
Introduction to Operating

Systems

Chapter 1 – 1.3

Chapter 1.5 – 1.9

Learning Outcomes

• High-level understand what is an operating

system and the role it plays

• A high-level understanding of the structure of
operating systems, applications, and the
relationship between them.

• Some knowledge of the services provided by
operating systems.

• Exposure to some details of major OS
concepts.

2

What is an Operating

System?

3

4

Block Diagram of Haswell Platform Architecture http://www.pcquest.com

Role 1: The Operating System is

an Abstract Machine

• Extends the basic hardware with added

functionality

• Provides high-level abstractions

– More programmer friendly

– Common core for all applications

• E.g. Filesystem instead of just registers on a disk
controller

• It hides the details of the hardware

– Makes application code portable

5

6

UsersDisk

Memory

CPU

Network

Bandwidth

Role 2: The Operating System

is a Resource Manager

• Responsible for allocating resources to users

and processes

• Must ensure

– No Starvation

– Progress

– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share;
limits (quotas), etc…

– Overall, that the system is efficiently used

7

Structural (Implementation) View: the

Operating System is the Privileged

Component

8

Requests (System Calls)

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Operating System Kernel

• Portion of the operating system that is
running in privileged mode

• Usually resident (stays) in main memory

• Contains fundamental functionality
– Whatever is required to implement other

services

– Whatever is required to provide security

• Contains most-frequently used functions

• Also called the nucleus or supervisor
9

The Operating System is

Privileged

• Applications should not be able to interfere or bypass

the operating system

– OS can enforce the “extended machine”

– OS can enforce its resource allocation policies

– Prevent applications from interfering with each other

10

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Memory

Delving Deeper:

The Structure of a Computer System

11

Operating System

System Libraries

Application

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Memory

The Structure of a Computer System

12

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

OS interacts via load

and store instructions

to all memory, CPU

and device registers,

and interrupts

Memory

The Structure of a Computer System

13

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Applications interact with

themselves and via

function calls to library

procedures

Memory

The Structure of a Computer System

14

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Interaction via

System Calls

Privilege-less OS

• Some Embedded OSs have

no privileged component

– e.g. PalmOS, Mac OS 9,
RTEMS

– Can implement OS
functionality, but cannot
enforce it.

• All software runs together

• No isolation

• One fault potentially brings down

entire system

15

A Note on System Libraries

System libraries are just that, libraries of support

functions (procedures, subroutines)

– Only a subset of library functions are actually systems calls

• strcmp(), memcpy(), are pure library functions
– manipulate memory within the application, or perform computation

• open(), close(), read(), write() are system calls
– they cross the user-kernel boundary, e.g. to read from disk device

– Implementation mainly focused on passing request to OS and returning
result to application

– System call functions are in the library for convenience
• try man syscalls on Linux

16

Operating System Software

• Fundamentally, OS functions the
same way as ordinary computer
software

– It is a program that is executed

(just like applications)

– It has more privileges

• Operating system relinquishes
control of the processor to execute
other programs

– Reestablishes control after

• System calls

• Interrupts (especially timer

interrupts)

17

Memory

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Major OS Concepts

(Overview)

• Processes

• Concurrency and deadlocks

• Memory management

• Files

• Scheduling and resource management

• Information Security and Protection

18

Processes
• A program in execution

• An instance of a program running on a computer

• The entity that can be assigned to and executed on a
processor

• A unit of resource ownership

19

Process
• Minimally consist of three segments

– Text

• contains the code (instructions)

– Data

• Global variables

– Stack

• Activation records of
procedure/function/method

• Local variables

• Note:
– data can dynamically grow up

• E.g., malloc()-ing

– The stack can dynamically grow down
• E.g., increasing function call depth or recursion

20

Stack

Gap

Data

Text

Memory

Process state

• Consists of three components
– An executable program code

• text

– Associated data needed by the program
• Data and stack

– Execution context of the program
• Registers, program counter, stack pointer

• Information the operating system needs to
manage the process

– OS-internal bookkeeping, files open, etc…

21

Multiple processes creates

concurrency issues

(a) A potential deadlock. (b) an actual deadlock.
22

Memory Management
• The view from thirty thousand feet

– Process isolation
• Prevent processes from accessing each others data

– Automatic allocation and management
• Users want to deal with data structures

• Users don’t want to deal with physical memory directly

– Protection and access control
• Still want controlled sharing

– OS services
• Virtual memory

• File system

23

Virtual Memory

• Allows programmers to address
memory from a logical point of view
– Gives apps the illusion of having RAM to

themselves

– Logical addresses are independent of
other processes

– Provides isolation of processes from each
other

• Can overlap execution of one process
while swapping in/out others to disk.

24

Virtual Memory Addressing

25

Memory management unit

(hardware) translates program

memory addresses to main

memory addresses.

File System

• Implements long-term store

• Information stored in named objects
called files

26

Example File System

27

Scheduling and Resource

Management

• Fairness

– give equal and fair access to all processes

• Differential responsiveness

– discriminate between different classes of jobs

• Efficiency

– maximize throughput, minimize response time,

and accommodate as many uses as possible

28

Operating System Internal

Structure?

29

Classic Operating System

Structure

• The layered approach

a) Processor allocation
and multiprogramming

b) Memory Management

c) Devices

d) File system

e) Users

– Each layer depends on

the inner layers

30

a b c d e

Operating System

Structure

• In practice, layering is only a guide

– Operating Systems have many

interdependencies

• Scheduling on virtual memory

• Virtual memory (VM) on I/O to disk

• VM on files (page to file)

• Files on VM (memory mapped files)

• And many more…

31

The Monolithic Operating

System Structure

• Also called the
“spaghetti nest”
approach

– Everything is

tangled up with

everything else.

• Linux, Windows,
….

32

The Monolithic Operating

System Structure
• However, some

reasonable structure
usually prevails

33

Bowman, I. T., Holt, R. C., and Brewster, N. V. 1999. Linux as a case study: its extracted
software architecture. In Proceedings of the 21st international Conference on Software
Engineering (Los Angeles, California, United States, May 16 - 22, 1999). ICSE '99. ACM,
New York, NY, 555-563. DOI= http://doi.acm.org/10.1145/302405.302691

34

The End

35

