Learning Outcomes

Processes and Threads « An understanding of the typical implementation
Implementation strategies of processes and threads

— Including an appreciation of the trade-offs between
the implementation approaches
« Kernel-threads versus user-level threads

* A detailed understanding of “context switching”
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Summary: The Process Model Processes

Application’s stack
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One program counter

User Mode

Four program counters
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switch
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* Multiprogramming of four programs

» Conceptual model of 4 independent, sequential
processes (with a single thread each)

Process A ‘ Proces$ B

Scheduler

s C

+ Only one program active at any instant el odS
NEWSOUTHWALES Process’s stack
= Threads
rocesses
The Thread Model
Process 1 Process 1 Process 1 Process
+ User-mode \ |
— Processes (programs) scheduled by the kernel \ l 1
— Isolated from each other User
— No concurrency issues between each other space
» System-calls transition into and return from the kernel
Thread Thread
* Kernel-mode
— Nearly all activities still associated with a process fs;'fe' { Kernel Kernel
— Kernel memory shared between all processes @ ®
— Concurrency issues exist between processes concurrently
executing in a system call
(a) Three processes each with one thread
(b) One process with three threads
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The Thread Model

Per process items
Address space

Pending alarms
Signals and signal handlers
Accounting information

Per thread items
Program counter

Global variables Registers
Open files Stack
Child processes State

E

* Items shared by all threads in a process
* Items that exist per thread

THE UNIVERSITY OF 7
NEW SOUTH WALES

E

The Thread Model

Thread 2

Thread 1 Thread 3
\ /

SRR
HER

[ —~Process

Thread1's — t— Thread 3's stack

stack

Kernel

Each thread has its own stack
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A Subset of POSIX threads API

void

int
int
int
int

int

int
int
int
int

pthread_create(pthread_t *, const pthread_attr_t *,
void *(*)(void *), void *);
pthread_exit(void *);

pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);
pthread_mutex_destroy(pthread_mutex_t *);
pthread_mutex_lock(pthread_mutex_t *);
pthread_mutex_unlock(pthread_mutex_t *);

pthread_rwlock_init(pthread_rwlock_t *,
const pthread_rwlockattr_t *);
pthread_rwlock_destroy(pthread_rwlock_t *);
pthread_rwlock_rdlock(pthread_rwlock_t *);
pthread_rwlock_wrlock(pthread_rwlock_t *);
pthread_rwlock_unlock(pthread_rwlock_t *);
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Where to Implement Application

Note: Thread API Threads?
similar in both o —
- - ser-level threads
=== Application implemented in a library?

User Mode

el YerE Kernel-level threads
-/ implemented in the OS?

)
emory
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Implementing Threads in User

Space

Process Thread

\\ /

Kernel
space Kernel
X,
N

[
Run-time

Thread Process
system table table

A user-level threads package
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User-level Threads

User Mode

Scheduler Scheduler Scheduler

Process ‘ Process B

Scheduler

Kernel Mode
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User-level Threads
* Implementation at user-level

— User-level Thread Control Block (TCB), ready
queue, blocked queue, and dispatcher

— Kernel has no knowledge of the threads (it
only sees a single process)

— If a thread blocks waiting for a resource held
by another thread, its state is saved and the
dispatcher switches to another ready thread

— Thread management (create, exit, yield, wait)
are implemented in a runtime support library
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User-Level Threads

* Pros
— Thread management and switching at user level is much faster
than doing it in kernel level

« No need to trap (take syscall exception) into kernel and back to
switch

— Dispatcher algorithm can be tuned to the application
« E.g. use priorities
— Can be implemented on any OS (thread or non-thread aware)

— Can easily support massive numbers of threads on a per-
application basis

« Use normal application virtual memory

« Kernel memory more constrained. Difficult to efficiently support
wildly differing numbers of threads for different applications.
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User-level Threads
« Cons

— Threads have to yield() manually (no timer
interrupt delivery to user-level)
« Co-operative multithreading

— A single poorly design/implemented thread can
monopolise the available CPU time

+ There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

— Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)
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User-Level Threads

+ Cons

— If athread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks
« Can't overlap I/O with computation
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Implementing Threads in the Kernel

Process Thread
\
Kernel E %
/ 7\

Process Thread
table table

A threads package managed by the kernel
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Kernel-Level Threads

User Mode

Scheduler

Kernel Mode
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Kernel Threads

» Threads are implemented in the kernel
— TCBs are stored in the kernel
* A subset of information in a traditional PCB
— The subset related to execution context
» TCBs have a PCB associated with them

— Resources associated with the group of threads (the
process)

— Thread management calls are implemented
as system calls
+ E.g. create, wait, exit
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Kernel Threads

« Cons

— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

» More expensive than user-level equivalent
* Pros
— Preemptive multithreading
— Parallelism

+ Can overlap blocking 1/0 with computation
« Can take advantage of a multiprocessor
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Multiprogramming Implementation

GOBEE

Skeleton of what lowest level of OS does when an
interrupt occurs — a context switch
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Context Switch Terminology

« A context switch can refer to

— A switch between threads
* Involving saving and restoring of state associated
with a thread
— A switch between processes

* Involving the above, plus extra state associated
with a process.
— E.g. memory maps
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Context Switch Occurrence

» A switch between process/threads can happen
any time the OS is invoked
— On a system call
« Mandatory if system call blocks or on exit();
— On an exception
« Mandatory if offender is Killed
— On an interrupt

« Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements
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Context Switch

» Context switch must be transparent for
processes/threads

— When dispatched again, process/thread should not
notice that something else was running in the
meantime (except for elapsed time)

=0S must save all state that affects the thread
» This state is called the process/thread context

» Switching between process/threads
consequently results in a context switch.
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Simplified
Explicit
Thread
Switch
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Assume Kernel-Level Threads

User Mode

]
(U

Scheduler

Kernel Mode
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Example Context Switch

* Running in user mode, SP points to user-
level stack (not shown on slide)

Representation of

I

Kernel Stack SP
(Memory) \
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Example Context Switch

» Take an exception, syscall, or interrupt,
SP

and we switch to the kernel stack
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Example Context Switch

» We push a tfrapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

SP
THE UNIVERSITY OF 29

NEW SOUTH WALES

Example Context Switch

 Call ‘C’ code to process syscall, exception,
or interrupt
— Results in a ‘C’ activation stack building up

SP
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Example Context Switch

» The kernel decides to perform a context switch
— It chooses a target thread (or process)
— It pushes remaining kernel context onto the stack

\
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Example Context Switch

+ Any other existing thread must
— be in kernel mode (on a uni processor),

— and have a similar stack layout to the stack we are
currently using

Kernel stacks of other Sl
threads/processes
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Example Context Switch

» We save the current SP in the PCB (or TCB),
and load the SP of the target thread.
— Thus we have switched contexts
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Example Context Switch

» Load the target thread’s previous context,
and return to C

SP
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Example Context Switch

» The C continues and (in this example)
returns to user mode.

THE UNIVERSITY OF
NEW SOUTH WALES

Example Context Switch

* The user-level context is restored

SP
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Example Context Switch

* The user-level SP is restored

T
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The Interesting Part of a Thread
Switch

» What does the “push kernel state” part
do???

T
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Simplified OS/161 thread_switch

static

void

thread_switch (threadstate_t newstate, struct wchan *wc|
{

struct thread *cur, *next;

cur = curthread;
do {
next = threadlist_: ( )i
if (next == NULL) {
cpu_idle();

}
} while (next == NULL);

/* do the switch (in assembler in switch.S) */
switchframe switch(&cur->t_context, &next->t context);

}

]

0OS/161 switchframe_switch

switchframe_switch:
I
* a0 contains the address of the switchframe pointer in the old thread.
* a1 contains the address of the switchframe pointer in the new thread.
* The switchframe pointer is really the stack pointer. The other
* registers get saved on the stack, namely:

* s0-s6,s8
Y ogpra

* The order must match <mips/switchframe.h>.

* Note that while we'd ordinarily need to save s7 too, because we
* use it to hold curthread saving it would interfere with the way

* curthread is managed by thread.c. So we'll just let thread.c

* manage it.

¥l
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0OS/161 switchframe_switch

/* Allocate stack space for saving 10 registers. 10*4 = 40 */
addi sp, sp, -40

/* Save the registers */
sw ra, 36(sp)
swgp, 32(sp)

/* Store the old stack pointer in the old thread */
sw sp, 0(a0)
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0OS/161 switchframe_switch

/* Get the new stack pointer from the new thread */
lw sp, 0(al)
nop I* delay slot for load */

/* Now, restore the registers */
Iw s0, 0(sp)
Iw st 4(sp)
w s2, 8(sp)
Iw s3, 12(sp)
Iw s4, 16(sp)
Iw 5, 20(s}
Iw  s6, 24(sp)

(

(

w
k)

)
)
)
)
Iw 8, 28(sp)
Iw gp. 32(sp)

Iw ra, 36(sp)
nop /* delay slot for load */
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Thread a Thread b Revisiting

0OS/161 switchframe_switch | Thread Switch

v

switchframe_switch(a,b)
{

/*and return. */
jra
addi sp, sp, 40  /*in delay slot */

switchframe_switch (b, a)
|
{

A 4
switchframe, switch(a,b) ——» }
'

{
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