
1

User-level Uniprocessor 

Mutual Exclusion

Mutual Exclusion 

Overheads
• Locking implemented by:

– interrupt disabling and enabling

• not suitable for user-level

– Hardware primitives (test and set)

• not always available, not efficiently implemented

– System calls

• high overheads

• Trade-off between granularity of locking and locking 
overhead

– Fine granularity

• more potential parallelism

• more locks and thus overhead

Can we avoid locking?

• Yes

– in some cases

• Lock-free data structures

– Need hardware help

• compare-and-swap()

• exchange()

• test_and_set()

Background: Atomic 

Compare and Swap
bool compare_swap(addr, val, new)

{

if (*addr == val) {

*addr = new;

return true;

}

return false

}

addr = memory address

val = expected value

new = value to replace

r = success or failure

CAS Example

• Lock-free atomic increment

atomic_inc(int *addr)

{

do {

old = *addr;

new = old + 1;

} while (!compare_and_swap(addr, old, new));

}

• Lock-free does not preclude starvation

• Tricky to implement more complex structures

Lock-free the solution?

• Can avoid locking by using lock-free data 

structures

– Still need short atomic sequences

• compare-and-swap,etc,..

• not always provided by hardware

• may be slow to execute

• Observe: Lock-based data structure also 

need mutual exclusion to implement the lock 

primitive themselves.



2

How do we provide efficient 

atomic sequences?

• Interrupt disabling?

• Syscalls?

• Processor Instructions?

The problem

add:

lw r0, (r1)

add r0, r0, 1

sw r0, (r1)

Optimistic Approach

• Assume the critical code runs atomically

– Atomic Sequence

• If an interrupt occurs, OS recovers such that 

atomicity is preserved

• Two basic mechanisms

– Rollback

• Only single memory location update

• Guarantee progress???

– Rollforward

How does the OS know what is 

an atomic sequence?

• Designated sequences

– Match well know sequences surrounding PC

• Matching takes time

• sequence may occur outside an atomic sequences

– Rollback might break code

– Rollforward okay

• Sequences can be inlined

• No overhead added to each sequence, overhead only on 

interruption

• Static Registration

– All sequences are registered at program 

startup

• No direct overhead to sequences themselves

• Limited number of sequences

– Reasonable to identify on interrupt

– No inlining

• Dynamic Registration

– Share a variable between kernel and user-

level, set it while in an atomic sequence

– Can inline, even synthesize sequences at 

runtime

– Adds direct overhead to each sequence



3

How to roll forward?

• Problem: How to regain control after 
rolling forward to end of sequence

• Code re-writing

– Re-write instruction after sequence to call 
back to interrupt handler 

• Cache issues – need to flush the instruction 

cache??

• Cloning

– Two copies of each sequence

• normal copy

• modified copy that call back into interrupt 
handler

• On interrupt, map PC in normal sequence into 
PC in modified

• Mapping can be time consuming

– Inlining???

• Difficulties with PC relative offsets 

– Instruction encoding may change in clone.

• Computed Jump

– Every sequence uses a computed jump at 

the end

• Normal sequence simply jmp to next instruction

• Interrupted sequence jumps to interrupt handler

• Adds a jump to every sequence

• Controlled fault
– Dummy instruction at end of each 

sequences
• NOP for normal case

• Fault for interrupt case
– Example is read from (in)accessible page

– Still adds an extra instruction

Limiting Duration of Roll 

forward

• Watchdog

• Restriction on code so termination can 

be inspected for

Implementations - Dynamic Registration 

Scheme With Jump



4

Implementations - Dynamic Registration 

Scheme With Fault

Implementations – Hybrid registration – a 

hint-based approach

Results Benchmark Legend

• Sigprocmask – syscall based approach

• DI – disable all interrupts

• CIPL – set interrupt priority level

• SPLx – same as CIPL with function call

• PALcode – special Alpha processor call

• LL/SC – load link store conditional

Interrupt Delay

• Whenever an interrupt occurs, we need to 

check for atomic sequence.

– Hyb/Jump

• does r1 point to instruction after a jump

• sequence <= 32 instructions

• no backward jumps/branches

• forward jump/branch targets within sequence

• Cost

– 73 + N * 25 cycles (N is length of sequence)

– Only if we pre-empt in the small atomic sequence.


