
4/12/2016

1

File system internals
Tanenbaum, Chapter 4

COMP3231

Operating Systems

2

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application

File system:

• Hides physical location

of data on the disk

• Exposes: directory

hierarchy, symbolic file

names, random-access

files, protection

3

Some popular file systems

• FAT16

• FAT32

• NTFS

• Ext2

• Ext3

• Ext4

• ReiserFS

• XFS

• ISO9660

• HFS+

• UFS2

• ZFS

• JFS

• OCFS

• Btrfs

• JFFS2

• ExFAT

• UBIFS

Question: why are there so many?

4

Why are there so many?
• Different physical nature of storage devices

– Ext3 is optimised for magnetic disks

– JFFS2 is optimised for flash memory devices

– ISO9660 is optimised for CDROM

• Different storage capacities

– FAT16 does not support drives >2GB

– FAT32 becomes inefficient on drives >32GB

– Btrfs is designed to scale to multi-TB disk arrays

• Different CPU and memory requirements

– FAT16 is not suitable for modern PCs but is a good fit for many

embedded devices

• Proprietary standards

– NTFS may be a nice FS, but its specification is closed

5

Assumptions

• In this lecture we focus on file systems for magnetic
disks

– Seek time

• ~15ms worst case

– Rotational delay

• 8ms worst case for 7200rpm drive

– For comparison, disk-to-buffer transfer speed of a modern

drive is ~10µs per 4K block.

• Conclusion: keep blocks that are likely to be accessed
together close to each other

6

Implementing a file system

• The FS must map symbolic file
names into block addresses

• The FS must keep track of

– which blocks belong to which

files.

– in what order the blocks form

the file

– which blocks are free for

allocation

• Given a logical region of a file, the
FS must track the corresponding

block(s) on disk.

– Stored in file system metadata

4 7
8 2

5 1
6 3

File system

4/12/2016

2

7

Allocation strategies

• Contiguous allocation

✔ Easy bookkeeping (need to keep track of the starting block

and length of the file)

✔ Increases performance for sequential operations

✗ Need the maximum size for the file at the time of creation

✗ As files are deleted, free space becomes divided into

many small chunks (external fragmentation)

Example: ISO 9660 (CDROM FS)

1 2 3 4 5 6 7 8

metadata

8

Allocation strategies

• Dynamic allocation

– Disk space allocated in portions as needed

– Allocation occurs in fixed-size blocks

✔ No external fragmentation

✔ Does not require pre-allocating disk space

✗ Partially filled blocks (internal fragmentation)

✗ File blocks are scattered across the disk

✗ Complex metadata management (maintain the list of blocks for each

file)
1
2
3
4
5
6
7
8

9

External and internal fragmentation

• External fragmentation

– The space wasted external to the allocated memory

regions

– Memory space exists to satisfy a request but it is unusable

as it is not contiguous

• Internal fragmentation

– The space wasted internal to the allocated memory

regions

– Allocated memory may be slightly larger than requested

memory; this size difference is wasted memory internal to

a partition

10

Linked list dynamic allocation

• Each block contains a pointer to the next block in the
chain. Free blocks are also linked in a chain.

✔ Only single metadata entry per file

✔ Best for sequential files

Question: What are the downsides?

1 4 2 3

11

Linked list allocation

• Each block contains a pointer to the next block in the
chain. Free blocks are also linked in a chain.

✔ Only single metadata entry per file

✔ Best for sequential files

✗ Poor for random access

✗ Blocks end up scattered across the disk due to free list

eventually being randomised

1 4 2 3

12

File allocation table

• Keep a map of the entire FS in a separate table

– A table entry contains the number of the next block of the file

– The last block in a file and empty blocks are marked using

reserved values

• The table is stored on the disk and is replicated in memory

• Random access is fast (following the in-memory list)

1 4 2 3

Question: any issues with this design?

4/12/2016

3

13

File allocation table

• Issues

– Requires a lot of memory for large disks

• 200GB = 200*10^6 * 1K-blocks ==>

200*10^6 FAT entries = 800MB

– Free block lookup is slow

1 4 2 3

14

File allocation table disk layout

• Examples

– FAT12, FAT16, FAT32

reserved FAT1 FAT2 data blocks

15

inode-based FS structure

• Idea: separate table (index-node or i-node) for each file.

– Only keep table for open files in memory

– Fast random access

• The most popular FS structure today

1 4 2 3

16

i-node implementation issues

• i-nodes occupy one or several disk areas

• i-nodes are allocated dynamically, hence free-space

management is required for i-nodes

– Use fixed-size i-nodes to simplify dynamic allocation

– Reserve the last i-node entry for a pointer to an extension

i-node

i-nodes data blocks

17

i-node implementation issues

18

i-node implementation issues
• Free-space management

– Approach 1: linked list of free blocks

– Approach 2: keep bitmaps of free blocks and free i-nodes

4/12/2016

4

19

Free block list

• List of all unallocated blocks

• Background jobs can re-order list for better contiguity

• Store in free blocks themselves

– Does not reduce disk capacity

• Only one block of pointers need be kept in the main

memory

20

Free block list

(a) Almost-full block of pointers to free disk blocks in RAM

● three blocks of pointers on disk

(b) Result of freeing a 3-block file

(c) Alternative strategy for handling 3 free blocks

● shaded entries are pointers to free disk blocks

21

Bit tables

• Individual bits in a bit vector flags used/free blocks

• 16GB disk with 512-byte blocks --> 4MB table

• May be too large to hold in main memory

• Expensive to search

– But may use a two level table

• Concentrating (de)allocations in a portion of the bitmap
has desirable effect of concentrating access

• Simple to find contiguous free space

22

Implementing directories

• Directories are stored like normal files

– directory entries are contained inside data blocks

• The FS assigns special meaning to the content of these

files

– a directory file is a list of directory entries

– a directory entry contains file name, attributes, and the file

i-node number

• maps human-oriented file name to a system-oriented

name

23

Fixed-size vs variable-size directory entries

• Fixed-size directory entries

– Either too small

• Example: DOS 8+3 characters

– Or waste too much space

• Example: 255 characters per file name

• Variable-size directory entries

– Freeing variable length entries can create external

fragmentation in directory blocks

• Can compact when block is in RAM

24

Searching Directory Listings

• Locating a file in a directory

– Linear scan

• Use a directory cache to speed-up search

– Hash lookup

– B-tree (100's of thousands entries)

4/12/2016

5

25

Storing file attributes

(a)disk addresses and attributes in directory entry

–FAT

(b) directory in which each entry just refers to an i-node

–UNIX

26

Trade-off in FS block size

• Larger blocks require less FS metadata

• Smaller blocks waste less disk space (less internal fragmentation)

• Sequential Access

– The larger the block size, the fewer I/O operations required

• Random Access

– The larger the block size, the more unrelated data loaded.

– Spatial locality of access improves the situation

• Choosing an appropriate block size is a compromise

• File systems deal with 2 types of blocks

– Disk blocks or sectors (usually 512 bytes)

– File system blocks 512 * 2^N bytes

– What is the optimal N?

