Learning Outcomes

Processes and Threads « An understanding of the typical implementation
Implementation strategies of processes and threads

— Including an appreciation of the trade-offs between
the implementation approaches
« Kernel-threads versus user-level threads

* A detailed understanding of “context switching”

THE UNIVERSITY OF 1 THE UNIVERSITY OF 2
NEW SOUTH WALES NEW SOUTH WALES

Summary: The Process Model Processes

Application’s stack

—Frocks

One program counter

User Mode

Four program counters

Process
switch

Cc

JIIIT

D

(a) (b) (©

* Multiprogramming of four programs

» Conceptual model of 4 independent, sequential
processes (with a single thread each)

Process A ‘ Proces$ B

Scheduler

s C

+ Only one program active at any instant el odS
NEWSOUTHWALES Process’s stack
= Threads
rocesses
The Thread Model
Process 1 Process 1 Process 1 Process
+ User-mode \ |
— Processes (programs) scheduled by the kernel \ l 1
— Isolated from each other User
— No concurrency issues between each other space
» System-calls transition into and return from the kernel
Thread Thread
* Kernel-mode
— Nearly all activities still associated with a process fs;'fe' { Kernel Kernel
— Kernel memory shared between all processes @ ®
— Concurrency issues exist between processes concurrently
executing in a system call
(a) Three processes each with one thread
(b) One process with three threads
-@ THE UNIVERSITY OF 5 E THE UNIVERSITY OF 6
NEW SOUTH WALES NEW SOUTH WALES

The Thread Model

Per process items
Address space

Pending alarms
Signals and signal handlers
Accounting information

Per thread items
Program counter

Global variables Registers
Open files Stack
Child processes State

E

* Items shared by all threads in a process
* Items that exist per thread

THE UNIVERSITY OF 7
NEW SOUTH WALES

E

The Thread Model

Thread 2

Thread 1 Thread 3
\ /

SRR
HER

[—~Process

Thread1's — t— Thread 3's stack

stack

Kernel

Each thread has its own stack

THE UNIVERSITY OF 8
NEW SOUTH WALES

I

A Subset of POSIX threads API

void

int
int
int
int

int

int
int
int
int

pthread_create(pthread_t *, const pthread_attr_t *,
void *(*)(void *), void *);
pthread_exit(void *);

pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);
pthread_mutex_destroy(pthread_mutex_t *);
pthread_mutex_lock(pthread_mutex_t *);
pthread_mutex_unlock(pthread_mutex_t *);

pthread_rwlock_init(pthread_rwlock_t *,
const pthread_rwlockattr_t *);
pthread_rwlock_destroy(pthread_rwlock_t *);
pthread_rwlock_rdlock(pthread_rwlock_t *);
pthread_rwlock_wrlock(pthread_rwlock_t *);
pthread_rwlock_unlock(pthread_rwlock_t *);

THE UNIVERSITY OF 9
NEW SOUTH WALES

[

Where to Implement Application

Note: Thread API Threads?
similar in both o —
- - ser-level threads
=== Application implemented in a library?

User Mode

el YerE Kernel-level threads
-/ implemented in the OS?

)
emory

THE UNIVERSITY OF 10
NEW SOUTH WALES

E

Implementing Threads in User

Space

Process Thread

\\ /

Kernel
space Kernel
X,
N

[
Run-time

Thread Process
system table table

A user-level threads package

THE UNIVERSITY OF 1
NEW SOUTH WALES

User-level Threads

User Mode

Scheduler Scheduler Scheduler

Process ‘ Process B

Scheduler

Kernel Mode

NEW SOUTH WALES

User-level Threads
* Implementation at user-level

— User-level Thread Control Block (TCB), ready
queue, blocked queue, and dispatcher

— Kernel has no knowledge of the threads (it
only sees a single process)

— If a thread blocks waiting for a resource held
by another thread, its state is saved and the
dispatcher switches to another ready thread

— Thread management (create, exit, yield, wait)
are implemented in a runtime support library

THE UNIVERSITY OF 13
NEW SOUTH WALES

User-Level Threads

* Pros
— Thread management and switching at user level is much faster
than doing it in kernel level

« No need to trap (take syscall exception) into kernel and back to
switch

— Dispatcher algorithm can be tuned to the application
« E.g. use priorities
— Can be implemented on any OS (thread or non-thread aware)

— Can easily support massive numbers of threads on a per-
application basis

« Use normal application virtual memory

« Kernel memory more constrained. Difficult to efficiently support
wildly differing numbers of threads for different applications.

THE UNIVERSITY OF 14
NEW SOUTH WALES

User-level Threads
« Cons

— Threads have to yield() manually (no timer
interrupt delivery to user-level)
« Co-operative multithreading

— A single poorly design/implemented thread can
monopolise the available CPU time

+ There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

— Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

THE UNIVERSITY OF 15
NEW SOUTH WALES

User-Level Threads

+ Cons

— If athread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks
« Can't overlap I/O with computation

THE UNIVERSITY OF 16
NEW SOUTH WALES

Implementing Threads in the Kernel

Process Thread
\
Kernel E %
/ 7\

Process Thread
table table

A threads package managed by the kernel

THE UNIVERSITY OF 17
NEW SOUTH WALES

Kernel-Level Threads

User Mode

Scheduler

Kernel Mode
-@ NEW SOUTH WALES

Kernel Threads

» Threads are implemented in the kernel
— TCBs are stored in the kernel
* A subset of information in a traditional PCB
— The subset related to execution context
» TCBs have a PCB associated with them

— Resources associated with the group of threads (the
process)

— Thread management calls are implemented
as system calls
+ E.g. create, wait, exit

THE UNIVERSITY OF 19
NEW SOUTH WALES

Kernel Threads

« Cons

— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

» More expensive than user-level equivalent
* Pros
— Preemptive multithreading
— Parallelism

+ Can overlap blocking 1/0 with computation
« Can take advantage of a multiprocessor

THE UNIVERSITY OF 20
NEW SOUTH WALES

Multiprogramming Implementation

GOBEE

Skeleton of what lowest level of OS does when an
interrupt occurs — a context switch

THE UNIVERSITY OF 21
NEW SOUTH WALES

Context Switch Terminology

« A context switch can refer to

— A switch between threads
* Involving saving and restoring of state associated
with a thread
— A switch between processes

* Involving the above, plus extra state associated
with a process.
— E.g. memory maps

THE UNIVERSITY OF 22
NEW SOUTH WALES

Context Switch Occurrence

» A switch between process/threads can happen
any time the OS is invoked
— On a system call
« Mandatory if system call blocks or on exit();
— On an exception
« Mandatory if offender is Killed
— On an interrupt

« Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

THE UNIVERSITY OF 23
NEW SOUTH WALES

E

Context Switch

» Context switch must be transparent for
processes/threads

— When dispatched again, process/thread should not
notice that something else was running in the
meantime (except for elapsed time)

=0S must save all state that affects the thread
» This state is called the process/thread context

» Switching between process/threads
consequently results in a context switch.

THE UNIVERSITY OF 24
NEW SOUTH WALES

Simplified
Explicit
Thread
Switch

25

Assume Kernel-Level Threads

User Mode

]
(U

Scheduler

Kernel Mode
-@ NEW SOUTH WALES

Example Context Switch

* Running in user mode, SP points to user-
level stack (not shown on slide)

Representation of

I

Kernel Stack SP
(Memory) \

THE UNIVERSITY OF 27
NEW SOUTH WALES

Example Context Switch

» Take an exception, syscall, or interrupt,
SP

and we switch to the kernel stack

THE UNIVERSITY OF 28
NEW SOUTH WALES

E

Example Context Switch

» We push a tfrapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

SP
THE UNIVERSITY OF 29

NEW SOUTH WALES

Example Context Switch

 Call ‘C’ code to process syscall, exception,
or interrupt
— Results in a ‘C’ activation stack building up

SP

THE UNIVERSITY OF 30
NEW SOUTH WALES

E

Example Context Switch

» The kernel decides to perform a context switch
— It chooses a target thread (or process)
— It pushes remaining kernel context onto the stack

\

THE UNIVERSITY OF 31
NEW SOUTH WALES

Example Context Switch

+ Any other existing thread must
— be in kernel mode (on a uni processor),

— and have a similar stack layout to the stack we are
currently using

Kernel stacks of other Sl
threads/processes

THE UNIVERSITY OF 32
NEW SOUTH WALES

B

Example Context Switch

» We save the current SP in the PCB (or TCB),
and load the SP of the target thread.
— Thus we have switched contexts

THE UNIVERSITY OF

SOUTH WALES

Example Context Switch

» Load the target thread’s previous context,
and return to C

SP

[EW SOUTH WALES

-E LHE UNIVERSITY OF !!

E

Example Context Switch

» The C continues and (in this example)
returns to user mode.

THE UNIVERSITY OF
NEW SOUTH WALES

Example Context Switch

* The user-level context is restored

SP

THE UNIVERSITY OF 36
NEW SOUTH WALES

Example Context Switch

* The user-level SP is restored

T

THE UNIVERSITY OF 37
NEW SOUTH WALES

The Interesting Part of a Thread
Switch

» What does the “push kernel state” part
do???

T

THE UNIVERSITY OF 38
NEW SOUTH WALES

Simplified OS/161 thread_switch

static

void

thread_switch (threadstate_t newstate, struct wchan *wc|
{

struct thread *cur, *next;

cur = curthread;
do {
next = threadlist_: ()i
if (next == NULL) {
cpu_idle();

}
} while (next == NULL);

/* do the switch (in assembler in switch.S) */
switchframe switch(&cur->t_context, &next->t context);

}

]

0OS/161 switchframe_switch

switchframe_switch:
I
* a0 contains the address of the switchframe pointer in the old thread.
* a1 contains the address of the switchframe pointer in the new thread.
* The switchframe pointer is really the stack pointer. The other
* registers get saved on the stack, namely:

* s0-s6,s8
Y ogpra

* The order must match <mips/switchframe.h>.

* Note that while we'd ordinarily need to save s7 too, because we
* use it to hold curthread saving it would interfere with the way

* curthread is managed by thread.c. So we'll just let thread.c

* manage it.

¥l

THE UNIVERSITY OF 40
NEW SOUTH WALES

0OS/161 switchframe_switch

/* Allocate stack space for saving 10 registers. 10*4 = 40 */
addi sp, sp, -40

/* Save the registers */
sw ra, 36(sp)
swgp, 32(sp)

/* Store the old stack pointer in the old thread */
sw sp, 0(a0)

THE UNIVERSITY OF 41
NEW SOUTH WALES

0OS/161 switchframe_switch

/* Get the new stack pointer from the new thread */
lw sp, 0(al)
nop I* delay slot for load */

/* Now, restore the registers */
Iw s0, 0(sp)
Iw st 4(sp)
w s2, 8(sp)
Iw s3, 12(sp)
Iw s4, 16(sp)
Iw 5, 20(s}
Iw s6, 24(sp)

(

(

w
k)

)
)
)
)
Iw 8, 28(sp)
Iw gp. 32(sp)

Iw ra, 36(sp)
nop /* delay slot for load */

THE UNIVERSITY OF 42
NEW SOUTH WALES

Thread a Thread b Revisiting

0OS/161 switchframe_switch | Thread Switch

v

switchframe_switch(a,b)
{

/*and return. */
jra
addi sp, sp, 40 /*in delay slot */

switchframe_switch (b, a)
|
{

A 4
switchframe, switch(a,b) ——» }
'

{

THE UNIVERSITY OF 43 THE UNIVERSITY OF 44
NEW SOUTH WALES NEW SOUTH WALES

