Learning Outcomes

» An understanding of the performance of Inode-
based files systems when writing small files.

LOQ Structured File Systems » An understanding of how a log structured file

system can improve performance, and increase
reliability via improved consistency guarantees
without the need for file system checkers.

» An understanding of “cleaning” and how it might
detract from performance.

THEE UNIVERSITY OF 1 THE UNIVERSITY OF 2
NEW SOUTH WALLS NEW SOUTH WALLS

s LS

Motivating Observations Motivating Observations
. . . . « Creation/Modification/Deleti f Il files f th jority of
- Memory size is growing at a rapid rate typical workload oo e o e maery o1 2
. .) » Workload poorly supported by traditional Inode-based file system
= Growing proportion of file system reads (e.g. BSD FFS, extfs)
will be satisfied by file system buffer cache T A odie T et Giresiary Gta biogk, 1 wike 16 Gregiory mods
) L)) = 5 small writes scattered within group
= Writes will |ncreaS|neg dominate reads — Synchronous writes (write-through caching) of metadata and

directories make it worse
« Each operation will wait for disk write to complete.
» Write performance of small files dominated by cost of metadata

writes
Group Data
Super Descrip- | Block]1.10de Inode Data blocks
Block . Bitmap | Table
tors Bitmap

THEE UNIVERSITY OF 3 THE UNIVERSITY OF 4
NEW SOUTH WALLS NEW SOUTH WALLS
s LS

Motivating Observations Basic ldea!!!
» Consistency checking required for ungraceful + Buffer sequence of updates in memory
shutdown due to potential for sequence of and write all updates sequentially to disk in

updates to have only partially completed.

« File system consistency checkers are time
consuming for large disks.

» Unsatisfactory boot times where consistency

checking is required.
==

Disk

THEE UNIVERSITY OF 5 THE UNIVERSITY OF 6
NEW SOUTH WALLS NEW SOUTH WALLS

s =

one go.

Example

THE UNIVERSITY OF 7
NEW SOUTH WALLS

s

Issues

» How do we now find I-nodes that are scattered
around the disk?
= Keep a map of inode locations
— Inode map is also “logged”
— Assumption is I-node map is heavily cached and
rarely results in extra disk accesses
— To find block in the I-node map, use two fixed location
on the disk contains address of block of the inode
map

» Two copies of the inode map addresses so we can recover if
error during updating map.

THIEE UNIVERSITY OF 8
NEW SOUTH WALLS

LS

Implementing Stable Storage

ECC
Disk °™ Disk Disk Disk Disk
12 N1 2 12 12 12
o .
7 ?
% New| New| / New| New|
% %
t t | t t
Crash Crash Crash Crash Crash
(a) (b) (c) (C)] (e)

» Use two disks to implement stable storage

— Problem is when a write (update) corrupts old version,
without completing write of new version

— Solution: Write to one disk first, then write to second after
completion of first

THE UNIVERSITY OF 9
NEW SOUTIT WALTS
—

LFS versus FFS

» Comparison of creating two small files

Log—3 Disk ‘

Sprite LFS

dirl dir2

Block key: m Inode I Directory |:| Data H Inode map

THEE UNIVERSITY OF 10
NEW SOUTH WALTS
LS

Issue
Disks are Finite in Size

+ File system “cleaner” runs in background
— Recovers blocks that are no longer in use by
consulting current inode map
+ Identifies unreachable blocks
— Compacts remaining blocks on disk to form
contiguous segments for improved write
performance

THEE UNIVERSITY OF 1"
NEW SOUTH WALTS

s

Issue
Recovery

File system is check-pointed regularly which saves

— A pointer to the current head of the log

— The current Inode Map blocks

» On recovery, simply restart from previous checkpoint.

— Can scan forward in log and recover any updates written after
previous checkpoint

— Write updates to log (no update in place), so previous checkpoint
always consistent

JIIRTATTRTRRATRAIRARTRERATRACRARTIRI IO .
Checkpoint

@ THE UNIVERSITY OF Location 12

NEW SOUTH WALLS
=

Reliability

» Updated data is written to the log, not in

Performance

« Comparison between LFS
and SunOS FS

place Key: [Sprite LFS
. - — i Files/sec (measured)
« Reduces chance of corrupting existing grei;e:;e?g?ﬁq 10': df'elf)s o — —
data. - wl-H i
0Old data in log al ; — Delete them ool i
- ata in log always safe. . . o I Y
_ Order of magnitude o N Y T
Crashes only affect recent data improvement in o -
+ As opposed to updating (and corrupting) the root performance for small 10
directory. writes 20 I
Create Read Delete
10000 1K file access
UL, ° UL, *
-@ NEW S -@ NI
LFS a clear winner? Clustering
Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan
“File System Logging Versus Clustering: A Performance Comparison”
. . -
« Authors involved in BSD-LFS —
— log structured file system for BSD 4.4 —
— enable direct comparison with BSD-FFS 4
« including recent clustering additions —
+ Importantly, a critical examination of T |
cleaning overhead E —
UL, N UL, °
-@ NEW S -@ NI
Original Sprite-LFS Benchmarks Large File Performance
Small file 100 Meg file
% 600 —1 g
¢ w1 nRnlgl ;
’ A imblTE :
Booire Bomame oorreme Bowers Mowosrs Daeronss
18

THEE UNIVERSITY OF 17
NEW SOUTH WALES
s

THE UNIVERSITY OF
NEW SOUTH WALES

=

Create performance

25

20
15 T—— =

10
0.5 —

Throughput (in MB/sec)

0.0 T T T TTT
1 16 256 4096 65536

File Size (in KB)

LFs — FFS-m8r0 ~* FFS-m8r2

THE UNIVERSITY OF
NEW SOUTH WALES

%

25
2.0 —

15
1.0

05

Throughput (in MB/sec)

0.0 T T T TTT
1 16 256 4096 65536

File Size (in KB)

LFS — FFS-m8r0 ' FFS-m8r2

THEE UNIVERSITY OF 20
NEW SOUTH WALES

Throughput (in MB/sec)

0.0 T T T TTT

1 16 256 4096 65536

File Size (in KB)

LFS — FFS-m8r0 ** FFS-m8r2

THE UNIVERSITY OF
NEW SOUTH WALFS
—

21

L

Files per second (log scale)

64

32 — —
16 —

8

8 NN
2

1 L) B e 3

1 16 256 4096 65536

File Size (in KB)

LFS — FFS-m8r0 *** FFS-m8r2

THEE UNIVERSITY OF 22
NEW SOUTH WALES

4500
40.00
35.00
30.00
25.00
20,00
1500
1000

500

0.00

Transactions per secand

4000 5000 6000 7000 8000 9000

Disk utiization (percent)

© LFS wicleaner = LFS wiout cleaner LES

THE UNIVERSITY OF
NEW SOUTH WALES

s

23

%

LFS not a clear winner

When LFS cleaner overhead is ignored, and FFS runs on a new,
unfragmented file system, each file system has regions of performance
dominance.

— LFSis an order of magnitude faster on small file creates and deletes.

— The systems are comparable on creates of large files (one-half megabyte or more).

— The systems are comparable on reads of files less than 64 kilobytes.

— LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS
is comparable.

— LFS write performance is superior for files of 256 kilobytes or less.

— FFS write performance is superior for files larger than 256 kilobytes.
Cleaning overhead can degrade LFS performance by more than 34% in a
transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.

THE UNIVERSITY OF 24
NEW SOUTH WALES

Journaling file systems

» Hybrid of
— |-node based file system
— Log structured file system (journal)
» Many variations
— log only meta-data to journal (default)
— log-all to journal
» Need to write-twice (i.e. copy from journal to i-
node based files)
» Example — ext3
— Main advantage is guaranteed meta-data consistency

THEE UNIVERSITY OF 25
NEW SOUTH WALTS

s

