual Memory - Segmentation

Memory-management scheme
that supports user’s view of
memory.

A program is a collection of
segments. A segmentis a
logical unit such as:

— main program, procedure,
function, method, object, local
variables, global variables,
common block, stack, symbol
table, arrays

subroutine

Sqrt

symbol
table

main
program

logical address space




Logical View of Segmentation

user space

- THE UNIVERSITY OF
NEW SOUTH WALES

1

4

physical memory space
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Segmentation Architecture

« Logical address consists of a two tuple: <segment-
number, offset>,
— Addresses identify segment and address with segment

« Segment table — each table entry has:

— base — contains the starting physical address where the
segments reside in memory.

— limit — specifies the length of the segment.

« Segment-table base register (STBR) points to the
segment table’s location in memory.

« Segment-table length register (STLR) indicates number
of segments used by a program;

segment number sis legal if s < STLR.

==
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Segmentation Hardware

segment
table

\/
trap; addressing error

physical memory
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Example of Segmentation

subroutine stack

segment 3 segment O

symbol
segment 0 table

limit | base
Sqrt segment 4 1000 | 1400
400 | 6300

main 400 | 4300
program 1100 | 3200
1000 | 4700

segment 3

segment table

segment 1 segment 2 segment 2

logical address space segment 4

5700

6300
segment 1

6700
physical memory




Segmentation Architecture

* Protection. With each entry in segment table
associate:
— validation bit = 0 = illegal segment
— read/write/execute privileges

* Protection bits associated with segments; code
sharing occurs at segment level.

« Since segments vary in length, memory
allocation is a dynamic partition-allocation
problem.

* A segmentation example is shown in the
following diagram
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Sharing of Segments

editor
segment O
43062
data 1 limit base
0| 25286 | 43062 _
segment 1 1| 4425 | 68348 editor
segment table
process P,
logical memory 1 68348 —
process F‘1 79773
90003
editor tata o
98553
segment 0
limnit base
data 2 i
0| 25286 | 43062 physical memory
segment 1 1 8850 | 90003
segment table
THE UNIVERSITY OF loaical process P,
NEW SOUTH WALES ogical memory
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Segmentation Architecture

* Relocation.
— dynamic
= by segment table

« Sharing.
— shared segments
= same physical backing multiple segments
= Ideally, same segment number

« Allocation.
— First/next/best fit
= external fragmentation
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Comparison

Consideration Paging Segmentation

Need the programmer be aware No Yes
that this technique is being used?

How many linear address 1 Many
spaces are there?

Can the total address space Yes Yes
exceed the size of physical
memory?

Can procedures and data be No Yes
distinguished and separately
protected?

Can tables whose size fluctuates No Yes
be accommodated easily?

Is sharing of procedures No Yes
between users facilitated?

Why was this technique To get a large To allow programs
invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and
protection

Comparison of paging and segmentation _,




