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ABSTRACT 
Disk schedulers in current operating systems are generally 
work-conserving, i.e., they schedule a request as soon as 
the previous request has finished. Such schedulers often re- 
quire multiple outstanding requests from each process to meet 
system-level goals of performance and quality of service. Un- 
fortunately, many common applications issue disk read re- 
quests in a synchronous manner, interspersing successive 
requests with short periods of computation. The scheduler 
chooses the next request too early; this induces deceptive 
idleness, a condition where the scheduler incorrectly assumes 
that the last request issuing process has no further requests, 
and becomes forced to switch to a request from another pro- 
c e 8 8 .  

We propose the anticipatory disk scheduling framework to 
solve this problem in a simple, general and transparent way, 
based on the non-work-conserving scheduling discipline. Our 
FreeBSD implementation is observed to yield large benefits 
on a range of microbenchmarks and real workloads. The 
Apache webserver delivers between 29~o and 71~o more throu- 
ghput on a disk-intensive workload. The Andrew filesystem 
benchmark runs faster by 8~o, due to a speedup of 5 ~  in 
its read-intensive phase. Variants of the TPC-B database 
benchmark exhibit improvements between 2~o and 60~o. Pro- 
portional-share schedulers are seen to achieve their contracts 
accurately and efficiently. 

1. INTRODUCTION 
Disk scheduling has been an integral part  of operating sys- 
tem functionality since the early days [7, 13, 15, 22, 34]. This 
paper examines disk scheduling from a system-wide perspec- 
tive, identifies a phenomenon called deceptive idleness and 
proposes anticipatory scheduling as an effective solution. 

Disk schedulers are typically work-conserving, since they se- 
lect a request for service as soon as (or before) the previous 
request has completed [23]. Now consider processes issu- 
ing disk requests synchronously: each process issues a new 
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request shortly after its previous request has finished, and 
thus maintains at most one outstanding request at any time. 
This forces the scheduler into making a decision too early, 
so it assumes that  the process issuing the last request has 
momentari ly no further disk requests, and selects a request 
from some other process. I t  thus suffers from a condition 
we call deceptive idleness, and becomes incapable of consec- 
utively servicing more than one request from any process. 

I t  is common for da ta  requested by a process to be sequen- 
tially positioned on disk. Nevertheless, deceptive idleness 
forces a seek optimizing scheduler to multiplex between re- 
quests from different processes. The ensuing head seeks can 
cause performance degradation by up to a factor of four, 
as shown in the next section. In the related problem of 
proportional-share disk scheduling, meeting a given contract  
(i.e., a proportion assignment) may require the scheduler 
to consecutively service several requests from some process. 
Deceptive idleness precludes this requirement, thus limiting 
the scheduler's capacity to satisfy certain contracts. In both 
cases, the scheduler is reordering the available requests cor- 
rectly, but  system-wide goals are not met. 

This paper proposes the anticipatory disk scheduling frame- 
work, and applies it  to various disk scheduling policies. I t  
solves deceptive idleness as follows: before choosing a re- 
quest for service, it sometimes introduces a short, controlled 
delay period, during which the disk scheduler waits for ad- 
ditional requests to arrive from the process that  issued the 
last serviced request. The disk is kept idle for short periods 
of time, but  the benefits gained from being able to service 
multiple requests from the same process easily outweigh this 
loss in utilization. The framework is thus an application of 
the non-work-conserving scheduling discipline. The exact 
tradeoffs are sensitive to the original scheduling policy, so 
to determine whether and how long to wait each time, we 
propose adaptive heuristics based on a simple cost-benefit 
analysis. 

We implement anticipatory scheduling as a kernel module in 
the FreeBSD operating system, evaluate it  against a range 
of microbenchmarks and real workloads, and observe sig- 
nificant performance improvements and bet ter  adherence 
to quality of service objectives. For a trace-based, disk- 
intensive workload, the Apache webserver delivers between 
29% and 71% more throughput  by capitalizing on seek re- 
duction within files. The synchronous, read-intensive phase 
of the Andrew filesystem benchmark runs faster by 54% due 
to seek reduction both between files and within each file; 
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consequently, the overall benchmark improves by 8%. Vari- 
ants of the TPC-B database benchmark exhibit speedups 
between 2% and 60%: in the la t ter  case, deviating from 
a s tandard TPC-B setup, by subjecting read-only queries 
to multiple separate databases leads to more seek reduction 
opportunities. The Stride proport ional  disk scheduler [32] 
achieves its assigned allocations even for synchronous I /O  
(assuming there is sufficient load), and simultaneously de- 
livers high throughput.  

After an exposition and analysis of deceptive idleness, we 
describe anticipatory scheduling in Section 3, and delve into 
a detailed experimental  evaluation in Section 4. We discuss 
some emergent issues in Section 5, describe related work in 
Section 6, and conclude. 

2. DECEPTIVE IDLENESS 
This section describes and analyzes the phenomenon of de- 
ceptive idleness with two examples. In each case, the sched- 
uler faces a shortage of the desired type  of requests at  critical 
moments. 

Example #1: Seek reducing schedulers 
Here is an example of how a seek reducing disk scheduler can 
degenerate to FCFS-like behaviour, and potential ly suffer 
throughput  loss by a factor of 4. Consider an operat ing sys- 
tem equipped with any seek reducing scheduler, like Short- 
est Positioning-Time First  (SPTF)  or CSCAN [34]. Let 
two disk-intensive processes p and q each issue several disk 
requests to separate sets of sequentially posit ioned 64 KB 
blocks. In the interest of seek reduction and throughput  
improvement, the scheduler would be expected to consecu- 
tively service many requests from p 's  set, then perform one 
expensive head repositioning operation, and service many 
of q's requests. This happens in practice, provided each 
process maintains one or more pending requests whenever 
the scheduler makes its decision: these moments in t ime 
are called decision points. Such an experiment results in a 
sustained throughput  of 21 MB/s  on our disk, owing to a 
service t ime of 3ms for every 64 KB block. 

Now consider a scenario where the above requests are is- 
sued synchronously by the two processes, i.e., each process 
generates a new request a few hundred microseconds after 
its previous one finishes. A work-conserving disk scheduler 
never keeps the disk idle when there are any requests pend- 
ing for service. It therefore tries to schedule some request 
immediately after (say p's) request has completed. At  this 
decision point, process p has not yet been given the chance 
to perform the computat ion required to generate its next re- 
quest. This forces the scheduler into choosing a request from 
q, performing a large head seek to tha t  part  of the disk, and 
servicing tha t  request. The subsequent request for p arrives 
soon after, but  disk scheduling is non-preemptible,  and it is 
now too late to service this nearby request. This leads to the 
scheduler alternating in an FCFS manner  between requests 
from the two processes. Throughput  falls to 5 MB/s,  due 
to 9ms of average seek t ime and 3ms of read t ime for every 
64 KB block. The problem persists even if more than two 
processes issue synchronous requests. In this  case, CSCAN 
degenerates to a round-robin scheduler, whereas SPTF al- 
ternates between some pair of processes. 

Example #2: Proportional-share schedulers 
This example shows how deceptive idleness can affect sched- 
ulers in ways other than degrading throughput .  Consider a 
proportional-share scheduler like Yet-another Fair Queueing 
(YFQ) [7], Stride Scheduling [32], or Lot tery Scheduling [31]. 
Their intended behaviour is to deliver disk service to multi-  
ple applications (e.g., processes p and q) in accordance with 
an arbi t rary  preassigned ratio. For an assignment of 1:2 (or 
33%:66%), the scheduler may service a few requests for pro- 
cess p, and correspondingly, about twice as many requests 
for process q. However, if these processes maintain only one 
outstanding request at  critical moments,  then as in the pre- 
vious example, the work-conserving scheduler is forced to al- 
ternate  between requests from the two processes. I t  becomes 
incapable of adhering to the desired contract  for this work- 
load, and instead achieves proportions much closer to 1:1. 
Figure 1 shows results of such an experiment.  This effect on 
proportional-share schedulers has been noted in [26] §5.6. 

+'l ' ' T 
---&-- Desired 1:2 allocation to two processes ...-'" 

~ Achieved 1:1 allocation due to Deceptive Idleness.Q-" 

,,.- 
4 .O"'" - 

.-~ G¢'" 
.,=, .°g 

~ ' "  . ° . @  . . . .  
- ~  y ' "  ° ~ . ° . "  

~'~ 2 .O'" . . . ~  . . . .  
. ~  "'+ . . . . 0 °  o=° 

. =" . . . ~ ° . "  

*'~ S " "  . o &D ° ° - " 
. " . . {~° . ° "  

¢D 

3 6 

Experimental time (seconds) 

F i g u r e  1: A p r o p o r t i o n a l - s h a r e  scheduler :  T h e  o u t e r  
pair  o f  l ines  d e n o t e  ideal  s c h e d u l e r  r e s p o n s e  to  a n  
a l l o c a t i o n  rat io  o f  1:2 to  t h e  two  proces se s .  I n n e r  
pair  o f  l ines:  s y n c h r o n o u s  I / O  causes  r e q u e s t s  to  b e  
a l m o s t  a l t e r n a t e l y  s e r v i c e d  f rom t h e  two  p r o c e s s e s ,  
y i e l d i n g  p r o p o r t i o n s  m u c h  c loser  to  1:1. 

If we have three active processes instead, say p, q, r with 
shares of 1:1:3, then Stride will be forced to schedule requests 
from processes in the sequence r, p, r, q, etc. and achieve the 
skewed proportions of 1:1:2. For nontrivial reasons, a lot- 
tery disk scheduler under similar circumstances will deliver 
proportions of 2:2:3 instead (see [14] §4.2.2 for details). 

The underlying problem 
In both examples, the scheduler reorders the available re- 
quests according to its scheduling policy, but  fails to meet 
overall objectives of performance and quality of service. In 
essence, processes tha t  issue synchronous requests cause the 
work-conserving disk scheduler to receive no requests from 
that  process, in t ime for the following decision p o i n t )  This 
leads to deceptive idleness, rendering the scheduler inca- 
pable of exploiting spatial  and temporal  locality among syn- 
chronous requests. 

1This happens despite the system-wide request queue gen- 
erally being long and bursty on loaded server systems [22]. 
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2.1 Prefetching 
It is possible to partially work around the problem of decep- 
tive idleness by using asynchronous prefetch. This involves 
predicting the future request issue pattern for a process, 
and issuing its immediately forthcoming request before the 
current one completes. Each process thus maintains mul- 
tiple outstanding requests at decision points, and gives the 
scheduler the chance to service consecutive requests from the 
same process. Seek reduction opportunities can therefore 
be exploited if requests issued by a process are sequential. 
Likewise, a proportional-share scheduler would now have the 
capacity to adhere to its contract, even for synchronous re- 
quests. 

Prefetch can be effected either explicitly by the application 
or transparently by the kernel. However, both approaches 
have fundamental limitations in terms of feasibility, accu- 
racy, and overhead. 

Application-driven prefetch 
Applications can embrace programming paradigms and tech- 
niques that  prevent the onset of deceptive idleness. They 
can use asynchronous I /O  using APIs such aio._TeadO to 
prefetch future requests. Alternatively, they can roll their 
own asynchronous I /O  using multiple processes or kernel 
threads, to proactively issue disk requests of the right type 
(e.g., sequential). 

There are several problems with this. (1) Applications are 
often fundamentally unaware of their future access pattern, 
and may be incapable of issuing accurate prefetch requests. 
Examples include filesystem metadata and database index 
traversals, and predicting future requests in webservers. (2) 
Applications may have to be written in a cumbersome pro- 
gramming paradigm, whereas most applications are better 
suited to a sequential programming style. (3) Existing ap- 
plications would have to be rewritten for this purpose, which 
may not be desirable or even possible under some circum- 
stances. (4) Issuing explicit read requests using Unix API  
functions (instead of memory mapping a file) may entail 
more data copying and cache pollution, which could be- 
come expensive for in-memory workloads. Lastly, (5) the 
aio_read system call is an optional POSIX realtime exten- 
sion, and may not be implemented or enabled in some op- 
erating systems. 

Kernel-driven prefetch 
Filesystems can (and most do) try to guess future request 
patterns for applications and issue separate asynchronous 
prefetch requests 2 for them. The usual reason is to overlap 
computation with I /O  [24], but  this prefetching also pre- 
vents deceptive idleness. There are, however, limitations to 
this transparent approach. The file system is typically even 
less capable of predicting future access patterns than appli- 
cations are. Prefetch needs an exact notion of the location of 
the next request, and the penalties of misprediction can be 
high. This forces the prefetching to be complicated, yet con- 
servative. Applications such as database systems can issue 
requests possessing spatial locality, but their access patterns 
may be extremely difficult to detect and effectively prefetch. 

2different from synchronous readahead, where requests are 
enlarged to 64 KB to amortize seek costs over larger reads. 

Finally, sequentially accessed medium-sized files are often 
too small for the filesystem to detect sequential access and 
confidently issue prefetch requests. In summary, prefetching 
can potentially alleviate and even eliminate deceptive idle- 
ness, but limitations in its feasibility and effectiveness under 
many conditions discount it as a general solution. 

Studies have shown an increasing trend in modern disk- 
intensive applications to issue non-sequential disk requests 
that  nonetheless possess spatial locality [19, 30]. Prefetching 
has limited utility in these cases, and it is vital to consider 
complementary and more widely applicable alternatives. 

3. ANTICIPATORY SCHEDULING 
We now present a simple, practical~ general, application- 
transparent and low-overhead solution to deceptive idleness. 
There are three necessary conditions for deceptive idleness 
to manifest itself: (a) multiple disk-intensive applications 
concurrently issuing synchronous disk requests, (b) the in- 
trinsic non-preemptible nature of disk requests, and (c) a 
work-conserving disk scheduler, which schedules a request 
immediately upon completion of the previous request. Our 
solution takes the intuitive approach of eliminating condi- 
tion (c), by wrapping a given disk scheduling policy in a 
non-work-conserving anticipatory scheduling framework. 

When a request completes, the framework potentially waits 
briefly for additional requests to arrive, before dispatching 
a new request to the disk. Applications that quickly gener- 
ate another request can do so before the scheduler takes its 
decision; deceptive idleness is thus avoided. The fact that  
the disk remains idle during this short period is not neces- 
sarily detrimental to performance. On the contrary, we will 
show how a careful application of this method consistently 
improves throughput and adheres more closely to desired 
service allocations. 

The question of whether and how long to wait at a given 
decision point is key to the effectiveness and performance of 
our system. In practice, the framework waits for the short- 
est period of time over which it expects, in high probability, 
for the benefits of waiting to outweigh the costs of keeping 
the disk idle. An assessment of these costs and benefits is 
only possible relative to a particular scheduling policy: a 
seek reducing scheduler may wish to wait for contiguous or 
proximal requests, whereas a proportional-share scheduler 
may prefer weighted fairness as its primary criterion. To 
allow for such flexibility, while minimizing the burden on 
the developer of a particular disk scheduler, the anticipa- 
tory scheduling framework consists of three components: (1) 
The original disk scheduler, which implements the schedul- 
ing policy and is unaware of anticipatory scheduling; (2) a 
scheduler-independent anticipation core; and, (3) adaptive 
scheduler-specific anticipation heuristics for seek reducing 
and proportional-share schedulers. 

Figure 2 depicts the architecture of the framework. The 
anticipation core implements the generic logic and timing 
mechanisms for waiting, and relies on the anticipation heuris- 
tic to decide if and how long to wait. This heuristic is im- 
plemented separately for each scheduler, and has access to 
the internal state of the scheduler. To apply anticipatory 
scheduling to a new scheduling policy, one merely has to 
implement an appropriate anticipation heuristic. 
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Various Kemel Subsystems 

disk requests~, 

Figure 2: Anticipatory scheduling framework 

The remainder of this section spells out our two assumptions 
about workload characteristics, then describes the anticipa- 
tory scheduling framework, followed by appropria te  antic- 
ipation heuristics for seek reducing and proportional-share 
schedulers. Finally it covers some implementat ion issues. 

3.1 Workload assumptions 
We tentatively make two assumptions about  the granulari ty 
at which applications issue related disk requests. 

Assumption ~ 1 :  Synchronous disk requests are issued by 
individual processes. In most applications, a dependence be- 
tween disk requests is explicitly reflected in code structure,  
so it is uncommon for multiple processes to coordinate to 
issue a set of synchronous requests. This assumption serves 
two purposes: (a) it considerably simplifies the anticipation 
heuristic, by requiring it to wait only for the process tha t  
issued the last request, and (b) it allows the anticipation 
core to optimize for the  common case when this process gets 
blocked upon issuing a synchronous request. 

Assumption ~]:2: Barring occasional deviations, all re- 
quests issued by an individual process have approximately 
similar degrees of spatial and temporal locality with respect 
to other requests from that process, and these properties do 
not change very rapidly with time. The anticipation heuris- 
tic adaptively learns application characteristics on a per- 
process granularity; this assumption constitutes the  basic 
requirement for adapta t ion  to be possible. We therefore as- 
sume that  a process does not interleave disk requests with 
markedly different locality properties. 

Experimental  results with real applications repor ted in Sec- 
tion 4 indirectly confirm tha t  these assumptions hold to a 
sufficient degree. Relaxing these assumptions to accommo- 
date a larger range of workloads is the subject  of future work; 
some ideas in this direction are suggested in Section 5.2.2. 

3.2 The anticipation core 
A tradi t ional  work-conserving scheduler has two states, IDLE 
and BUSY, with transit ions on scheduling and completion of 
a request. Applications can issue requests at  any time; these 

are placed into the scheduler's pool of requests. If the disk 
is idle at this moment,  or whenever another request com- 
pletes, a request is scheduled: the scheduler's select function 
is called, whereupon a request is chosen from the pool and 
dispatched to the disk driver. 

The anticipation core forms a wrapper  around this t radi-  
tional scheduler. Whenever the disk becomes idle, it  in- 
vokes the scheduler to select a candidate request (as before). 
However, instead of dequeuing and dispatching immediately,  
it first passes this request to the anticipation heuristic for 
evaluation. A result of zero indicates tha t  the heuristic has 
deemed it pointless to wait; the core therefore proceeds to 
dispatch the candidate request. However, a positive inte- 
ger represents the waiting period in microseconds tha t  the 
heuristic deems suitable. The core initiates a t imeout  for 
tha t  period, and enters the new WAIT state.  Though the 
disk is inactive, this s tate differs from IDLE by having pend- 
ing requests and an active t imeout.  

If the t imeout expires before the arrival of any new request, 
then the previously chosen request is dispatched without  
further ado. However, new requests may arrive during the 
waiting period; these requests are added to the pool. The 
anticipation core then immediately asks the scheduler to se- 
lect a new candidate request from the pool, and asks the  
heuristic to evaluate this candidate.  This may lead to im- 
mediate dispatch of the new candidate request, or it  may 
cause the core to remain in the WAIT state,  depending on the 
scheduler's selection and the anticipation heuristic 's evalu- 
ation. In the lat ter  case, the original t imeout remains in 
effect, thus preventing unbounded waiting by repeatedly re- 
triggering the timeout.  The state diagram in Figure 3 illus- 
trates this decision process. 

schedule... 
heuristic: don't wait 

/ - - - - - . . ~  

schedule...~ /Schedule... 
heuristic: wait ~ / heuristic: don't wait 

~ / (OR) timeout expired 

@~ s~edule... 
heunstlc wait 

Figure 3: Waiting mechanism, state diagram 

There is a scheduler-independent optimization on the above 
algorithm: if the process that  issued the last request blocks 
on I /O  by issuing a synchronous request, then assumption 
#1  suggests tha t  a dependent request will not arrive from 
any other process. The anticipation heuristic can thus be 
short-circuited, and the chosen request immediately disp- 
atched. This happens quite often in practice, even on occa- 
sions when the heuristic would have decided to wait further. 

3.3 Seek reducing schedulers 
This section describes scheduler-specific anticipation heuris- 
tics for seek reducing schedulers such as SPTF,  Aged-SPTF 
and CSCAN. The Shortest Positioning-Time First  policy [34] 
(also known as Shortest Time First  [22] and Shortest Access- 
Time First  [15]) calculates the positioning time for each 
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available request from the current head position, and chooses 
the one with the minimum. Our goal is to design an antici- 
pation heuristic tha t  maximizes the expected throughput.  

The heuristic needs to evaluate the candidate request cho- 
sen by the scheduling policy. The intuition is as follows: if 
this candidate request is located close to the current head 
position, then there is little point in waiting for additional 
requests. Otherwise, using assumption #1 ,  if the process 
tha t  issued the last request is likely to issue the next re- 
quest soon (i.e., its expected median thinktime 3 is small), 
and if that  request is expected to be close to the current 
head position, then the heuristic decides to wait for it. The 
waiti~ig period is chosen as the expected 95-percentile think- 
time, within which there is a 95% probabil i ty tha t  a request 
will arrive. 

This simple idea is generalized into a succinct cost-benefit 
equation, intended to handle the entire range of values for 
positioning times and thinktimes. Our throughput  objective 
translates to profitably balancing the benefit of waiting, i.e., 
expected gains in positioning time, against the cost of wait- 
ing, which is the additional t ime likely to be wasted. If LP 
is the last request issuing process, and elapsed is the t ime 
passed since completion of the previous request, then: 

benef i t  = (calculate_positioning_time(Candidate) 
- LP.expected_positioning_time) 

cost = max(0, 
LP.expected_rnedian_thinktirne - elapsed) 

waiting_duration = max(0, 
LP.expected_95percentile_thinktime - elapsed) 

re turn (benefi t  > cost ? waiting_duration : O) 

Positioning t ime for the candidate request is calculated with 
a suitable est imator (more on this in Section 3.6). Regard- 
ing the cost estimate: for requests tha t  arrive before the me- 
dian thinktime, the heuristic expects progressively shorter 
periods of additional waiting; hence elapsed is subtracted 
from the expected median thinktime. However, if we wait 
beyond this median, the heuristic expects a request to be 
issued sometime very soon, and cost at this point becomes 
zero. Secondly, in the WAIT state, the anticipation core pre- 
vents unbounded waiting by not retriggering the t imeout 
according to the heuristic 's evaluation. Yet we calculate the 
correct value of waiting_duration: this is done to allow for 
coarse-granularity timers, so that  a request arriving after 
the 95%ile thinktime will force an immediate  dispatch as if 
the t imeout had occurred just  then. 

The adaptive component of the heuristic consists of collect- 
ing online statistics on all disk read requests, to est imate 
the three expected times. The expected positioning t ime for 
each process is a weighted average over t ime of the position- 
ing time for requests from that  process, as measured upon 
request completion. The decay factor is set to forget 95% 

3We define thinktime for a process issuing a request as the 
interval between completion of the previous request issued 
by the process and issue of a new request. 

of the old positioning time value after ten requests, so the 
heuristic adapts  fast. An alternate, approximate method is 
to track the expected seek distance of a request from the pre- 
vious request issued by that  process, and calculate expected 
positioning t ime on the fly. 

Expected median and 95%ile thinktimes are est imated by 
maintaining a decayed frequency table of request thinktimes 
for each process. Thinktimes are computed from the t ime 
of completion of the last request issued by a given process, 
to the current time. If, however, the scheduler already has 
a read request queued for this same process, then this new 
request is t reated as asynchronous and its thinktime is set 
to zero. The heuristic maintains 30 per-process buckets that  
store the count of requests tha t  arrive after various think- 
times, ranging from 0 to 15ms at a granularity of 500/~s 
per bucket. These bucket counts are all decayed by reduc- 
ing them to 90% of their  original values for every incoming 
request for tha t  process. The distr ibution of thinktimes usu- 
ally looks like a bell curve; this is consistent with assumption 
~2.  (For many applications, the crest is located at  about  
lms) .  The heuristic calculates the median and 95%ile points 
of this curve; it  does all the above for every incoming syn- 
chronous request. 

This heuristic is suitable for the conceptually simple SPTF  
policy. We now consider modifying it for two other seek 
reducing schedulers, namely Aged-SPTF and CSCAN. 

Variant: A g e d - S P T F  
SPTF is known to suffer from potential  starvation, since 
requests for distant locations on the disk may never get ser- 
viced. To bound response time, Aged-SPTF (also known 
as Aged-SATF and Weighted-SPTF) has been proposed as 
a variant: requests in the SPTF queue are associated with 
priorities, which are raised in some manner (often gradually) 
with queued time. A request with sufficiently high priority 
overrules the SPTF  decision and gets scheduled [15, 22, 34]. 

The anticipation heuristic for SPTF  works for Aged-SPTF 
also, with one minor limitation. When Aged-SPTF chooses 
a distant request that  is too old, the SPTF  heuristic would 
be unaware of this. I t  may decide to wait for additional,  
nearby requests. However, even if a new request from the 
last process arrives in this period, the scheduler then con- 
tinues to pick the same old request. The last process then 
gets blocked, and the scheduler-chosen candidate is serviced 
as desired. This incurs one unnecessary thinktime on each 
of such occasions; this minor performance problem can be 
fixed by customizing the heuristic to the Aged-SPTF policy: 
whenever Aged-SPTF selects a request tha t  is different from 
the request tha t  SPTF would correspondingly choose, then 
we decide not to wait. 

Variant: C S C A N :  Cyclic S C A N  
CSCAN (also known as C-LOOK) is an extremely popular 
scheduling policy, and is implemented in many Unix-based 
operat ing systems. It is the unidirectional version of El- 
evator /SCAN/LOOK; it moves the head in one direction, 
servicing all requests in its path,  and then starts over at the 
first available request. 

Our anticipation heuristic for this scheduler is based on the 
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one for SPTF,  with one addit ional clause. The statistics 
collection module in the heuristic additionally maintains a 
decayed expectation of the seek direction: forward or back- 
ward. On evaluating a request, if the current candidate 
involves a forward seek and the expected next request has a 
fairly high likelihood (more than 80%) of a backward seek, 
then we bypass the cost-benefit equation and decide not to 
wait. In the opposite case, we wait for the usual amount 
of time. For applications performing random access, with 
roughly 50% of the seeks pointing in each direction, this 
heuristic for CSCAN is not ideal. This is because CSCAN 
itself is poorly suited to handle this case. 

3.4 Proportional-share schedulers 
We next present an anticipation heuristic designed for a 
proportional-share scheduler like Yet-another Fair Queueing 
(YFQ) [7] or Stride [32]. These policies maintain weighted 
vir tual  clocks to remember the amount of disk service re- 
ceived by each process. A request is chosen from the pro- 
cess with the smallest vir tual  clock, so as to advance them 
in tandem. 

Unfortunately, deceptive idleness forces these virtual  clocks 
to go out of sync. Some processes do not generate enough 
requests in time, and their  virtual  clock lags behind. Pro- 
cesses that  genuinely issue few disk requests also lag be- 
hind, but  their expected thinkt imes are high. Our heuristic 
is therefore as simple as waiting for the last process, if it  
meets three conditions: (a) it has no pending requests at  
the t ime its last requests completes, (b) it has an expected 
thinktime smaller than 3ms, and (c) it has a virtual  clock 
smaller than the minimum virtual  clock of processes with 
available requests (minclock). The 3ms threshold is chosen 
somewhat arbitrarily; there is no consistent way to balance 
weighted fairness against performance. 3ms is observed to 
be larger than the thinktimes for most applications, without 
being too large as to degrade performance. As before, we 
wait for the 95%ile point of the thinktime distr ibution for 
this process. 

3.5 Heuristic combination 
A proportional-share scheduler with an assignment of 1:2 
can service one request from the first process for every two 
requests from the second. Alternatively, it  can enable some 
seek reduction, by slightly relaxing the timescale on which it 
operates. This allows the scheduler to service n requests for 
the first process for every 2n requests for the second, where 
each set might contain sequential requests. One variation 
on this theme is suggested in [29], where the scheduler picks- 
from processes with vir tual  clocks between minclock and 
minclock + r (where ~- is a relaxation threshold, and could 
be 1 second). Among these, it  chooses the request with the 
smallest positioning time. 

We propose a combination heuristic for this scheduler, thus 
hinting at general methods of combining anticipation heuris- 
tics. This combination is necessary because: (1) the heuris- 
tic for SPTF,  if applied directly here, would not wait for 
either process if the access pa t te rn  were random, and would 
thus violate the proport ion assignment; (2) the heuristic for 
Stride, if used, would wait only for the process with higher 
share, and thus enable only part ia l  seek reduction. 

A straightforward approach of combining these two heuris- 

tics is to separately evaluate the candidate  request on each 
of the two, and return the larger of the  two evaluations. In 
other words, if the waiting decision is taken for either reason, 
then the combination will conservatively choose to wait. 

We identify and accommodate for two minor performance 
issues with this simplistic approach. Firstly, the Stride pol- 
icy has been relaxed due to the introduction of v. Condit ion 
(c) in the anticipation heuristic for Stride needs to be cor- 
respondingly changed from minclock to minclock + r. 

Secondly, consider the heuristic for S P T F  waiting for se- 
quential requests from process p, and successively servicing 
many such requests. At  some point, p ' s  vir tual  clock may 
become larger than  minclock + T, in which case the con- 
servative decision to wait becomes pointless. Our  heuristic 
watches for this condition and decides not  to wait. 

3.6 Implementation issues 
There are two implementat ion issues tha t  deserve elabora- 
tion, namely calculating positioning t ime for requests and 
building an inexpensive t imeout mechanism. 

Est imating access t ime for requests is nontrivial due to fac- 
tors like rotat ional  latency, t rack and cylinder skews, and 
features of modern disks like block remapping and recal- 
ibration. Nonetheless, much work has been done in this 
area, and it is possible to build a software-only predictor  
with over 90% accuracy [13, 15, 21, 35]. However, we used 
a much simpler logical block number based approximation 
to positioning time. A user-level program performs some 
measurements to capture the mapping between the logical 
block number difference between two requests and the cor- 
responding head positioning t ime, and fits a smooth curve 
through these points. This takes about  3 minutes at  disk 
installation time, but  can be made online and non-intrusive. 
This method automatical ly accounts for seek time, average 
rotat ional  latency and track buffers. I t  has an accuracy of 
about  75%, which we experimentally confirm to be sufficient, 
given the insensitivity of the anticipation heuristic. 

There are many possible t imer mechanisms to choose from. 
We use the i8254 Programmable Interval Timer (PIT) to 
generate interrupts  every 500ps, and build a simple t imeout  
system over that .  Experiments demonstrate  how this ra ther  
coarse-grained t imer is amply sufficient for our purposes. 
Each interrupt  causes a processing overhead of about  4#s 
on our hardware [2], thus causing about  1% CPU overhead 
on computat ional  workloads. Other t imeout mechanisms 
can be used in place of the i8254, if higher accuracy and 
lower overhead are desired. Some pentium-class processors 
(mostly SMPs) have an on-chip APIC that  delivers fine- 
grained interrupts  with an overhead of only 1 to 2#s per 
interrupt .  Alternatively, soft-timers [2] pose an extremely 
light-weight alternative. 

4. EXPERIMENTAL EVALUATION 
This section evaluates the anticipatory scheduling frame- 
work on a range of microbenchmarks and real workloads. We 
show tha t  this t ransparent  kernel-level solution eliminates 
deceptive idleness, and achieves significant performance im- 
provement and closer adherence to QoS objectives wherever 
applicable. 
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Code  and platform: We implemented the anticipatory 
scheduling framework and heuristics in the FreeBSD-4.3 ker- 
nel. The code comprises of a kernel module of about 1500 
lines of C code, and a small patch to the kernel for neces- 
sary hooks into the scheduler and disk driver. Unless oth- 
erwise stated, our experiments are conducted on a single 
550MHz Pentium-III  system, equipped with a 7200rpm IBM 
Deskstar 34GXP IDE disk and 128 MB of main memory. 

Schedulers: All experiments with a seek reducing sched- 
uler use Aged-SPTF unless otherwise specified. We config- 
ure this scheduler to perform shortest positioning-time first 
scheduling, with a bounded per-request latency of I second. 
This is found to achieve performance to within 1% of SPTF.  
Anticipatory scheduling involves an intrinsic latency trade- 
off: servicing multiple requests from one process for seek 
reduction necessarily increases request turnaround t ime for 
another. However, most server-type applications would find 
this small increase acceptable, in exchange for significant 
improvements in throughput.  A system that  desires lower 
latency may reduce the  above delay bound to say lOOms; 
this was measured to reduce the throughput  by at  most 8% 
on our system. 

Metrics: Our experiments employ two metrics of applica- 
tion performance: the application-observed throughput  in 
MB/s,  and the disk utilization. In our framework, a disk 
spends time either servicing requests (i.e., positioning head 
and transferring data)  or idling; we define disk utilization 
in an interval as the percentage of real t ime spent servicing 
requests. 4 This choice of the utilization metric depicts the 
fraction of t ime tha t  the disk is deliberately kept idle, and 
helps in understanding some throughput  measurements. 

T u r n i n g  off  f i l e s y s t e m  p r e f e t c h :  Some operating sys- 
tems, including FreeBSD, do not implement asynchronous 
prefetch in some subsystems. For example, the VM sub- 
system does not issue auxiliary prefetch requests for page 
faults that  are serviced from disk. Similarly, FreeBSD also 
does not perform asynchronous prefetch for s e n d f i l e O  and 
r e a d d i r O .  This allows us to effectively turn off prefetching 
for evaluation purposes, by mapping files to memory and 
accessing the memory locations. 

Two sets of microbenchmarks, exhibiting variations in ac- 
cess pat terns and thinktimes, serve to il luminate the work- 
ings of anticipatory scheduling as applied to seek reducing 
schedulers. 

4.1 Microbenchmark: Access patterns 
We study the effect of anticipatory scheduling on synchro- 
nous requests issued in different access patterns,  with and 
without filesystem prefetch enabled. Two processes rapidly 
issue 64 KB disk read requests into separate 1 GB files; these 
are either sequential (sex/), or target every al ternate 64 KB 
chunk (alter), or are randomly positioned within their re- 
spective files (random). Some experiments use the r ead  sys- 
tem call, for which FreeBSD 4.3 t ransparent ly issues asyn- 
chronous prefetch requests if the access pat tern  is detected 
to be sequential on disk. Other experiments map their  file 
into memory using mmap, and fault on the memory pages; 

4In contrast, a work-conserving scheduler never idles for a 
busy workload, and might prefer to define utilization as the 
percentage of service t ime spent transferring da ta  from disk. 

these are not subject to asynchronous prefetch. Figure 4 
shows the results. 
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Figure 4: Impact of  anticipatory scheduling on 
disk throughput and utilization, using sequential,  
alternate-block and random access workloads,  and 
read versus mmap based access. 

Asynchronous prefetch ensures tha t  sequential accesses us- 
ing read achieve almost full disk bandwidth (about 21 MB/s) .  
However, filesystems often lay out logically contiguous blocks 
of a large file as a set of separate regions on disk. On the 
infrequent occasions that  a boundary is crossed, FreeBSD's 
prefetching mechanism temporari ly  assumes non-sequential 
access and conservatively backs off. Anticipatory schedul- 
ing waits for such processes, thus exploiting spatial locality 
within the large file. Performance improves by about 5%, 
by steadily fetching blocks from one file until Aged-SPTF 
forces it to switch. 

Since mmap-ed accesses are not subject  to prefetch, antici- 
patory scheduling at tains four times bet ter  throughput  than 
the original case. This achieves throughput  almost equal to 
the maximum disk bandwidth; the 6% difference between 
the two is reflected by an almost equal fraction of t ime that  
the disk is kept idle. This mmap case is arguably a short- 
coming of FreeBSD's prefetch implementation. However, 
as exemplified in the following two cases of alter and ran- 
dom, non-sequential disk access using read  can use antici- 
patory scheduling to significantly improve throughput  wher- 
ever prefetching fails. 

Consider the second set of experiments,  where al ternate 
blocks are read. This defeats the FreeBSD prefetch heuris- 
tic, causing both read and mmap to achieve only 5 MB/s.  
Anticipatory scheduling improves throughput  to the max- 
imum tha t  can be achieved for al ternate blocks, i.e., half 
the disk bandwidth.  We will see several variants of such 
non-sequential access in real workloads. 

Lastly, in the random access case, the smaller improvements 
(28% and 30%) by anticipatory scheduling are because each 
process is performing random access within its respective 
file, so gains are mostly due to seek reduction between files. 

4.2 Microbenchmark: Varying thinktimes 
The next set of four microbenchmarks illustrates the impact 
of waiting on applications tha t  take different amounts of 
t ime to issue the next request. Two processes map separate, 
large files into memory, and fault on these memory pages se- 
quentially (thus without asynchronous prefetch). After ev- 
ery 64 KB, they pause for some amount of t ime as described 
below. 
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4.2.1 Symmetric processes: 
Consider Figure 5, where t ime t on the horizontal axis repre- 
sents the duration in milliseconds tha t  each process spends 
waiting between requests. Each da ta  point in the through- 
put  graph is a separate experiment.  For values of t up to 
8ms, the original system alternates between requests from 
the two processes, achieving only 5 MB/s.  When thinktime 
exceeds 8ms, the waiting time becomes comparable to re- 
quest service time, and utilization for the original system 
star ts  failing below 100%. Occasionally, deceptive idleness 
is avoided by servicing two successive requests for the same 
process. This fades away for larger values of t. 
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F i g u r e  5: I n c r e a s i n g  t h i n k t i m e s  for  b o t h  p r o c e s s e s  

With  anticipatory scheduling enabled, the situation changes 
as follows: When t = 0, we see the familiar situation where 
throughput  is four t imes tha t  of the original system. For 
larger values of t up to 8ms the effect of waiting becomes 
increasingly burdensome on throughput  and utilization, and 
the improvement steadily declines. At about  8ms, the wait- 
ing t ime becomes comparable to request service time, and 
the cost-benefit equation tips the other way. Performance 
then approaches tha t  of the original system to an increasing 
degree. Measurements indicate tha t  many applications have 
very short thinktimes when busy, in the region of 200/is to 
2ms. Hence, ant icipatory scheduling is expected to achieve 
significant benefits on real applications. 

4.2.2 Asymmetric processes: 
Consider an alternative scenario in Figure 6 where only one 
(slow) process waits for durat ion t between requests, while 
the other (quick) process issues request as soon as its pre- 
vious request completes. The original system alternates be- 
tween the two processes' requests for t up to 12ms, but  be- 
yond that ,  two or more requests arrive from the quick pro- 
cess for every request from the slow one. This causes part ia l  
avoidance of deceptive idleness, due to which performance 
gradually improves for increasing t. 

Wi th  anticipatory scheduling enabled, the at ta ined through- 
put  exceeds tha t  of the original system by a large margin. 
The anticipation heuristic is greedy, and for small values of 
thinktime, it decides to wait for both  processes. This results 
in a gradual throughput  decrease with increasing thinktime, 
until a point is reached (4ms) where the heuristic waits for 
the quick process but  not for the slow process. Through- 
put  rises back to the maximum, with requests from the slow 
process serviced only when Aged-SPTF induces a switch. 
Note that  Aged-SPTF only guarantees non-starvation, not 
fine-grained fairness. 
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F i g u r e  6 :  I n c r e a s i n g  t h i n k t i m e s  f o r  o n e  p r o c e s s  

4.2.3 Random thinktimes: 
Next, we seek to understand how well the anticipation heuris- 
tic adapts  to thinktimes that  vary rapidly within an experi- 
ment. Interestingly, if a process waits for a random durat ion 
uniformly distr ibuted between 0 and t, it  performs almost 
as well as the deterministic counterpart .  This is because the 
expected median thinktime is judged to be roughly tl2, and 
the expected 95%ile thinktime becomes almost t. 

4.2.4 Adversary: 
Since the heuristic copes with randomly varying thinktimes~ 
we t ry  to exercise the pathological-case behaviour of the 
heuristic by writing an intelligent adversary. Two symmet-  
ric processes walt for a durat ion determined as follows: they 
issue n rapid  requests, then wait for a durat ion tha t  jus t  ex- 
ceeds the t imeout set by the heuristic, and repeat.  This 
application actively fails to comply with assumption #2 ,  
and thus encumbers the heuristic from adapt ing effectively. 
Results for varying n are shown in Figure 7. For n = 0, the 
anticipatory scheduler cast cope with all requests arriving 
slowly. But for n between 1 and 4, the anticipation heuris- 
tic performs only slightly worse than the original system: 
by about 20%. This result indicates tha t  even for a mali- 
cious application, or when the assumptions in Section 3.1 do 
not hold, the  possible performance degradation is acceptably 
small. 
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F i g u r e  7: A d v e r s a r y  a p p l i c a t i o n  

The adversary issues several requests rapidly, followed by a 
long walt. Interestingly, a similar si tuation arises in prac- 
tice when applications issue very large read requests (say 
1 MB), and the FreeBSD kernel breaks them up into 128 KB 
chunks. In this case, the scheduler receives eight 128 KB 
requests in rapid succession, followed by the application's  
typically larger thinkt ime period. We solve this special case 
by having the filesystem flag such requests, whereupon the 
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anticipatory scheduling core t reats  them like one large re- 
quest. 

The adversary application causes many t imeouts to expire, 
and thus stresses the accuracy of the timer. In order to 
understand the sensitivity of our results to the t imer  fre- 
quency, we reran the experiment with t imer granularities 
of 50ps, 200#s, 500ps, and lms.  Although the throughput  
peaked at 500ps (because larger t imeouts allow for the  occa- 
sional heuristic error), the greatest difference we saw among 
the four trials was only 10%. This was also suppor ted  by 
a similar experiment with the Apache webserver, where the 
difference was negligible. 

Solving deceptive idleness can clearly bring about  significant 
benefits on microbenchmaxks, but  what is its impact  on real 
applications? To see this, we use two real applications (web- 
server and linker), and two s tandard benchmarks (filesystem 
and database) tha t  are expected to reflect a wide range of 
application workloads. 

4.3 The Andrew filesystem benchmark 
The Andrew Benchmark [12] a t tempts  to capture a typi-  
cal fileserver workload in a software development environ- 
ment. I t  consists of k clients, each performing five phases: 
(a) mkdir, which creates n directories, (b) cp, which copies 
a s tandard  set of 71 C source files to each of these n directo- 
ries, (c) star, which aggressively lists all directory contents, 
(d) scan, which reads all these files using grep  and we, and 
finally (e) gee, which compiles and links them. We config- 
ured n to be 500, so tha t  the repository size exceeds main 
memory. We call this set of n directories a repository, and 
instantiate one such repository for each of the k = 2 clients, 
aiming to simulate concurrent access to a flleserver. This 
experiment uses the same Aged-SPTF scheduler as before, 
with and without anticipatory scheduling enabled. 
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F i g u r e  8: T h e  A n d r e w  B e n c h m a r k .  T h e  last  pair  o f  
bars  are  s h o w n  sca led  d o w n  b y  a factor  o f  3. 

A breakup of the execution times for individual benchmark 
phases is presented in Figure 8. Consider the scan phase, 
which is the only one that  issues streams of synchronous read 
requests. Anticipatory scheduling t ransparent ly reduces ex- 
ecution t ime for this phase by 54%. Both g rep  and wc 
on FreeBSD use read,  not mmap, and would thus benefit 
from kernel prefetch. However, individual files are small, so 
this prefetch has little effect. Major seek reduction happens 
here due to the files being in the same directory, and thus 
closely positioned on disk. Anticipatory scheduling enables 

the scheduler to capitalize on these seek opportunit ies and 
halve the execution time. 

Other disk-intensive phases improve by smaller amounts: 
16% for mkdir  with me tada ta  writes, and 5% for cp and 
stat  each (the lat ter  typically gets cached in memory).  The 
gcc phase is CPU-bound, but  also performs some disk I /O;  
this apt ly  demonstrates the overhead of our system. There 
is an increase in execution t ime by 1.7%, due to two factors: 
CPU processing for the addit ional i8254 t imer interrupts,  
and the CPU overhead corresponding to the heuristic ex- 
ecution routines (mainly statistics collection). This phase 
strongly dominates total  execution time, so tha t  the overall 
benchmark shows the smaller improvement of 8.4%. 

Performance with one client is the same with or without an- 
t icipatory scheduling; indeed, when there is only one stream 
of synchronous requests, anticipatory scheduling plays no 
role. Increasing the number of clients from 2 to 8 shows al- 
most no performance difference: the scan phase improves by 
57% in the lat ter  case. This confirms the applicabili ty and 
scalability of anticipatory scheduling to busy fileservers. 

4.4 The Apache webserver 
The Apache webserver employs a multi-process architecture 
to service requests from clients. Requests that  miss in the 
main-memory cache are serviced from disk by the respective 
process. This happens frequently for webservers with large 
working sets, to the point of becoming disk-bound. In its de- 
fault configuration, Apache-l.3.12 (and also 2.0a9) mmaps  
files tha t  are smaller than 4 MB, and writes it out to a net- 
work socket. For larger files, Apache reads the da ta  into 
application buffers first; this was done to prevent a swap- 
based DoS at tack on 1TtIX systems. Many other webservers 
and ftp servers use similar mechanisms for file transfer. 

We first configure Apache to exclusively use either read or 
mmap in a given experiment.  We run the Apache web- 
server with 3 client machines which host 16 client processes 
each. Real websites have different amounts of concurrency, 
depending on amount and characteristics of incident load; 
we therefore varied the number of clients over a wide range, 
and observed very litt le difference in results. These clients 
rapidly play requests from a trace selected from the CS de- 
par tment  webserver at  the University of California, Berke- 
ley [6]. These requests have a median size of 4768 bytes, 
a mean size of 86 KB, and a mean size of 13 KB if the 
largest 5% of the requests are excluded. This trace is quite 
disk-intensive, so 1000 requests target  745 distinct files. The 
scheduler, as before, is Aged-SPTF.  

Figure 9 characterizes the observed throughputs and uti- 
lizations. We observe a 29% improvement in throughput  for 
read, where anticipatory scheduling complements filesystem 
prefetch, and a larger 71% improvement for mmap (with- 
out prefetch). Unlike in the Andrew Benchmark, all Apache 
clients generate requests to the same repository, so requests 
to an individual Apache process do not exhibit much local- 
ity across files. So seek reduction opportunit ies are mainly 
in terms of servicing each file fully before moving on to 
the next. Many files are too small for any seek reduc- 
tion. Intermediate-sized files axe potential candidates for 
prefetching, but  filesystem prefetch is conservative and does 
not occur until a threshold number of requests are found to 
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Figure 9: The  Apache W e b s e r v e r  con f igu red  in two 
modes ,  read a n d  m m a p .  T h e  f o r m e r  exemplifies the 
practical l imitations of  f i lesystem prefetch. 

be sequential. Anticipatory scheduling effects the 29% im- 
provement in this domain. Prefetch occurs for reads on large 
files, but not for mmap. This accounts for the large differ- 
ence in performance between the two methods of access. In 
the default configuration (with mmap or read depending on 
file size), Apache yields 2.2 MB/s on the original system and 
3.5 MB/s with anticipatory scheduling; this improvement of 
59% lies between those for the read and mmap cases. 

4.5 The GnuLD linker 
This experiment involves the last stage of a FteeBSD kernel 
build, starting from a cold filesystem cache. The GNU linker 
reads 385 object files from disk. 75% of these files axe under 
10 KB, whereas 96% are under 25 KB. After reading all their 
ELF headers, GnuLD performs up to 9 (but usually about 
6) small, non-sequential reads in each file, corresponding to 
each ELF section. These reads are separated by computa- 
tion required for the linking process. 
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Figure 10: The  G N U  Linker: multiple,  concurrent 
instances cause decept ive  idleness, which is elimi- 
nated by anticipatory scheduling. 

The experiment in Figure 10 demonstrates the performance 
of one and two simultaneous instances of GnuLD on disjoint 
repositories. We use two schedulers this time, Aged-SPTF 
and CSCAN, to demonstrate the impact of their respective 
heuristics. With one synchronous request issuer process, 
both schedulers result in execution times of about 1.8 sec- 
onds each. We would normally expect this to double for two 
instances of GnuLD. However, deceptive idleness causes an 
increase in execution time by a factor of 5.5 instead. This is 
again because non-sequential accesses preclude transparent 
filesystem prefetching. 

Anticipatory scheduling brings about a benefit of 68% in the 
Aged-SPTF case, and causes performance to scale almost ex- 

actly as expected (i.e., to twice the execution time of a single 
process). The CSCAN scheduler, on the other hand, always 
services requests in the forward direction. But object files 
are accessed in arbitrary order; CSCAN therefore intrinsi- 
cally precludes anticipatory scheduling from attaining the 
full potential for seek reduction. We see a performance im- 
provement of only 48%; this execution time is 56% higher 
than the Aged-SPTF case. 

4.6 The TPC-B database benchmark 
The TPC-B benchmark, specified by the Transaction Pro- 
cessing Council in 1994, exercises a database system on 
simple, random, update-intenslve operations into a large 
database, and is intended to reflect typical bank transac- 
tions [27]. Though it is considered outdated, it serves to 
illustrate the impact of anticipatory scheduling on a read- 
write workload. 

We implement the above with a MySQL database and two 
client processes. However, we somewhat deviate from the 
setup specified in TPC-B; our main goal is to demonstrate 
the gains due to anticipatory scheduling, rather than to ob- 
tain performance data for our hardware configuration. (1) 
Individual records in the database are required to be at least 
100 bytes large. MySQL has computational overheads that  
made it CPU-bound for record sizes of 100 bytes, so we use 
4 KB records to make data I /O  the bottleneck. (2) We 
use a database size of 780 MB, thus considerably exceed- 
ing the 128 MB main memory size; our hardware is capable 
of supporting larger databases. (3) MySQL does not sup- 
port transactions. Many databases maintain a transaction 
log, which could potentially become the performance bot- 
tleneck. (4) Figure 11 depicts four experiments. The clients 
in the first two experiments issue update queries as required 
by TPC-B, but those in the last two replace the update op- 
eration by a se l ec t .  (5) Finally, both clients in the first 
and third experiments issue queries directed at the same 
database, as required by TPC-B. The second and fourth ex- 
periments are a variant, where the two clients issue requests 
to two separate databases. 
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Figure 11: The  T P C - B  database benchmark and 
variants: two clients issuing update  versus select 
queries into the  same versus different databases.  

An update query reads the record first, and then issues an 
asynchronous delayed write request. The presence of enough 
delayed writes can give the scheduler more choices, and al- 
leviate the effect of deceptive idleness. Also, seek reduction 
within a database is severely limited due to almost random 
queries therein, so the first experiment shows a net improve- 
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ment of only 2%. The second experiment physically sepa- 
rates the two databases on disk; the impact of anticipatory 
scheduling is now more pronounced due to seek reduction op- 
portunities within and between databases, and we observe 
a 30% improvement despite the delayed write requests. Ab- 
solute performance is understandably lower than in the first 
case, due to large seeks between the two databases. Finally, 
gains due to anticipatory scheduling are best brought out in 
the absence of any delayed writes, i.e., when the update op- 
eration is reduced to just a select, involving one synchronous 
read request. We observe throughput improvements by 5% 
and 60% for requests to the same and different databases 
respectively. 

In summary, our experiments indicate that  a database-like 
workload often stands to gain by the transparent deployment 
of anticipatory scheduling in the operating system. How- 
ever, modern commercial databases are highly optimized, 
and it is likely that they implement some form of application- 
level prefetching; we have not explored this issue further. 

4.7 Proportional-share Scheduling 
This experiment demonstrates the impact of the anticipation 
heuristic for proportional-share schedulers, and the combi- 
nation heuristic. The workload is chosen to be the fourth 
TPC-B variant in the database experiment above: s e l e c t  
operations on different databases, to achieve throughputs 
of 61 and 98 transactions/sec (i.e., 60% improvement with 
anticipatory scheduling). 

Figure 12 depicts an experiment where this workload is sub- 
ject to proportional scheduling. We use the Stride scheduler 
augmented with underlying seek reduction, as described in 
Section 3.5; the relaxation threshold ~- is set to 1 second. 
Proportions of 1:2 are assigned to the two TPC-B clients p 
and q; these axe in terms of disk utilization (not throughput, 
without loss of generality). In the three cases, the anticipa- 
tion framework is either disabled, or separately configured 
with the Stride or the combination heuristic respectively. 
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F i g u r e  12: P r o p o r t i o n a l - s h a r e  s c h e d u l e r .  T h r e e  e x -  
p e r i m e n t s :  ( z x ) o r i g i n a l :  1:1 p r o p o r t i o n s ,  ( × ) a n t i c i -  
p a t o r y  w i t h  p r o p o r t i o n a l  h e u r i s t i c :  1:2 p r o p o r t i o n s ,  
a n d  (o) a n t i c i p a t o r y  w i t h  c o m b i n a t i o n  h e u r i s t i c :  1:2 
p r o p o r t i o n s  w i t h  m a x i m u m  t h r o u g h p u t .  

In the original system, the scheduler always multiplexes 
between requests from the two processes, and incorrectly 
achieves proportions of approximately 1:1, with the fairly 

low throughput of 60 tps. When we turn on anticipatory 
scheduling with the heuristic for proportional-share sched- 
ulers, it realizes that  process q (with the higher share) is lag- 
ging behind, and waits for it. With average seek and transfer 
times of 9ms and 3ms, the scheduler manages to achieve 1:2 
proportions by servicing 5 requests from q for every request 
from p. This is sufficient to exploit locality between requests 
of one  process,  namely q; throughput improves to 77 tps, i.e., 
by about half the maximum possible. This results in a cor- 
responding total utilization drop of about 2%, as is seen by 
utilizations of both processes decreasing proportionally. 

The combination heuristic, on the other hand, realizes the 
seek reduction potential in waiting for both processes. It  
thus services several requests from each process, and achieves 
the full 98 tps throughput, while retaining proportions of 
1:2. 

4.8 Advanced hardware 
We wish to determine the effect of anticipatory scheduling 
on modern hardware, using the next generation CPUs, disks 
and controllers. Studies indicate that head seek time im- 
proves more slowly than data transfer time; this trend will 
further aggravate the effects of deceptive idleness. Function- 
ality supported by modern controllers like tagged queueing 
and improved track buffering and controller-level prefetching 
may become underused for synchronous I /O. On the other 
hand, track buffering may assist filesystem prefetching for 
medium-sized sequentially accessed files, and thus alleviate 
the problem in some cases. Track buffering also allows the 
scheduler to wait for the next request, without requiring a 
complete rotation to read the adjacent sector. On a different 
note, an increase in CPU speed corresponds to a reduction 
in application thinktime, which is advantageous for waiting. 
Thus, a number of tradeoffs can influence the precise gains 
due to anticipatory scheduling. 

To explore this issue, we perform some experiments on an 
800MHz Athlon system, with a 15,000 rpm Seagate Cheetah 
ST318451LW SCSI-3 disk and an Adaptec 19160B Ultra160 
controller. Specifically, we repeat two experiments: the mi- 
crobenchmark with different access patterns (Section 4.1) 
and the Apache webserver experiment (Section 4.4). l~e- 
sults are in Figure 13. 
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F i g u r e  13: E x p e r i m e n t s  p e r f o r m e d  o n  a d v a n c e d  
h a r d w a r e :  1 5 , 0 0 0  r p m  S C S I  d i s k ,  8 0 0  M H z  C P U .  

We note that the maximum bandwidth on this disk is 55% 
higher than on our original IDE disk, due to a correspond- 
ing increase in rotational speed. However, deceptive idleness 
causes both disks to deliver nearly the same low through- 
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put in the presence of large seeks; this magnifies the best- 
case gains of anticipatory scheduling to a factor of 5.5, as 
compared to the earlier factor of 4. Other aspects of this 
microbenchmark are similar to those on the IDE disk. 

Next, consider the Apache webserver experiment. Improve- 
ments for the read and nmap configurations are 12% and 
57%. While this is still significant, it is lower than the IDE 
counterparts. Improved rotational speed, different disk ge- 
ometry and better track buffering result in relatively faster 
servicing of short seeks; these are common in the Apache 
workload, thus leading to smaller improvements. 

To summarize, modern hardware does suffer from deceptive 
idleness, and stands to gain from anticipatory scheduling. 
The actual improvements expected on future hardware can 
be either more or less, depending on precise hardware details 
and application characteristics. 

On a related note, we consider the impact of deceptive idle- 
ness and anticipatory scheduling on other disk types, such 
as redundant arrays of inexpensive disks (RAIDs), just a 
bunch of disks (JBODs), and network disks. We have not 
investigated this issue in sufficient depth, but we believe 
that  deceptive idleness can affect such disks, and that  antic- 
ipatory scheduling can be beneficial. The positioning time 
estimator would need to derive a useful model of device be- 
haviour, including head positions and redundant copies of 
data; we believe that  this is the key step to adapting antic- 
ipatory scheduling to such hardware. 

5. DISCUSSION 
This section discusses the practical impact of anticipatory 
scheduling, and suggests improvements to its design. 

5.1 Relevance of anticipatory scheduling 
Many applications perform non-sequential read I /O  on large 
files, or access many small files colocated on disk, such as 
those in the same directory. Applications such as web- 
servers and databases often have huge working sets, and 
issue read requests that  cannot be satisfied from memory. 
This general tendency of applications to issue concurrent, 
synchronous, non-sequential disk requests has been on the 
rise [19, 30]. These requests typically do not benefit from 
traditional filesystem prefetching, and yet possess enough lo- 
cality to be excellent candidates for seek reduction. This has 
driven the need for an alternative and more general approach 
to complement prefetching. Since anticipatory scheduling is 
based on a much weaker form of prediction, it is feasible in 
many situations where prefetching is difficult. 

Proportionai-share schedulers are increasingly gaining promi- 
nence in modern systems; for example, they are used in var- 
ious high-level quality of service systems like using reserva- 
tion domains to isolate co-hosted websites [8], and perform- 
ing admission control to guarantee predictable performance 
of webservers [3]. It is important for these disk schedulers to 
adhere to their contract; anticipatory scheduling facilitates 
this for applications issuing synchronous I /O.  In practice, 
proportional-share disk schedulers will almost always be de- 
ployed in combination with a seek reducing scheduler [29]. 
Our experiments have demonstrated how the combination 
heuristic brings about simultaneous improvement of both 
contract adherence and performance. 

Real-time disk schedulers (either pure or in combination 
with seek reducing schedulers) are commonly used to serve 
and view multimedia content [9, 11]. Under certain circum- 
stances, it is possible for deceptive idleness to cause such 
schedulers to multiplex between requests from different pro- 
cesses, and consistently violate deadlines. We believe that  
the anticipatory scheduling framework is applicable to real- 
time scheduling, but a full exploration of the design and 
merits of an anticipation heuristic is beyond the scope of 
this paper. 

5.2 Potential improvements 
We suggest two approaches to improve on our proposed de- 
sign. These are aside from the obvious improvements of 
making the timing mechanism and the positioning time es- 
timator cheaper and more accurate. 

5.2.1 Accumulate more statistics 
It  is possible for the anticipation heuristic to make subop- 
timal decisions. We can reduce this chance by augmenting 
its adaptation mechanism with additional statistics: 

(1) Besides tracking expected thinktimes and positioning 
times, we could collect statistics about the variance of these 
estimates. This gives the heuristic an idea of how accurate 
these estimates really are. We could then use a technique 
such as eovariance resetting to discard all previously accu- 
mulated statistics whenever this variance becomes too high. 
(2) The heuristic could keep track of how frequently time- 
outs expire for each process; if this exceeds some thresh- 
old rate, then regardless of all other notions of accuracy, it 
would know that  something is wrong. (3) The positioning 
time estimator may not be accurate; however, it can mea- 
sure positioning time after a request has completed service. 
This provides an indicator for the error in estimation, and 
thus, our confidence in future decisions. (4) An application 
might use aio_read to issue requests that  are actually syn- 
chronous; the heuristic can determine this post-facto, and 
remember it to optimize future decisions. 

5.2.2 Relax the two workload assumptions 
The anticipatory scheduling framework waits for the last 
request issuing process, and collects statistics at a process 
granularity. Though this is easily the common case, relaxing 
the assumptions in Section 3.1 can enable the anticipation 
heuristics to support a wider range of applications, of the 
following types: 

(1) Some proportional-share disk schedulers have a notion 
of resource principals different from processes, like resource 
containers [4] and reservation domains [8]. (2) Also, some- 
times a group of processes may collectively issue synchronous 
requests. (3) Applications may simultaneously generate dif- 
ferent access patterns on different file descriptors. (4) Some 
programs may issue two kinds of disk requests from two 
different parts of the program code, but on the same file de- 
scriptor. (5) Seek reduction intrinsically deals with requests 
in the same region on the disk; online clustering can classify 
requests into groups. 

To relax the assumptions, the heuristic can collect statistics 
at all levels of abstraction, i.e., processes, threads, instruc- 
tion pointer for thread, file descriptors, and disk region - 
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along with their variances. The heuristic can then choose the 
highest consistent level out of these. This has low variance, 
is expected to be correct, and contains most information. 

6. RELATED WORK 
This section points out interesting phenomena analogous 
to deceptive idleness, and methods related to anticipatory 
scheduling, in each of three domains: disk, CPU and net- 
work interface scheduling. 

Anticipatory scheduling is based on the non-work-conserving 
scheduling discipline. To our knowledge, the only other non- 
work-conserving disk scheduler solves a memory manage- 
ment issue for mixed real-time and best-effort workloads. It 
refrains from servicing all outstanding best-effort requests, 
and conserves buffer space for future real-time requests [10]. 

The basic idea of anticipatory disk scheduling has been inde- 
pendently suggested in a posting to the Linux-kernel mailing 
list - coincidentally under the same name [25]. 

For write requests, the AIX operating system implements 
I/O pacing to prevent programs from saturating the sys- 
tem's I /O  facilities. This enforces per-file high and low wa- 
ter marks on the number of queued requests [33]. This low 
water mark buffers write requests and increases opportuni- 
ties for seek reduction; it can be viewed as the counterpart 
of anticipatory scheduling for delayed write requests. 

Also in the context of efficiently handling asynchronous re- 
quests, freeblock scheduling [16] has been proposed to in- 
crease media bandwidth utilization by potentially servicing 
asynchronous requests enroute to the synchronous ones. 

Filesystem prefetching is a well-researched area [24], and for 
regular workloads, asynchronous prefetch can transparently 
eliminate deceptive idleness (Section 2.1). There is a large 
body of work in improving the feasibility and effectiveness of 
prefetch using techniques such as application-level hints [18] 
and transparent compiler-directed approaches [17]. 

Deceptive idleness creates a momentary shortage of suitable 
requests; a different type of scheduler starvation arises in 
the context of the Aged-SPTF scheduler. Recall from Sec- 
tion 3.3 that  priorities axe assigned to requests in the SPTF 
queue, and these are increased over time. If this increase 
is performed abruptly at some time threshold, and if the 
rate of incoming requests exceeds service rate, then every 
request choice will get forced, and the scheduler degenerates 
to FCFS. The solution in this case involves gradually raising 
request priorities [15]. 

The CPU scheduling discipline being preemptible, there is 
no analog of deceptive idleness. There is, however, the 
equivalent of high preemption cost in switching between 
processes: affinity scheduling attempts to schedule between 
many threads to improve cache reuse [28]. On a different 
note, non-work-conserving CPU schedulers have been moti- 
vated by the need to handle bursty and unexpected work- 
loads; these are based on maintaining one or more CPUs in 
reserve [20]. Similarly, non-work-conserving request sched- 
ulers have been used to support prioritized workloads in 
web content hosting, for differentiated levels of service [1]. 
In comparison, anticipatory disk scheduling is a distinctly 
different type of non-work-conserving scheduling. 

The network packet scheduling discipline is non-preemptible, 
but deceptive idleness is unlikely in this domain. High band- 
width-delay products drive applications to maintain win- 
dows of outstanding requests, due to which the packet sched- 
uler never faces a shortage of requests from an individual 
flow. Interestingly, there is reason to optimize in the op- 
posite direction: context switching overhead is negligible, 
and it is important to avoid burstiness. WF2Q is a work- 
conserving scheduling policy that  tries to interleave requests 
as much as possible, more than even WFQ does [5]. Finally, 
non-work-conserving schedulers have been used in packet 
scheduling by Zhang and Knightly to handle bursty work- 
loads, by holding packets in the network and simulating the 
original traffic stream [36]. 

7. CONCLUSION 
This paper identifies the problem of deceptive idleness in 
the disk subsystem, and proposes the anticipatory schedul- 
ing framework as a general and effective solution. This sim- 
ple, application-transparent method brings about significant 
improvements in throughput and adherence to quality of 
service objectives for synchronous disk I /O. The framework 
consists of a scheduler-independent core, with separate an- 
ticipation heuristics proposed for a variety of seek reducing 
and proportional-share schedulers to address their disparate 
needs. This solution complements prefetching techniques 
deployed at the application and kernel levels, and is most 
useful in frequently occurring situations where prefetching 
is difficult or infeasible. It is easy to implement, and suited 
for incorporation into general-purpose operating systems. 

This paper evaluates anticipatory scheduling under a range 
of workloads. Microbenchmarks characterize the intrinsic 
properties of the solution, whereas real applications and 
standard benchmarks evaluate its applicability and effective- 
ness in realistic scenarios. The Apache webserver is found 
to deliver 29% and 71% more throughput in two configura- 
tions. The Andrew filesystem benchmark runs faster by 8% 
(54% for the synchronous phase). Variants of the TPC-B 
database benchmark exhibit improvements between 2% and 
60%. Proportional-share schedulers become empowered to 
deliver application-desired proportions for synchronously is- 
sued requests. All this is accomplished with little overhead. 
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