
1

1

Log Structured File Systems

Learning Outcomes

• An understanding of the performance of Inode-

based files systems when writing small files.

• An understanding of how a log structured file

system can improve performance, and increase

reliability via improved consistency guarantees

without the need for file system checkers.

• An understanding of “cleaning” and how it might

detract from performance.

2

3

Motivating Observations

• Memory size is growing at a rapid rate⇒ Growing proportion of file system reads will be satisfied by file system buffer cache⇒ Writes will increasingly dominate reads
4

Motivating Observations

• Creation/Modification/Deletion of small files form the majority of a
typical workload

• Workload poorly supported by traditional Inode-based file system
(e.g. BSD FFS, ext2fs)
– Example: create 1k file results in: 2 writes to the file inode, 1 write to

data block, 1 write to directory data block, 1 write to directory inode ⇒ 5 small writes scattered within group– Synchronous writes (write-through caching) of metadata and
directories make it worse

• Each operation will wait for disk write to complete.

• Write performance of small files dominated by cost of metadata
writes

Super

Block

Group

Descrip-

tors

Data

Block

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

5

Motivating Observations

• Consistency checking required for ungraceful

shutdown due to potential for sequence of

updates to have only partially completed.

• File system consistency checkers are time

consuming for large disks.

• Unsatisfactory boot times where consistency

checking is required.

6

Basic Idea!!!

• Buffer sequence of updates in memory
and write all updates sequentially to disk in

one go.

Data Inode Dir
Meta-

Data

Disk

2

Example

7 8

Issues

• How do we now find I-nodes that are scattered

around the disk?⇒ Keep a map of inode locations– Inode map is also “logged”– Assumption is I-node map is heavily cached and rarely results in extra disk accesses– To find block in the I-node map, use two fixed location on the disk contains address of block of the inode map• Two copies of the inode map addresses so we can recover if error during updating map.

9

Implementing Stable Storage

• Use two disks to implement stable storage
– Problem is when a write (update) corrupts old version,

without completing write of new version

– Solution: Write to one disk first, then write to second after
completion of first

10

LFS versus FFS

• Comparison of creating two small files

11

Issue

Disks are Finite in Size

• File system “cleaner” runs in background

– Recovers blocks that are no longer in use by

consulting current inode map

• Identifies unreachable blocks

– Compacts remaining blocks on disk to form

contiguous segments for improved write

performance

12

Issue

Recovery
• File system is check-pointed regularly which saves

– A pointer to the current head of the log

– The current Inode Map blocks

• On recovery, simply restart from previous checkpoint.

– Can scan forward in log and recover any updates written after

previous checkpoint

– Write updates to log (no update in place), so previous checkpoint

always consistent

Checkpoint

Location

3

13

Reliability

• Updated data is written to the log, not in
place.

• Reduces chance of corrupting existing

data.

– Old data in log always safe.

– Crashes only affect recent data

• As opposed to updating (and corrupting) the root
directory.

14

Performance

• Comparison between LFS
and SunOS FS
– Create 10000 1K files

– Read them (in order)

– Delete them

• Order of magnitude
improvement in
performance for small
writes

LFS a clear winner?

• Authors involved in BSD-LFS

– log structured file system for BSD 4.4

– enable direct comparison with BSD-FFS

• including recent clustering additions

• Importantly, a critical examination of

cleaning overhead

15

Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan

”File System Logging Versus Clustering: A Performance Comparison”

Clustering

16

Original Sprite-LFS Benchmarks

Small file

17

Large File Performance

100 Meg file

18

4

Create performance

19 20

21 22

23

LFS not a clear winner

• When LFS cleaner overhead is ignored, and FFS runs on a new,

unfragmented file system, each file system has regions of performance
dominance.

– LFS is an order of magnitude faster on small file creates and deletes.

– The systems are comparable on creates of large files (one-half megabyte or more).

– The systems are comparable on reads of files less than 64 kilobytes.

– LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS

is comparable.

– LFS write performance is superior for files of 256 kilobytes or less.

– FFS write performance is superior for files larger than 256 kilobytes.

• Cleaning overhead can degrade LFS performance by more than 34% in a

transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.

24

5

Journaling file systems

• Hybrid of

– I-node based file system

– Log structured file system (journal)

• Many variations

– log only meta-data to journal (default)

– log-all to journal

• Need to write-twice (i.e. copy from journal to i-

node based files)

• Example – ext3

– Main advantage is guaranteed meta-data consistency
25

