Disk scheduler

Application

v

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Device driver

=2

™ THE UNIVERSITY OF 1
NEW SOUTH WALES

Disk Management

Management and ordering of disk access
requests is important:
—Huge speed gap between memory and disk

—Disk throughput is extremely sensitive to
*Request order = Disk Scheduling
*Placement of data on the disk = file system design

—Disk scheduler must be aware of disk geometry

Disk Geometry

€l [

*Physical geometry of a disk with two zones
—Quter tracks can store more sectors than inner without exceed max
information density
A possible virtual geometry for this disk

3

1 THE UNIVERSITY OF 3
NEW SOUTH WALES

Evolution of Disk Hardware

Parameter

IBM 360-KB floppy disk

WD 18300 hard disk

Number of cylinders 40 10601

Tracks per cylinder 2 12
Sectors per track 9 281 (avQ)
Sectors per disk 720 35742000

Bytes per sector 512 512

Disk capacity 360 KB 18.3 GB
Seek time (adjacent cylinders) 6 msec 0.8 msec
Seek time (average case) /7 msec 6.9 msec
Rotation time 200 msec 8.33 msec
Motor stop/start time 250 msec 20 sec
Time to transfer 1 sector 22 msec 17 usec

Disk parameters for the original IBM PC floppy disk and

a Western Digital WD 18300 hard disk

Things to Note

*Average seek time is approx 12 times
better

*Rotation time is 24 times faster

*Transfer time is 1300 times faster
—Most of this gain is due to increase in density

*Represents a gradual engineering
iImprovement

=2
=== T UNIVERSITY OF 5

"- NEW SOUTH WALES

Storage Capacity is 50000 times
greater

ty, Mbits/inch2

AREALSEPRZ Areal Densi

“lhl"

Areal Density of Magnetic HDD and DRAM

100000 100%CGR 7

Travelstar 25GS
Tz

10000 H
Ultrastar 362 BLZX A » 7
25% = 2X per 3 years 80% CGR Uitrastar 36XP P ’
1000 40 2 Ultr
60 1.5
100 100 1
40% CGR
25% CGR
10

0.1 / —

O] 0 1 M | i 1 i 1 i
1970 1980 1990 2000 2010

Year

LT
-
I

gl

Ed Grochowski at Almaden

Estimating Access Time

e Seek time T,: Moving the head to the required track
not linear in the number of tracks to traverse:
=¥ startup time

=¥ settling time
Typical average seek time: a few milliseconds

e Rotational delay:
rotational speed, r, of 5,000 to 10,000rpm
At 10,000rpm, one revolution per 6ms =- average delay 3ms

e Transfer time: h
to transfer b bytes, with N bytes per track: L= "7
N

Total average access time: To =Ts+—+

@ INCVV DO\UJU I T VVALLD

A Timing Comparison

e I, =2ms, r= 10,000 rpm, 512B sect, 320 sect/track
e Read a file with 2560 sectors (= 1.3MB)

e File stored compactly (8 adjacent tracks):
Read first track

Average seek 2ms
Rot. delay 3ms
Read 320 sectors 6ms
11ms = All sectors: 11 + 7% 8 = g7 ms
e Sectors distributed randomly over the disk:
Read any sector
Average seek 2ms
Rot. delay 3ms
Read 1 sector 0.01875ms
5.01875ms = All: 2560 % 5.01875 = 20, 328ms

Disk Performance is Entirely Dominated

by Seek and Rotational Delays

*Will only get worse as
capacity increases much
faster than increase in seek
time and rotation speed
—Note it has been easier to

spin the disk faster than
improve seek time

*Operating System should
minimise mechanical delays
as much as possible

B THE UNIVERSITY OF
NEW SOUTH WALES

100%

80%

60%

40%

20%

0%

Average Access Time Scaled to 100%

_

O Transfer
m Rot. Del.
O Seek

O Transfer
m Rot. Del.

22
100

0.017
4.165

@ Seek

77

6.9

Disk

Disk Arm Scheduling Algorithms

*Time required to read or write a disk
block determined by 3 factors

1.5eek time

2 Rotational delay

s.,Actual transfer time

*Seek time dominates
*For a single disk, there will be a number

of I/0O requests

—Processing them in random order leads to
worst possible performance

SE THE UNIVERSITY OF
NEW SOUTH WALES

First-in, First-out (FIFO)

*Process requests as they come

Fair (no starvation)

*Good for a few processes with clustered requests
Deteriorates to random if there are many processes

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

0

50
75
100
125
150
175

199 >

Shortest Seek Time First

*Select request that minimises the seek time
*Generally performs much better than FIFO
May lead to starvation

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

25
50
75
100
125
150
175
199

Elevator Algorithm (SCAN)

Move head in one direction

—Services requests in track order until it reaches the last track, then
reverses direction

-Better than FIFO, usually worse than SSTF

*Avoids starvation

‘Makes poor use of sequential reads (on down-scan)
‘Inner tracks serviced more frequently than outer tracks

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

0

25

50

75
100
125
150
175
199

Modified Elevator (Circular SCAN, C-SCAN)

Like elevator, but reads sectors in only one direction

—When reaching last track, go back to first track non-stop
*Note: seeking across disk in one movement faster than stopping along the way.

Better locality on sequential reads
Better use of read ahead cache on controller
*Reduces max delay to read a particular sector

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

25

50

75
100
125
150
175

199

