
Introduction to Operating 

Systems

Chapter 1 – 1.3

Chapter 1.5 – 1.9



Learning Outcomes

• High-level understand what is an operating 

system and the role it plays

• A high-level understanding of the structure of 
operating systems, applications, and the 
relationship between them.

• Some knowledge of the services provided by 
operating systems.

• Exposure to some details of major OS 
concepts.
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What is an Operating 

System?

3



4

Block Diagram of Haswell Platform Architecture http://www.pcquest.com



Role 1: The Operating System is 

an Abstract Machine

• Extends the basic hardware with added 

functionality

• Provides high-level abstractions

– More programmer friendly

– Common core for all applications

• E.g. Filesystem instead of just registers on a disk 
controller

• It hides the details of the hardware

– Makes application code portable
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Role 2: The Operating System 

is a Resource Manager

• Responsible for allocating resources to users 

and processes

• Must ensure

– No Starvation

– Progress

– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share; 
limits (quotas), etc…

– Overall, that the system is efficiently used
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Structural (Implementation) View: the 

Operating System is the Privileged  

Component
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Operating System Kernel

• Portion of the operating system that is 
running in privileged mode

• Usually resident (stays) in main memory

• Contains fundamental functionality
– Whatever is required to implement other 

services

– Whatever is required to provide security

• Contains most-frequently used functions

• Also called the nucleus or supervisor
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The Operating System is 

Privileged

• Applications should not be able to interfere or bypass 

the operating system

– OS can enforce the “extended machine”

– OS can enforce its resource allocation policies

– Prevent applications from interfering with each other
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Memory

Delving Deeper: 

The Structure of a Computer System
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Memory

The Structure of a Computer System
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Memory

The Structure of a Computer System
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Memory

The Structure of a Computer System
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Privilege-less OS

• Some Embedded OSs have 

no privileged component

– e.g. PalmOS, Mac OS 9, 
RTEMS

– Can implement OS 
functionality, but cannot 
enforce it.

• All software runs together

• No isolation

• One fault potentially brings down 

entire system
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A Note on System Libraries

System libraries are just that, libraries of support 

functions (procedures, subroutines)

– Only a subset of library functions are actually systems calls

• strcmp(), memcpy(), are pure library functions
– manipulate memory within the application, or perform computation

• open(), close(), read(), write() are system calls
– they cross the user-kernel boundary, e.g. to read from disk device

– Implementation mainly focused on passing request to OS and returning 
result to application

– System call functions are in the library for convenience
• try man syscalls on Linux

16



Operating System Software

• Fundamentally, OS functions the 
same way as ordinary computer 
software

– It is a program that is executed 

(just like applications)

– It has more privileges

• Operating system relinquishes 
control of the processor to execute 
other programs

– Reestablishes control after

• System calls

• Interrupts (especially timer 

interrupts)

17

Memory

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device



Major OS Concepts 

(Overview)

• Processes

• Concurrency and deadlocks

• Memory management

• Files

• Scheduling and resource management

• Information Security and Protection
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Processes
• A program in execution

• An instance of a program running on a computer

• The entity that can be assigned to and executed on a 
processor

• A unit of resource ownership
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Process
• Minimally consist of three segments

– Text

• contains the code (instructions)

– Data

• Global variables

– Stack

• Activation records of 
procedure/function/method

• Local variables 

• Note:
– data can dynamically grow up

• E.g., malloc()-ing

– The stack can dynamically grow down
• E.g., increasing function call depth or recursion
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Process state

• Consists of three components
– An executable program code

• text

– Associated data needed by the program
• Data and stack

– Execution context of the program
• Registers, program counter, stack pointer

• Information the operating system needs to 
manage the process

– OS-internal bookkeeping, files open, etc…
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Multiple processes creates 

concurrency issues

(a) A potential deadlock. (b) an actual deadlock.
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Memory Management
• The view from thirty thousand feet

– Process isolation
• Prevent processes from accessing each others data

– Automatic allocation and management
• Users want to deal with data structures

• Users don’t want to deal with physical memory directly

– Protection and access control
• Still want controlled sharing

– OS services
• Virtual memory

• File system
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Virtual Memory

• Allows programmers to address 
memory from a logical point of view
– Gives apps the illusion of having RAM to 

themselves

– Logical addresses are independent of 
other processes

– Provides isolation of processes from each 
other

• Can overlap execution of one process 
while swapping in/out others to disk.
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Virtual Memory Addressing
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File System

• Implements long-term store

• Information stored in named objects 
called files
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Example File System
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Scheduling and Resource 

Management

• Fairness

– give equal and fair access to all processes

• Differential responsiveness

– discriminate between different classes of jobs

• Efficiency

– maximize throughput, minimize response time, 

and accommodate as many uses as possible
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Operating System Internal 

Structure?
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Classic Operating System 

Structure

• The layered approach

a) Processor allocation 
and multiprogramming

b) Memory Management

c) Devices

d) File system

e) Users

– Each layer depends on 

the inner layers
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Operating System 

Structure

• In practice, layering is only a guide

– Operating Systems have many 

interdependencies

• Scheduling on virtual memory

• Virtual memory (VM) on I/O to disk

• VM on files (page to file)

• Files on VM (memory mapped files)

• And many more…
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The Monolithic Operating 

System Structure

• Also called the 
“spaghetti nest” 
approach

– Everything is 

tangled up with 

everything else. 

• Linux, Windows, 
….
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The Monolithic Operating 

System Structure
• However, some 

reasonable structure 
usually prevails
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The End
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