Learning Outcomes

» An understanding of the performance of Inode-
based files systems when writing small files.

LOQ Structured File Systems » An understanding of how a log structured file

system can improve performance, and increase
reliability via improved consistency guarantees
without the need for file system checkers.

» An understanding of “cleaning” and how it might
detract from performance.
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Motivating Observations Motivating Observations
. . . . « Creation/Modification/Deleti f Il files f th jority of
- Memory size is growing at a rapid rate typical workload oo e o e maery o1 2
. . ) »  Workload poorly supported by traditional Inode-based file system
= Growing proportion of file system reads (e.g. BSD FFS, extfs)
will be satisfied by file system buffer cache T A odie T et Giresiary Gta biogk, 1 wike 16 Gregiory mods
) L ) ) = 5 small writes scattered within group
= Writes will |ncreaS|neg dominate reads —  Synchronous writes (write-through caching) of metadata and

directories make it worse
« Each operation will wait for disk write to complete.
»  Write performance of small files dominated by cost of metadata

writes
Group Data
Super Descrip- | Block ]1.10de Inode Data blocks
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Motivating Observations Basic ldea!!!
» Consistency checking required for ungraceful + Buffer sequence of updates in memory
shutdown due to potential for sequence of and write all updates sequentially to disk in

updates to have only partially completed.

« File system consistency checkers are time
consuming for large disks.

» Unsatisfactory boot times where consistency

checking is required.
==

Disk
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Example
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Issues

» How do we now find I-nodes that are scattered
around the disk?
= Keep a map of inode locations
— Inode map is also “logged”
— Assumption is I-node map is heavily cached and
rarely results in extra disk accesses
— To find block in the I-node map, use two fixed location
on the disk contains address of block of the inode
map

» Two copies of the inode map addresses so we can recover if
error during updating map.
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Implementing Stable Storage

ECC
Disk  °™  Disk Disk Disk Disk
12 N1 2 12 12 12
o .
7 ?
% New| New| / New| New|
% %
t t | t t
Crash Crash Crash Crash Crash
(a) (b) (c) (C)] (e)

» Use two disks to implement stable storage

— Problem is when a write (update) corrupts old version,
without completing write of new version

— Solution: Write to one disk first, then write to second after
completion of first
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LFS versus FFS

» Comparison of creating two small files

Log—3 Disk ‘

Sprite LFS

dirl dir2

Block key: m Inode I Directory |:| Data H Inode map
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Issue
Disks are Finite in Size

+ File system “cleaner” runs in background
— Recovers blocks that are no longer in use by
consulting current inode map
+ Identifies unreachable blocks
— Compacts remaining blocks on disk to form
contiguous segments for improved write
performance
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Issue
Recovery

File system is check-pointed regularly which saves

— A pointer to the current head of the log

— The current Inode Map blocks

» On recovery, simply restart from previous checkpoint.

— Can scan forward in log and recover any updates written after
previous checkpoint

— Write updates to log (no update in place), so previous checkpoint
always consistent
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Checkpoint
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Reliability

» Updated data is written to the log, not in

Performance

« Comparison between LFS
and SunOS FS

place Key: [ Sprite LFS
. - — i Files/sec (measured)
« Reduces chance of corrupting existing grei;e:;e?g?ﬁq 10': df'elf)s o — —
data. - wl-H i
0Old data in log al ; — Delete them ool i
- ata in log always safe. . . o I Y
_ Order of magnitude o N Y T
Crashes only affect recent data improvement in o -
+ As opposed to updating (and corrupting) the root performance for small 10
directory. writes 20 I
Create Read Delete
10000 1K file access
UL, ° UL, *
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LFS a clear winner? Clustering
Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan
“File System Logging Versus Clustering: A Performance Comparison”
. . -
« Authors involved in BSD-LFS —
— log structured file system for BSD 4.4 —
— enable direct comparison with BSD-FFS 4
« including recent clustering additions —
+ Importantly, a critical examination of T |
cleaning overhead E —
UL, N UL, °
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Original Sprite-LFS Benchmarks Large File Performance
Small file 100 Meg file
% 600 —1 g
¢ w1 nRnlgl ;
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Create performance
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Files per second (log scale)
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LFS not a clear winner

When LFS cleaner overhead is ignored, and FFS runs on a new,
unfragmented file system, each file system has regions of performance
dominance.

— LFSis an order of magnitude faster on small file creates and deletes.

— The systems are comparable on creates of large files (one-half megabyte or more).

— The systems are comparable on reads of files less than 64 kilobytes.

— LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS
is comparable.

— LFS write performance is superior for files of 256 kilobytes or less.

— FFS write performance is superior for files larger than 256 kilobytes.
Cleaning overhead can degrade LFS performance by more than 34% in a
transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.
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Journaling file systems

» Hybrid of
— |-node based file system
— Log structured file system (journal)
» Many variations
— log only meta-data to journal (default)
— log-all to journal
» Need to write-twice (i.e. copy from journal to i-
node based files)
» Example — ext3
— Main advantage is guaranteed meta-data consistency
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