
Anticipatory scheduling: A disk scheduling framework
to overcome deceptive idleness in synchronous I/O

Sitaram lyer Peter Druschel
Department of Computer Science, Rice University

{ ssiyer, druschel} @cs.rice.edu

ABSTRACT
Disk schedulers in current operating systems are generally
work-conserving, i.e., they schedule a request as soon as
the previous request has finished. Such schedulers often re-
quire multiple outstanding requests from each process to meet
system-level goals of performance and quality of service. Un-
fortunately, many common applications issue disk read re-
quests in a synchronous manner, interspersing successive
requests with short periods of computation. The scheduler
chooses the next request too early; this induces deceptive
idleness, a condition where the scheduler incorrectly assumes
that the last request issuing process has no further requests,
and becomes forced to switch to a request from another pro-
c e 8 8 .

We propose the anticipatory disk scheduling framework to
solve this problem in a simple, general and transparent way,
based on the non-work-conserving scheduling discipline. Our
FreeBSD implementation is observed to yield large benefits
on a range of microbenchmarks and real workloads. The
Apache webserver delivers between 29~o and 71~o more throu-
ghput on a disk-intensive workload. The Andrew filesystem
benchmark runs faster by 8~o, due to a speedup of 5 ~ in
its read-intensive phase. Variants of the TPC-B database
benchmark exhibit improvements between 2~o and 60~o. Pro-
portional-share schedulers are seen to achieve their contracts
accurately and efficiently.

1. INTRODUCTION
Disk scheduling has been an integral part of operating sys-
tem functionality since the early days [7, 13, 15, 22, 34]. This
paper examines disk scheduling from a system-wide perspec-
tive, identifies a phenomenon called deceptive idleness and
proposes anticipatory scheduling as an effective solution.

Disk schedulers are typically work-conserving, since they se-
lect a request for service as soon as (or before) the previous
request has completed [23]. Now consider processes issu-
ing disk requests synchronously: each process issues a new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or e fee.
SOSP01 Banff, Canada
© 2001 A C M]SBN 1-58113-389-8-1 /01 /10 . . .$5 .00

request shortly after its previous request has finished, and
thus maintains at most one outstanding request at any time.
This forces the scheduler into making a decision too early,
so it assumes that the process issuing the last request has
momentari ly no further disk requests, and selects a request
from some other process. I t thus suffers from a condition
we call deceptive idleness, and becomes incapable of consec-
utively servicing more than one request from any process.

I t is common for da ta requested by a process to be sequen-
tially positioned on disk. Nevertheless, deceptive idleness
forces a seek optimizing scheduler to multiplex between re-
quests from different processes. The ensuing head seeks can
cause performance degradation by up to a factor of four,
as shown in the next section. In the related problem of
proportional-share disk scheduling, meeting a given contract
(i.e., a proportion assignment) may require the scheduler
to consecutively service several requests from some process.
Deceptive idleness precludes this requirement, thus limiting
the scheduler's capacity to satisfy certain contracts. In both
cases, the scheduler is reordering the available requests cor-
rectly, but system-wide goals are not met.

This paper proposes the anticipatory disk scheduling frame-
work, and applies it to various disk scheduling policies. I t
solves deceptive idleness as follows: before choosing a re-
quest for service, it sometimes introduces a short, controlled
delay period, during which the disk scheduler waits for ad-
ditional requests to arrive from the process that issued the
last serviced request. The disk is kept idle for short periods
of time, but the benefits gained from being able to service
multiple requests from the same process easily outweigh this
loss in utilization. The framework is thus an application of
the non-work-conserving scheduling discipline. The exact
tradeoffs are sensitive to the original scheduling policy, so
to determine whether and how long to wait each time, we
propose adaptive heuristics based on a simple cost-benefit
analysis.

We implement anticipatory scheduling as a kernel module in
the FreeBSD operating system, evaluate it against a range
of microbenchmarks and real workloads, and observe sig-
nificant performance improvements and bet ter adherence
to quality of service objectives. For a trace-based, disk-
intensive workload, the Apache webserver delivers between
29% and 71% more throughput by capitalizing on seek re-
duction within files. The synchronous, read-intensive phase
of the Andrew filesystem benchmark runs faster by 54% due
to seek reduction both between files and within each file;

117

consequently, the overall benchmark improves by 8%. Vari-
ants of the TPC-B database benchmark exhibit speedups
between 2% and 60%: in the la t ter case, deviating from
a s tandard TPC-B setup, by subjecting read-only queries
to multiple separate databases leads to more seek reduction
opportunities. The Stride proport ional disk scheduler [32]
achieves its assigned allocations even for synchronous I /O
(assuming there is sufficient load), and simultaneously de-
livers high throughput.

After an exposition and analysis of deceptive idleness, we
describe anticipatory scheduling in Section 3, and delve into
a detailed experimental evaluation in Section 4. We discuss
some emergent issues in Section 5, describe related work in
Section 6, and conclude.

2. DECEPTIVE IDLENESS
This section describes and analyzes the phenomenon of de-
ceptive idleness with two examples. In each case, the sched-
uler faces a shortage of the desired type of requests at critical
moments.

Example #1: Seek reducing schedulers
Here is an example of how a seek reducing disk scheduler can
degenerate to FCFS-like behaviour, and potential ly suffer
throughput loss by a factor of 4. Consider an operat ing sys-
tem equipped with any seek reducing scheduler, like Short-
est Positioning-Time First (SPTF) or CSCAN [34]. Let
two disk-intensive processes p and q each issue several disk
requests to separate sets of sequentially posit ioned 64 KB
blocks. In the interest of seek reduction and throughput
improvement, the scheduler would be expected to consecu-
tively service many requests from p 's set, then perform one
expensive head repositioning operation, and service many
of q's requests. This happens in practice, provided each
process maintains one or more pending requests whenever
the scheduler makes its decision: these moments in t ime
are called decision points. Such an experiment results in a
sustained throughput of 21 MB/s on our disk, owing to a
service t ime of 3ms for every 64 KB block.

Now consider a scenario where the above requests are is-
sued synchronously by the two processes, i.e., each process
generates a new request a few hundred microseconds after
its previous one finishes. A work-conserving disk scheduler
never keeps the disk idle when there are any requests pend-
ing for service. It therefore tries to schedule some request
immediately after (say p's) request has completed. At this
decision point, process p has not yet been given the chance
to perform the computat ion required to generate its next re-
quest. This forces the scheduler into choosing a request from
q, performing a large head seek to tha t part of the disk, and
servicing tha t request. The subsequent request for p arrives
soon after, but disk scheduling is non-preemptible, and it is
now too late to service this nearby request. This leads to the
scheduler alternating in an FCFS manner between requests
from the two processes. Throughput falls to 5 MB/s, due
to 9ms of average seek t ime and 3ms of read t ime for every
64 KB block. The problem persists even if more than two
processes issue synchronous requests. In this case, CSCAN
degenerates to a round-robin scheduler, whereas SPTF al-
ternates between some pair of processes.

Example #2: Proportional-share schedulers
This example shows how deceptive idleness can affect sched-
ulers in ways other than degrading throughput . Consider a
proportional-share scheduler like Yet-another Fair Queueing
(YFQ) [7], Stride Scheduling [32], or Lot tery Scheduling [31].
Their intended behaviour is to deliver disk service to multi-
ple applications (e.g., processes p and q) in accordance with
an arbi t rary preassigned ratio. For an assignment of 1:2 (or
33%:66%), the scheduler may service a few requests for pro-
cess p, and correspondingly, about twice as many requests
for process q. However, if these processes maintain only one
outstanding request at critical moments, then as in the pre-
vious example, the work-conserving scheduler is forced to al-
ternate between requests from the two processes. I t becomes
incapable of adhering to the desired contract for this work-
load, and instead achieves proportions much closer to 1:1.
Figure 1 shows results of such an experiment. This effect on
proportional-share schedulers has been noted in [26] §5.6.

+'l ' ' T
---&-- Desired 1:2 allocation to two processes ...-'"

~ Achieved 1:1 allocation due to Deceptive Idleness.Q-"

,,.-
4 .O"'" -

.-~ G¢'"
.,=, .°g

~ ' " . ° . @
- ~ y ' " ° ~ . ° . "

~'~ 2 .O'" . . . ~
. ~ "'+ 0 ° o=°

. =" . . . ~ ° . "

*'~ S " " . o &D ° ° - "
. " . . {~° . ° "

¢D

3 6

Experimental time (seconds)

F i g u r e 1: A p r o p o r t i o n a l - s h a r e scheduler : T h e o u t e r
pair o f l ines d e n o t e ideal s c h e d u l e r r e s p o n s e to a n
a l l o c a t i o n rat io o f 1:2 to t h e two proces se s . I n n e r
pair o f l ines: s y n c h r o n o u s I / O causes r e q u e s t s to b e
a l m o s t a l t e r n a t e l y s e r v i c e d f rom t h e two p r o c e s s e s ,
y i e l d i n g p r o p o r t i o n s m u c h c loser to 1:1.

If we have three active processes instead, say p, q, r with
shares of 1:1:3, then Stride will be forced to schedule requests
from processes in the sequence r, p, r, q, etc. and achieve the
skewed proportions of 1:1:2. For nontrivial reasons, a lot-
tery disk scheduler under similar circumstances will deliver
proportions of 2:2:3 instead (see [14] §4.2.2 for details).

The underlying problem
In both examples, the scheduler reorders the available re-
quests according to its scheduling policy, but fails to meet
overall objectives of performance and quality of service. In
essence, processes tha t issue synchronous requests cause the
work-conserving disk scheduler to receive no requests from
that process, in t ime for the following decision p o i n t) This
leads to deceptive idleness, rendering the scheduler inca-
pable of exploiting spatial and temporal locality among syn-
chronous requests.

1This happens despite the system-wide request queue gen-
erally being long and bursty on loaded server systems [22].

118

2.1 Prefetching
It is possible to partially work around the problem of decep-
tive idleness by using asynchronous prefetch. This involves
predicting the future request issue pattern for a process,
and issuing its immediately forthcoming request before the
current one completes. Each process thus maintains mul-
tiple outstanding requests at decision points, and gives the
scheduler the chance to service consecutive requests from the
same process. Seek reduction opportunities can therefore
be exploited if requests issued by a process are sequential.
Likewise, a proportional-share scheduler would now have the
capacity to adhere to its contract, even for synchronous re-
quests.

Prefetch can be effected either explicitly by the application
or transparently by the kernel. However, both approaches
have fundamental limitations in terms of feasibility, accu-
racy, and overhead.

Application-driven prefetch
Applications can embrace programming paradigms and tech-
niques that prevent the onset of deceptive idleness. They
can use asynchronous I /O using APIs such aio._TeadO to
prefetch future requests. Alternatively, they can roll their
own asynchronous I /O using multiple processes or kernel
threads, to proactively issue disk requests of the right type
(e.g., sequential).

There are several problems with this. (1) Applications are
often fundamentally unaware of their future access pattern,
and may be incapable of issuing accurate prefetch requests.
Examples include filesystem metadata and database index
traversals, and predicting future requests in webservers. (2)
Applications may have to be written in a cumbersome pro-
gramming paradigm, whereas most applications are better
suited to a sequential programming style. (3) Existing ap-
plications would have to be rewritten for this purpose, which
may not be desirable or even possible under some circum-
stances. (4) Issuing explicit read requests using Unix API
functions (instead of memory mapping a file) may entail
more data copying and cache pollution, which could be-
come expensive for in-memory workloads. Lastly, (5) the
aio_read system call is an optional POSIX realtime exten-
sion, and may not be implemented or enabled in some op-
erating systems.

Kernel-driven prefetch
Filesystems can (and most do) try to guess future request
patterns for applications and issue separate asynchronous
prefetch requests 2 for them. The usual reason is to overlap
computation with I /O [24], but this prefetching also pre-
vents deceptive idleness. There are, however, limitations to
this transparent approach. The file system is typically even
less capable of predicting future access patterns than appli-
cations are. Prefetch needs an exact notion of the location of
the next request, and the penalties of misprediction can be
high. This forces the prefetching to be complicated, yet con-
servative. Applications such as database systems can issue
requests possessing spatial locality, but their access patterns
may be extremely difficult to detect and effectively prefetch.

2different from synchronous readahead, where requests are
enlarged to 64 KB to amortize seek costs over larger reads.

Finally, sequentially accessed medium-sized files are often
too small for the filesystem to detect sequential access and
confidently issue prefetch requests. In summary, prefetching
can potentially alleviate and even eliminate deceptive idle-
ness, but limitations in its feasibility and effectiveness under
many conditions discount it as a general solution.

Studies have shown an increasing trend in modern disk-
intensive applications to issue non-sequential disk requests
that nonetheless possess spatial locality [19, 30]. Prefetching
has limited utility in these cases, and it is vital to consider
complementary and more widely applicable alternatives.

3. ANTICIPATORY SCHEDULING
We now present a simple, practical~ general, application-
transparent and low-overhead solution to deceptive idleness.
There are three necessary conditions for deceptive idleness
to manifest itself: (a) multiple disk-intensive applications
concurrently issuing synchronous disk requests, (b) the in-
trinsic non-preemptible nature of disk requests, and (c) a
work-conserving disk scheduler, which schedules a request
immediately upon completion of the previous request. Our
solution takes the intuitive approach of eliminating condi-
tion (c), by wrapping a given disk scheduling policy in a
non-work-conserving anticipatory scheduling framework.

When a request completes, the framework potentially waits
briefly for additional requests to arrive, before dispatching
a new request to the disk. Applications that quickly gener-
ate another request can do so before the scheduler takes its
decision; deceptive idleness is thus avoided. The fact that
the disk remains idle during this short period is not neces-
sarily detrimental to performance. On the contrary, we will
show how a careful application of this method consistently
improves throughput and adheres more closely to desired
service allocations.

The question of whether and how long to wait at a given
decision point is key to the effectiveness and performance of
our system. In practice, the framework waits for the short-
est period of time over which it expects, in high probability,
for the benefits of waiting to outweigh the costs of keeping
the disk idle. An assessment of these costs and benefits is
only possible relative to a particular scheduling policy: a
seek reducing scheduler may wish to wait for contiguous or
proximal requests, whereas a proportional-share scheduler
may prefer weighted fairness as its primary criterion. To
allow for such flexibility, while minimizing the burden on
the developer of a particular disk scheduler, the anticipa-
tory scheduling framework consists of three components: (1)
The original disk scheduler, which implements the schedul-
ing policy and is unaware of anticipatory scheduling; (2) a
scheduler-independent anticipation core; and, (3) adaptive
scheduler-specific anticipation heuristics for seek reducing
and proportional-share schedulers.

Figure 2 depicts the architecture of the framework. The
anticipation core implements the generic logic and timing
mechanisms for waiting, and relies on the anticipation heuris-
tic to decide if and how long to wait. This heuristic is im-
plemented separately for each scheduler, and has access to
the internal state of the scheduler. To apply anticipatory
scheduling to a new scheduling policy, one merely has to
implement an appropriate anticipation heuristic.

119

Various Kemel Subsystems

disk requests~,

Figure 2: Anticipatory scheduling framework

The remainder of this section spells out our two assumptions
about workload characteristics, then describes the anticipa-
tory scheduling framework, followed by appropria te antic-
ipation heuristics for seek reducing and proportional-share
schedulers. Finally it covers some implementat ion issues.

3.1 Workload assumptions
We tentatively make two assumptions about the granulari ty
at which applications issue related disk requests.

Assumption ~ 1 : Synchronous disk requests are issued by
individual processes. In most applications, a dependence be-
tween disk requests is explicitly reflected in code structure,
so it is uncommon for multiple processes to coordinate to
issue a set of synchronous requests. This assumption serves
two purposes: (a) it considerably simplifies the anticipation
heuristic, by requiring it to wait only for the process tha t
issued the last request, and (b) it allows the anticipation
core to optimize for the common case when this process gets
blocked upon issuing a synchronous request.

Assumption ~]:2: Barring occasional deviations, all re-
quests issued by an individual process have approximately
similar degrees of spatial and temporal locality with respect
to other requests from that process, and these properties do
not change very rapidly with time. The anticipation heuris-
tic adaptively learns application characteristics on a per-
process granularity; this assumption constitutes the basic
requirement for adapta t ion to be possible. We therefore as-
sume that a process does not interleave disk requests with
markedly different locality properties.

Experimental results with real applications repor ted in Sec-
tion 4 indirectly confirm tha t these assumptions hold to a
sufficient degree. Relaxing these assumptions to accommo-
date a larger range of workloads is the subject of future work;
some ideas in this direction are suggested in Section 5.2.2.

3.2 The anticipation core
A tradi t ional work-conserving scheduler has two states, IDLE
and BUSY, with transit ions on scheduling and completion of
a request. Applications can issue requests at any time; these

are placed into the scheduler's pool of requests. If the disk
is idle at this moment, or whenever another request com-
pletes, a request is scheduled: the scheduler's select function
is called, whereupon a request is chosen from the pool and
dispatched to the disk driver.

The anticipation core forms a wrapper around this t radi-
tional scheduler. Whenever the disk becomes idle, it in-
vokes the scheduler to select a candidate request (as before).
However, instead of dequeuing and dispatching immediately,
it first passes this request to the anticipation heuristic for
evaluation. A result of zero indicates tha t the heuristic has
deemed it pointless to wait; the core therefore proceeds to
dispatch the candidate request. However, a positive inte-
ger represents the waiting period in microseconds tha t the
heuristic deems suitable. The core initiates a t imeout for
tha t period, and enters the new WAIT state. Though the
disk is inactive, this s tate differs from IDLE by having pend-
ing requests and an active t imeout.

If the t imeout expires before the arrival of any new request,
then the previously chosen request is dispatched without
further ado. However, new requests may arrive during the
waiting period; these requests are added to the pool. The
anticipation core then immediately asks the scheduler to se-
lect a new candidate request from the pool, and asks the
heuristic to evaluate this candidate. This may lead to im-
mediate dispatch of the new candidate request, or it may
cause the core to remain in the WAIT state, depending on the
scheduler's selection and the anticipation heuristic 's evalu-
ation. In the lat ter case, the original t imeout remains in
effect, thus preventing unbounded waiting by repeatedly re-
triggering the timeout. The state diagram in Figure 3 illus-
trates this decision process.

schedule...
heuristic: don't wait

/ - - - - - . . ~

schedule...~ /Schedule...
heuristic: wait ~ / heuristic: don't wait

~ / (OR) timeout expired

@~ s~edule...
heunstlc wait

Figure 3: Waiting mechanism, state diagram

There is a scheduler-independent optimization on the above
algorithm: if the process that issued the last request blocks
on I /O by issuing a synchronous request, then assumption
#1 suggests tha t a dependent request will not arrive from
any other process. The anticipation heuristic can thus be
short-circuited, and the chosen request immediately disp-
atched. This happens quite often in practice, even on occa-
sions when the heuristic would have decided to wait further.

3.3 Seek reducing schedulers
This section describes scheduler-specific anticipation heuris-
tics for seek reducing schedulers such as SPTF, Aged-SPTF
and CSCAN. The Shortest Positioning-Time First policy [34]
(also known as Shortest Time First [22] and Shortest Access-
Time First [15]) calculates the positioning time for each

120

available request from the current head position, and chooses
the one with the minimum. Our goal is to design an antici-
pation heuristic tha t maximizes the expected throughput.

The heuristic needs to evaluate the candidate request cho-
sen by the scheduling policy. The intuition is as follows: if
this candidate request is located close to the current head
position, then there is little point in waiting for additional
requests. Otherwise, using assumption #1 , if the process
tha t issued the last request is likely to issue the next re-
quest soon (i.e., its expected median thinktime 3 is small),
and if that request is expected to be close to the current
head position, then the heuristic decides to wait for it. The
waiti~ig period is chosen as the expected 95-percentile think-
time, within which there is a 95% probabil i ty tha t a request
will arrive.

This simple idea is generalized into a succinct cost-benefit
equation, intended to handle the entire range of values for
positioning times and thinktimes. Our throughput objective
translates to profitably balancing the benefit of waiting, i.e.,
expected gains in positioning time, against the cost of wait-
ing, which is the additional t ime likely to be wasted. If LP
is the last request issuing process, and elapsed is the t ime
passed since completion of the previous request, then:

benef i t = (calculate_positioning_time(Candidate)
- LP.expected_positioning_time)

cost = max(0,
LP.expected_rnedian_thinktirne - elapsed)

waiting_duration = max(0,
LP.expected_95percentile_thinktime - elapsed)

re turn (benefi t > cost ? waiting_duration : O)

Positioning t ime for the candidate request is calculated with
a suitable est imator (more on this in Section 3.6). Regard-
ing the cost estimate: for requests tha t arrive before the me-
dian thinktime, the heuristic expects progressively shorter
periods of additional waiting; hence elapsed is subtracted
from the expected median thinktime. However, if we wait
beyond this median, the heuristic expects a request to be
issued sometime very soon, and cost at this point becomes
zero. Secondly, in the WAIT state, the anticipation core pre-
vents unbounded waiting by not retriggering the t imeout
according to the heuristic 's evaluation. Yet we calculate the
correct value of waiting_duration: this is done to allow for
coarse-granularity timers, so that a request arriving after
the 95%ile thinktime will force an immediate dispatch as if
the t imeout had occurred just then.

The adaptive component of the heuristic consists of collect-
ing online statistics on all disk read requests, to est imate
the three expected times. The expected positioning t ime for
each process is a weighted average over t ime of the position-
ing time for requests from that process, as measured upon
request completion. The decay factor is set to forget 95%

3We define thinktime for a process issuing a request as the
interval between completion of the previous request issued
by the process and issue of a new request.

of the old positioning time value after ten requests, so the
heuristic adapts fast. An alternate, approximate method is
to track the expected seek distance of a request from the pre-
vious request issued by that process, and calculate expected
positioning t ime on the fly.

Expected median and 95%ile thinktimes are est imated by
maintaining a decayed frequency table of request thinktimes
for each process. Thinktimes are computed from the t ime
of completion of the last request issued by a given process,
to the current time. If, however, the scheduler already has
a read request queued for this same process, then this new
request is t reated as asynchronous and its thinktime is set
to zero. The heuristic maintains 30 per-process buckets that
store the count of requests tha t arrive after various think-
times, ranging from 0 to 15ms at a granularity of 500/~s
per bucket. These bucket counts are all decayed by reduc-
ing them to 90% of their original values for every incoming
request for tha t process. The distr ibution of thinktimes usu-
ally looks like a bell curve; this is consistent with assumption
~2. (For many applications, the crest is located at about
lms) . The heuristic calculates the median and 95%ile points
of this curve; it does all the above for every incoming syn-
chronous request.

This heuristic is suitable for the conceptually simple SPTF
policy. We now consider modifying it for two other seek
reducing schedulers, namely Aged-SPTF and CSCAN.

Variant: A g e d - S P T F
SPTF is known to suffer from potential starvation, since
requests for distant locations on the disk may never get ser-
viced. To bound response time, Aged-SPTF (also known
as Aged-SATF and Weighted-SPTF) has been proposed as
a variant: requests in the SPTF queue are associated with
priorities, which are raised in some manner (often gradually)
with queued time. A request with sufficiently high priority
overrules the SPTF decision and gets scheduled [15, 22, 34].

The anticipation heuristic for SPTF works for Aged-SPTF
also, with one minor limitation. When Aged-SPTF chooses
a distant request that is too old, the SPTF heuristic would
be unaware of this. I t may decide to wait for additional,
nearby requests. However, even if a new request from the
last process arrives in this period, the scheduler then con-
tinues to pick the same old request. The last process then
gets blocked, and the scheduler-chosen candidate is serviced
as desired. This incurs one unnecessary thinktime on each
of such occasions; this minor performance problem can be
fixed by customizing the heuristic to the Aged-SPTF policy:
whenever Aged-SPTF selects a request tha t is different from
the request tha t SPTF would correspondingly choose, then
we decide not to wait.

Variant: C S C A N : Cyclic S C A N
CSCAN (also known as C-LOOK) is an extremely popular
scheduling policy, and is implemented in many Unix-based
operat ing systems. It is the unidirectional version of El-
evator /SCAN/LOOK; it moves the head in one direction,
servicing all requests in its path, and then starts over at the
first available request.

Our anticipation heuristic for this scheduler is based on the

121

one for SPTF, with one addit ional clause. The statistics
collection module in the heuristic additionally maintains a
decayed expectation of the seek direction: forward or back-
ward. On evaluating a request, if the current candidate
involves a forward seek and the expected next request has a
fairly high likelihood (more than 80%) of a backward seek,
then we bypass the cost-benefit equation and decide not to
wait. In the opposite case, we wait for the usual amount
of time. For applications performing random access, with
roughly 50% of the seeks pointing in each direction, this
heuristic for CSCAN is not ideal. This is because CSCAN
itself is poorly suited to handle this case.

3.4 Proportional-share schedulers
We next present an anticipation heuristic designed for a
proportional-share scheduler like Yet-another Fair Queueing
(YFQ) [7] or Stride [32]. These policies maintain weighted
vir tual clocks to remember the amount of disk service re-
ceived by each process. A request is chosen from the pro-
cess with the smallest vir tual clock, so as to advance them
in tandem.

Unfortunately, deceptive idleness forces these virtual clocks
to go out of sync. Some processes do not generate enough
requests in time, and their virtual clock lags behind. Pro-
cesses that genuinely issue few disk requests also lag be-
hind, but their expected thinkt imes are high. Our heuristic
is therefore as simple as waiting for the last process, if it
meets three conditions: (a) it has no pending requests at
the t ime its last requests completes, (b) it has an expected
thinktime smaller than 3ms, and (c) it has a virtual clock
smaller than the minimum virtual clock of processes with
available requests (minclock). The 3ms threshold is chosen
somewhat arbitrarily; there is no consistent way to balance
weighted fairness against performance. 3ms is observed to
be larger than the thinktimes for most applications, without
being too large as to degrade performance. As before, we
wait for the 95%ile point of the thinktime distr ibution for
this process.

3.5 Heuristic combination
A proportional-share scheduler with an assignment of 1:2
can service one request from the first process for every two
requests from the second. Alternatively, it can enable some
seek reduction, by slightly relaxing the timescale on which it
operates. This allows the scheduler to service n requests for
the first process for every 2n requests for the second, where
each set might contain sequential requests. One variation
on this theme is suggested in [29], where the scheduler picks-
from processes with vir tual clocks between minclock and
minclock + r (where ~- is a relaxation threshold, and could
be 1 second). Among these, it chooses the request with the
smallest positioning time.

We propose a combination heuristic for this scheduler, thus
hinting at general methods of combining anticipation heuris-
tics. This combination is necessary because: (1) the heuris-
tic for SPTF, if applied directly here, would not wait for
either process if the access pa t te rn were random, and would
thus violate the proport ion assignment; (2) the heuristic for
Stride, if used, would wait only for the process with higher
share, and thus enable only part ia l seek reduction.

A straightforward approach of combining these two heuris-

tics is to separately evaluate the candidate request on each
of the two, and return the larger of the two evaluations. In
other words, if the waiting decision is taken for either reason,
then the combination will conservatively choose to wait.

We identify and accommodate for two minor performance
issues with this simplistic approach. Firstly, the Stride pol-
icy has been relaxed due to the introduction of v. Condit ion
(c) in the anticipation heuristic for Stride needs to be cor-
respondingly changed from minclock to minclock + r.

Secondly, consider the heuristic for S P T F waiting for se-
quential requests from process p, and successively servicing
many such requests. At some point, p ' s vir tual clock may
become larger than minclock + T, in which case the con-
servative decision to wait becomes pointless. Our heuristic
watches for this condition and decides not to wait.

3.6 Implementation issues
There are two implementat ion issues tha t deserve elabora-
tion, namely calculating positioning t ime for requests and
building an inexpensive t imeout mechanism.

Est imating access t ime for requests is nontrivial due to fac-
tors like rotat ional latency, t rack and cylinder skews, and
features of modern disks like block remapping and recal-
ibration. Nonetheless, much work has been done in this
area, and it is possible to build a software-only predictor
with over 90% accuracy [13, 15, 21, 35]. However, we used
a much simpler logical block number based approximation
to positioning time. A user-level program performs some
measurements to capture the mapping between the logical
block number difference between two requests and the cor-
responding head positioning t ime, and fits a smooth curve
through these points. This takes about 3 minutes at disk
installation time, but can be made online and non-intrusive.
This method automatical ly accounts for seek time, average
rotat ional latency and track buffers. I t has an accuracy of
about 75%, which we experimentally confirm to be sufficient,
given the insensitivity of the anticipation heuristic.

There are many possible t imer mechanisms to choose from.
We use the i8254 Programmable Interval Timer (PIT) to
generate interrupts every 500ps, and build a simple t imeout
system over that . Experiments demonstrate how this ra ther
coarse-grained t imer is amply sufficient for our purposes.
Each interrupt causes a processing overhead of about 4#s
on our hardware [2], thus causing about 1% CPU overhead
on computat ional workloads. Other t imeout mechanisms
can be used in place of the i8254, if higher accuracy and
lower overhead are desired. Some pentium-class processors
(mostly SMPs) have an on-chip APIC that delivers fine-
grained interrupts with an overhead of only 1 to 2#s per
interrupt . Alternatively, soft-timers [2] pose an extremely
light-weight alternative.

4. EXPERIMENTAL EVALUATION
This section evaluates the anticipatory scheduling frame-
work on a range of microbenchmarks and real workloads. We
show tha t this t ransparent kernel-level solution eliminates
deceptive idleness, and achieves significant performance im-
provement and closer adherence to QoS objectives wherever
applicable.

122

Code and platform: We implemented the anticipatory
scheduling framework and heuristics in the FreeBSD-4.3 ker-
nel. The code comprises of a kernel module of about 1500
lines of C code, and a small patch to the kernel for neces-
sary hooks into the scheduler and disk driver. Unless oth-
erwise stated, our experiments are conducted on a single
550MHz Pentium-III system, equipped with a 7200rpm IBM
Deskstar 34GXP IDE disk and 128 MB of main memory.

Schedulers: All experiments with a seek reducing sched-
uler use Aged-SPTF unless otherwise specified. We config-
ure this scheduler to perform shortest positioning-time first
scheduling, with a bounded per-request latency of I second.
This is found to achieve performance to within 1% of SPTF.
Anticipatory scheduling involves an intrinsic latency trade-
off: servicing multiple requests from one process for seek
reduction necessarily increases request turnaround t ime for
another. However, most server-type applications would find
this small increase acceptable, in exchange for significant
improvements in throughput. A system that desires lower
latency may reduce the above delay bound to say lOOms;
this was measured to reduce the throughput by at most 8%
on our system.

Metrics: Our experiments employ two metrics of applica-
tion performance: the application-observed throughput in
MB/s, and the disk utilization. In our framework, a disk
spends time either servicing requests (i.e., positioning head
and transferring data) or idling; we define disk utilization
in an interval as the percentage of real t ime spent servicing
requests. 4 This choice of the utilization metric depicts the
fraction of t ime tha t the disk is deliberately kept idle, and
helps in understanding some throughput measurements.

T u r n i n g off f i l e s y s t e m p r e f e t c h : Some operating sys-
tems, including FreeBSD, do not implement asynchronous
prefetch in some subsystems. For example, the VM sub-
system does not issue auxiliary prefetch requests for page
faults that are serviced from disk. Similarly, FreeBSD also
does not perform asynchronous prefetch for s e n d f i l e O and
r e a d d i r O . This allows us to effectively turn off prefetching
for evaluation purposes, by mapping files to memory and
accessing the memory locations.

Two sets of microbenchmarks, exhibiting variations in ac-
cess pat terns and thinktimes, serve to il luminate the work-
ings of anticipatory scheduling as applied to seek reducing
schedulers.

4.1 Microbenchmark: Access patterns
We study the effect of anticipatory scheduling on synchro-
nous requests issued in different access patterns, with and
without filesystem prefetch enabled. Two processes rapidly
issue 64 KB disk read requests into separate 1 GB files; these
are either sequential (sex/), or target every al ternate 64 KB
chunk (alter), or are randomly positioned within their re-
spective files (random). Some experiments use the r ead sys-
tem call, for which FreeBSD 4.3 t ransparent ly issues asyn-
chronous prefetch requests if the access pat tern is detected
to be sequential on disk. Other experiments map their file
into memory using mmap, and fault on the memory pages;

4In contrast, a work-conserving scheduler never idles for a
busy workload, and might prefer to define utilization as the
percentage of service t ime spent transferring da ta from disk.

these are not subject to asynchronous prefetch. Figure 4
shows the results.

25 10(

. i[ii.il ~, __ i i[] Or~Q,,',a,/r~,:, ~ I i 20 [.i.i.ln Anticlp./read
1 • ~ ::D Origina~/mmap e -

95

i:]:i:llii:i z:: 10

2 5 . .

0 9C
seq al ter random sec alter random

Figure 4: Impact of anticipatory scheduling on
disk throughput and utilization, using sequential,
alternate-block and random access workloads, and
read versus mmap based access.

Asynchronous prefetch ensures tha t sequential accesses us-
ing read achieve almost full disk bandwidth (about 21 MB/s) .
However, filesystems often lay out logically contiguous blocks
of a large file as a set of separate regions on disk. On the
infrequent occasions that a boundary is crossed, FreeBSD's
prefetching mechanism temporari ly assumes non-sequential
access and conservatively backs off. Anticipatory schedul-
ing waits for such processes, thus exploiting spatial locality
within the large file. Performance improves by about 5%,
by steadily fetching blocks from one file until Aged-SPTF
forces it to switch.

Since mmap-ed accesses are not subject to prefetch, antici-
patory scheduling at tains four times bet ter throughput than
the original case. This achieves throughput almost equal to
the maximum disk bandwidth; the 6% difference between
the two is reflected by an almost equal fraction of t ime that
the disk is kept idle. This mmap case is arguably a short-
coming of FreeBSD's prefetch implementation. However,
as exemplified in the following two cases of alter and ran-
dom, non-sequential disk access using read can use antici-
patory scheduling to significantly improve throughput wher-
ever prefetching fails.

Consider the second set of experiments, where al ternate
blocks are read. This defeats the FreeBSD prefetch heuris-
tic, causing both read and mmap to achieve only 5 MB/s.
Anticipatory scheduling improves throughput to the max-
imum tha t can be achieved for al ternate blocks, i.e., half
the disk bandwidth. We will see several variants of such
non-sequential access in real workloads.

Lastly, in the random access case, the smaller improvements
(28% and 30%) by anticipatory scheduling are because each
process is performing random access within its respective
file, so gains are mostly due to seek reduction between files.

4.2 Microbenchmark: Varying thinktimes
The next set of four microbenchmarks illustrates the impact
of waiting on applications tha t take different amounts of
t ime to issue the next request. Two processes map separate,
large files into memory, and fault on these memory pages se-
quentially (thus without asynchronous prefetch). After ev-
ery 64 KB, they pause for some amount of t ime as described
below.

123

4.2.1 Symmetric processes:
Consider Figure 5, where t ime t on the horizontal axis repre-
sents the duration in milliseconds tha t each process spends
waiting between requests. Each da ta point in the through-
put graph is a separate experiment. For values of t up to
8ms, the original system alternates between requests from
the two processes, achieving only 5 MB/s. When thinktime
exceeds 8ms, the waiting time becomes comparable to re-
quest service time, and utilization for the original system
star ts failing below 100%. Occasionally, deceptive idleness
is avoided by servicing two successive requests for the same
process. This fades away for larger values of t.

25

~ ' 2 0

v 1 5
"5

, , , F-5i'i~inai- ---,--- -

~i L . . ! : : : : ~ . - ' . - ! ~ ! ~ ! = ~ : :

........ i i i i

10 15 20
Thinktime (ms)

00

A .~Ts
o

50

o

. . . . \ i F-iN.i~iiiii-----,-= -
'{. L...An.t.!e.!P.:..,~_

10 15 20
Thinktime (ms)

F i g u r e 5: I n c r e a s i n g t h i n k t i m e s for b o t h p r o c e s s e s

With anticipatory scheduling enabled, the situation changes
as follows: When t = 0, we see the familiar situation where
throughput is four t imes tha t of the original system. For
larger values of t up to 8ms the effect of waiting becomes
increasingly burdensome on throughput and utilization, and
the improvement steadily declines. At about 8ms, the wait-
ing t ime becomes comparable to request service time, and
the cost-benefit equation tips the other way. Performance
then approaches tha t of the original system to an increasing
degree. Measurements indicate tha t many applications have
very short thinktimes when busy, in the region of 200/is to
2ms. Hence, ant icipatory scheduling is expected to achieve
significant benefits on real applications.

4.2.2 Asymmetric processes:
Consider an alternative scenario in Figure 6 where only one
(slow) process waits for durat ion t between requests, while
the other (quick) process issues request as soon as its pre-
vious request completes. The original system alternates be-
tween the two processes' requests for t up to 12ms, but be-
yond that , two or more requests arrive from the quick pro-
cess for every request from the slow one. This causes part ia l
avoidance of deceptive idleness, due to which performance
gradually improves for increasing t.

Wi th anticipatory scheduling enabled, the at ta ined through-
put exceeds tha t of the original system by a large margin.
The anticipation heuristic is greedy, and for small values of
thinktime, it decides to wait for both processes. This results
in a gradual throughput decrease with increasing thinktime,
until a point is reached (4ms) where the heuristic waits for
the quick process but not for the slow process. Through-
put rises back to the maximum, with requests from the slow
process serviced only when Aged-SPTF induces a switch.
Note that Aged-SPTF only guarantees non-starvation, not
fine-grained fairness.

25

20
r n

~ 1 5
e~

2

0
0

! lntici.p, +

........... i (i ..+_.i--,, .'+

~* ~-* .~-~-~-i.-÷-*--~- i

5 10 15 20
Thinktime (ms)

00

75

8

~ s o

N 25

0
0 5 10 15 20

Thinktime (ms)

F i g u r e 6 : I n c r e a s i n g t h i n k t i m e s f o r o n e p r o c e s s

4.2.3 Random thinktimes:
Next, we seek to understand how well the anticipation heuris-
tic adapts to thinktimes that vary rapidly within an experi-
ment. Interestingly, if a process waits for a random durat ion
uniformly distr ibuted between 0 and t, it performs almost
as well as the deterministic counterpart . This is because the
expected median thinktime is judged to be roughly tl2, and
the expected 95%ile thinktime becomes almost t.

4.2.4 Adversary:
Since the heuristic copes with randomly varying thinktimes~
we t ry to exercise the pathological-case behaviour of the
heuristic by writing an intelligent adversary. Two symmet-
ric processes walt for a durat ion determined as follows: they
issue n rapid requests, then wait for a durat ion tha t jus t ex-
ceeds the t imeout set by the heuristic, and repeat. This
application actively fails to comply with assumption #2 ,
and thus encumbers the heuristic from adapt ing effectively.
Results for varying n are shown in Figure 7. For n = 0, the
anticipatory scheduler cast cope with all requests arriving
slowly. But for n between 1 and 4, the anticipation heuris-
tic performs only slightly worse than the original system:
by about 20%. This result indicates tha t even for a mali-
cious application, or when the assumptions in Section 3.1 do
not hold, the possible performance degradation is acceptably
small.

25 i i-iSi'i.~in~ir ---,-:
. ~ ! , : : : ~ , t ! ~ ! ~ : : : ~ : :

~ t 5 .

~10
2 / ' " -+-4 i

0 i
0 3 6 9 12

Number of rapid requests

00

75
g
~ so

N 2s

o
o

r-÷-7
t t i

, . . .-;;..-.~ ~ ~

, i i !
1,/ i ~ i

............................ [-~i~ih-~r=-;--
L...~.n.t!.q!p,...~..
! I

3 6 9 12
Number of rapid requests

F i g u r e 7: A d v e r s a r y a p p l i c a t i o n

The adversary issues several requests rapidly, followed by a
long walt. Interestingly, a similar si tuation arises in prac-
tice when applications issue very large read requests (say
1 MB), and the FreeBSD kernel breaks them up into 128 KB
chunks. In this case, the scheduler receives eight 128 KB
requests in rapid succession, followed by the application's
typically larger thinkt ime period. We solve this special case
by having the filesystem flag such requests, whereupon the

124

anticipatory scheduling core t reats them like one large re-
quest.

The adversary application causes many t imeouts to expire,
and thus stresses the accuracy of the timer. In order to
understand the sensitivity of our results to the t imer fre-
quency, we reran the experiment with t imer granularities
of 50ps, 200#s, 500ps, and lms. Although the throughput
peaked at 500ps (because larger t imeouts allow for the occa-
sional heuristic error), the greatest difference we saw among
the four trials was only 10%. This was also suppor ted by
a similar experiment with the Apache webserver, where the
difference was negligible.

Solving deceptive idleness can clearly bring about significant
benefits on microbenchmaxks, but what is its impact on real
applications? To see this, we use two real applications (web-
server and linker), and two s tandard benchmarks (filesystem
and database) tha t are expected to reflect a wide range of
application workloads.

4.3 The Andrew filesystem benchmark
The Andrew Benchmark [12] a t tempts to capture a typi-
cal fileserver workload in a software development environ-
ment. I t consists of k clients, each performing five phases:
(a) mkdir, which creates n directories, (b) cp, which copies
a s tandard set of 71 C source files to each of these n directo-
ries, (c) star, which aggressively lists all directory contents,
(d) scan, which reads all these files using grep and we, and
finally (e) gee, which compiles and links them. We config-
ured n to be 500, so tha t the repository size exceeds main
memory. We call this set of n directories a repository, and
instantiate one such repository for each of the k = 2 clients,
aiming to simulate concurrent access to a flleserver. This
experiment uses the same Aged-SPTF scheduler as before,
with and without anticipatory scheduling enabled.

._.20

==15
E

e -
0 = 5
I1)

mkdir cp stat scan gee
-16% -5% -5% -54% +1.7%

F i g u r e 8: T h e A n d r e w B e n c h m a r k . T h e last pair o f
bars are s h o w n sca led d o w n b y a factor o f 3.

A breakup of the execution times for individual benchmark
phases is presented in Figure 8. Consider the scan phase,
which is the only one that issues streams of synchronous read
requests. Anticipatory scheduling t ransparent ly reduces ex-
ecution t ime for this phase by 54%. Both g rep and wc
on FreeBSD use read, not mmap, and would thus benefit
from kernel prefetch. However, individual files are small, so
this prefetch has little effect. Major seek reduction happens
here due to the files being in the same directory, and thus
closely positioned on disk. Anticipatory scheduling enables

the scheduler to capitalize on these seek opportunit ies and
halve the execution time.

Other disk-intensive phases improve by smaller amounts:
16% for mkdir with me tada ta writes, and 5% for cp and
stat each (the lat ter typically gets cached in memory). The
gcc phase is CPU-bound, but also performs some disk I /O;
this apt ly demonstrates the overhead of our system. There
is an increase in execution t ime by 1.7%, due to two factors:
CPU processing for the addit ional i8254 t imer interrupts,
and the CPU overhead corresponding to the heuristic ex-
ecution routines (mainly statistics collection). This phase
strongly dominates total execution time, so tha t the overall
benchmark shows the smaller improvement of 8.4%.

Performance with one client is the same with or without an-
t icipatory scheduling; indeed, when there is only one stream
of synchronous requests, anticipatory scheduling plays no
role. Increasing the number of clients from 2 to 8 shows al-
most no performance difference: the scan phase improves by
57% in the lat ter case. This confirms the applicabili ty and
scalability of anticipatory scheduling to busy fileservers.

4.4 The Apache webserver
The Apache webserver employs a multi-process architecture
to service requests from clients. Requests that miss in the
main-memory cache are serviced from disk by the respective
process. This happens frequently for webservers with large
working sets, to the point of becoming disk-bound. In its de-
fault configuration, Apache-l.3.12 (and also 2.0a9) mmaps
files tha t are smaller than 4 MB, and writes it out to a net-
work socket. For larger files, Apache reads the da ta into
application buffers first; this was done to prevent a swap-
based DoS at tack on 1TtIX systems. Many other webservers
and ftp servers use similar mechanisms for file transfer.

We first configure Apache to exclusively use either read or
mmap in a given experiment. We run the Apache web-
server with 3 client machines which host 16 client processes
each. Real websites have different amounts of concurrency,
depending on amount and characteristics of incident load;
we therefore varied the number of clients over a wide range,
and observed very litt le difference in results. These clients
rapidly play requests from a trace selected from the CS de-
par tment webserver at the University of California, Berke-
ley [6]. These requests have a median size of 4768 bytes,
a mean size of 86 KB, and a mean size of 13 KB if the
largest 5% of the requests are excluded. This trace is quite
disk-intensive, so 1000 requests target 745 distinct files. The
scheduler, as before, is Aged-SPTF.

Figure 9 characterizes the observed throughputs and uti-
lizations. We observe a 29% improvement in throughput for
read, where anticipatory scheduling complements filesystem
prefetch, and a larger 71% improvement for mmap (with-
out prefetch). Unlike in the Andrew Benchmark, all Apache
clients generate requests to the same repository, so requests
to an individual Apache process do not exhibit much local-
ity across files. So seek reduction opportunit ies are mainly
in terms of servicing each file fully before moving on to
the next. Many files are too small for any seek reduc-
tion. Intermediate-sized files axe potential candidates for
prefetching, but filesystem prefetch is conservative and does
not occur until a threshold number of requests are found to

125

4 100

~ ._~ 6o
~ 40

o ~ 20

0 0
read (+29%) mmap (+71%) read (-12%) mmap (-16%)

Figure 9: The Apache W e b s e r v e r con f igu red in two
modes , read a n d m m a p . T h e f o r m e r exemplifies the
practical l imitations of f i lesystem prefetch.

be sequential. Anticipatory scheduling effects the 29% im-
provement in this domain. Prefetch occurs for reads on large
files, but not for mmap. This accounts for the large differ-
ence in performance between the two methods of access. In
the default configuration (with mmap or read depending on
file size), Apache yields 2.2 MB/s on the original system and
3.5 MB/s with anticipatory scheduling; this improvement of
59% lies between those for the read and mmap cases.

4.5 The GnuLD linker
This experiment involves the last stage of a FteeBSD kernel
build, starting from a cold filesystem cache. The GNU linker
reads 385 object files from disk. 75% of these files axe under
10 KB, whereas 96% are under 25 KB. After reading all their
ELF headers, GnuLD performs up to 9 (but usually about
6) small, non-sequential reads in each file, corresponding to
each ELF section. These reads are separated by computa-
tion required for the linking process.

A 1 2
¢o

" 4
0

m 0

i • One instance, Odginal
i • One instance, AnUcip.
i [] Two instances, Odginal
n..T..w.o. j0.s.t .a.n.ce. s, .A. ~Lcjp... i

Aged SPTF (-68%) CSCAN (-48%)

Figure 10: The G N U Linker: multiple, concurrent
instances cause decept ive idleness, which is elimi-
nated by anticipatory scheduling.

The experiment in Figure 10 demonstrates the performance
of one and two simultaneous instances of GnuLD on disjoint
repositories. We use two schedulers this time, Aged-SPTF
and CSCAN, to demonstrate the impact of their respective
heuristics. With one synchronous request issuer process,
both schedulers result in execution times of about 1.8 sec-
onds each. We would normally expect this to double for two
instances of GnuLD. However, deceptive idleness causes an
increase in execution time by a factor of 5.5 instead. This is
again because non-sequential accesses preclude transparent
filesystem prefetching.

Anticipatory scheduling brings about a benefit of 68% in the
Aged-SPTF case, and causes performance to scale almost ex-

actly as expected (i.e., to twice the execution time of a single
process). The CSCAN scheduler, on the other hand, always
services requests in the forward direction. But object files
are accessed in arbitrary order; CSCAN therefore intrinsi-
cally precludes anticipatory scheduling from attaining the
full potential for seek reduction. We see a performance im-
provement of only 48%; this execution time is 56% higher
than the Aged-SPTF case.

4.6 The TPC-B database benchmark
The TPC-B benchmark, specified by the Transaction Pro-
cessing Council in 1994, exercises a database system on
simple, random, update-intenslve operations into a large
database, and is intended to reflect typical bank transac-
tions [27]. Though it is considered outdated, it serves to
illustrate the impact of anticipatory scheduling on a read-
write workload.

We implement the above with a MySQL database and two
client processes. However, we somewhat deviate from the
setup specified in TPC-B; our main goal is to demonstrate
the gains due to anticipatory scheduling, rather than to ob-
tain performance data for our hardware configuration. (1)
Individual records in the database are required to be at least
100 bytes large. MySQL has computational overheads that
made it CPU-bound for record sizes of 100 bytes, so we use
4 KB records to make data I /O the bottleneck. (2) We
use a database size of 780 MB, thus considerably exceed-
ing the 128 MB main memory size; our hardware is capable
of supporting larger databases. (3) MySQL does not sup-
port transactions. Many databases maintain a transaction
log, which could potentially become the performance bot-
tleneck. (4) Figure 11 depicts four experiments. The clients
in the first two experiments issue update queries as required
by TPC-B, but those in the last two replace the update op-
eration by a se l ec t . (5) Finally, both clients in the first
and third experiments issue queries directed at the same
database, as required by TPC-B. The second and fourth ex-
periments are a variant, where the two clients issue requests
to two separate databases.

120

..= .1

g 6 o ~ ~ 3Oo :: !'!:!

Update Update Select Select
Same DB Diff DB Same DB Diff DB

(+2%) (+30%) (+5%) (+60%)

Figure 11: The T P C - B database benchmark and
variants: two clients issuing update versus select
queries into the same versus different databases.

An update query reads the record first, and then issues an
asynchronous delayed write request. The presence of enough
delayed writes can give the scheduler more choices, and al-
leviate the effect of deceptive idleness. Also, seek reduction
within a database is severely limited due to almost random
queries therein, so the first experiment shows a net improve-

126

ment of only 2%. The second experiment physically sepa-
rates the two databases on disk; the impact of anticipatory
scheduling is now more pronounced due to seek reduction op-
portunities within and between databases, and we observe
a 30% improvement despite the delayed write requests. Ab-
solute performance is understandably lower than in the first
case, due to large seeks between the two databases. Finally,
gains due to anticipatory scheduling are best brought out in
the absence of any delayed writes, i.e., when the update op-
eration is reduced to just a select, involving one synchronous
read request. We observe throughput improvements by 5%
and 60% for requests to the same and different databases
respectively.

In summary, our experiments indicate that a database-like
workload often stands to gain by the transparent deployment
of anticipatory scheduling in the operating system. How-
ever, modern commercial databases are highly optimized,
and it is likely that they implement some form of application-
level prefetching; we have not explored this issue further.

4.7 Proportional-share Scheduling
This experiment demonstrates the impact of the anticipation
heuristic for proportional-share schedulers, and the combi-
nation heuristic. The workload is chosen to be the fourth
TPC-B variant in the database experiment above: s e l e c t
operations on different databases, to achieve throughputs
of 61 and 98 transactions/sec (i.e., 60% improvement with
anticipatory scheduling).

Figure 12 depicts an experiment where this workload is sub-
ject to proportional scheduling. We use the Stride scheduler
augmented with underlying seek reduction, as described in
Section 3.5; the relaxation threshold ~- is set to 1 second.
Proportions of 1:2 are assigned to the two TPC-B clients p
and q; these axe in terms of disk utilization (not throughput,
without loss of generality). In the three cases, the anticipa-
tion framework is either disabled, or separately configured
with the Stride or the combination heuristic respectively.

E

0

6 ! A Original ' ' ,,.~
---X--- Anticip., only proportional heuristic ~. . /~z
...... 0-...-. Antic p, comb net on heur st c ,~. "

i :::y

3 6

Experimental Time (seconds)

F i g u r e 12: P r o p o r t i o n a l - s h a r e s c h e d u l e r . T h r e e e x -
p e r i m e n t s : (z x) o r i g i n a l : 1:1 p r o p o r t i o n s , (×) a n t i c i -
p a t o r y w i t h p r o p o r t i o n a l h e u r i s t i c : 1:2 p r o p o r t i o n s ,
a n d (o) a n t i c i p a t o r y w i t h c o m b i n a t i o n h e u r i s t i c : 1:2
p r o p o r t i o n s w i t h m a x i m u m t h r o u g h p u t .

In the original system, the scheduler always multiplexes
between requests from the two processes, and incorrectly
achieves proportions of approximately 1:1, with the fairly

low throughput of 60 tps. When we turn on anticipatory
scheduling with the heuristic for proportional-share sched-
ulers, it realizes that process q (with the higher share) is lag-
ging behind, and waits for it. With average seek and transfer
times of 9ms and 3ms, the scheduler manages to achieve 1:2
proportions by servicing 5 requests from q for every request
from p. This is sufficient to exploit locality between requests
of one process, namely q; throughput improves to 77 tps, i.e.,
by about half the maximum possible. This results in a cor-
responding total utilization drop of about 2%, as is seen by
utilizations of both processes decreasing proportionally.

The combination heuristic, on the other hand, realizes the
seek reduction potential in waiting for both processes. It
thus services several requests from each process, and achieves
the full 98 tps throughput, while retaining proportions of
1:2.

4.8 Advanced hardware
We wish to determine the effect of anticipatory scheduling
on modern hardware, using the next generation CPUs, disks
and controllers. Studies indicate that head seek time im-
proves more slowly than data transfer time; this trend will
further aggravate the effects of deceptive idleness. Function-
ality supported by modern controllers like tagged queueing
and improved track buffering and controller-level prefetching
may become underused for synchronous I /O. On the other
hand, track buffering may assist filesystem prefetching for
medium-sized sequentially accessed files, and thus alleviate
the problem in some cases. Track buffering also allows the
scheduler to wait for the next request, without requiring a
complete rotation to read the adjacent sector. On a different
note, an increase in CPU speed corresponds to a reduction
in application thinktime, which is advantageous for waiting.
Thus, a number of tradeoffs can influence the precise gains
due to anticipatory scheduling.

To explore this issue, we perform some experiments on an
800MHz Athlon system, with a 15,000 rpm Seagate Cheetah
ST318451LW SCSI-3 disk and an Adaptec 19160B Ultra160
controller. Specifically, we repeat two experiments: the mi-
crobenchmark with different access patterns (Section 4.1)
and the Apache webserver experiment (Section 4.4). l~e-
sults are in Figure 13.

40 ::. 6 :~':-:: :": : m
'~" I -- --! ~ll Orlgnal:read il

3oLl...I.i.i"""tic">.:r°"<' i]

f i
2~ Jim • i B Orlglnal:mmap / ~ 4

i l l I I ill AnUclp.: mmap ~i 20 :::::::::::::::::::::::::::::::::::: ~ 3

. , o r i
o i i o

seq alter random read (+12%) mmap (+57%)

(a) Microbenchmark (b) Apache webserver

F i g u r e 13: E x p e r i m e n t s p e r f o r m e d o n a d v a n c e d
h a r d w a r e : 1 5 , 0 0 0 r p m S C S I d i s k , 8 0 0 M H z C P U .

We note that the maximum bandwidth on this disk is 55%
higher than on our original IDE disk, due to a correspond-
ing increase in rotational speed. However, deceptive idleness
causes both disks to deliver nearly the same low through-

127

put in the presence of large seeks; this magnifies the best-
case gains of anticipatory scheduling to a factor of 5.5, as
compared to the earlier factor of 4. Other aspects of this
microbenchmark are similar to those on the IDE disk.

Next, consider the Apache webserver experiment. Improve-
ments for the read and nmap configurations are 12% and
57%. While this is still significant, it is lower than the IDE
counterparts. Improved rotational speed, different disk ge-
ometry and better track buffering result in relatively faster
servicing of short seeks; these are common in the Apache
workload, thus leading to smaller improvements.

To summarize, modern hardware does suffer from deceptive
idleness, and stands to gain from anticipatory scheduling.
The actual improvements expected on future hardware can
be either more or less, depending on precise hardware details
and application characteristics.

On a related note, we consider the impact of deceptive idle-
ness and anticipatory scheduling on other disk types, such
as redundant arrays of inexpensive disks (RAIDs), just a
bunch of disks (JBODs), and network disks. We have not
investigated this issue in sufficient depth, but we believe
that deceptive idleness can affect such disks, and that antic-
ipatory scheduling can be beneficial. The positioning time
estimator would need to derive a useful model of device be-
haviour, including head positions and redundant copies of
data; we believe that this is the key step to adapting antic-
ipatory scheduling to such hardware.

5. DISCUSSION
This section discusses the practical impact of anticipatory
scheduling, and suggests improvements to its design.

5.1 Relevance of anticipatory scheduling
Many applications perform non-sequential read I /O on large
files, or access many small files colocated on disk, such as
those in the same directory. Applications such as web-
servers and databases often have huge working sets, and
issue read requests that cannot be satisfied from memory.
This general tendency of applications to issue concurrent,
synchronous, non-sequential disk requests has been on the
rise [19, 30]. These requests typically do not benefit from
traditional filesystem prefetching, and yet possess enough lo-
cality to be excellent candidates for seek reduction. This has
driven the need for an alternative and more general approach
to complement prefetching. Since anticipatory scheduling is
based on a much weaker form of prediction, it is feasible in
many situations where prefetching is difficult.

Proportionai-share schedulers are increasingly gaining promi-
nence in modern systems; for example, they are used in var-
ious high-level quality of service systems like using reserva-
tion domains to isolate co-hosted websites [8], and perform-
ing admission control to guarantee predictable performance
of webservers [3]. It is important for these disk schedulers to
adhere to their contract; anticipatory scheduling facilitates
this for applications issuing synchronous I /O. In practice,
proportional-share disk schedulers will almost always be de-
ployed in combination with a seek reducing scheduler [29].
Our experiments have demonstrated how the combination
heuristic brings about simultaneous improvement of both
contract adherence and performance.

Real-time disk schedulers (either pure or in combination
with seek reducing schedulers) are commonly used to serve
and view multimedia content [9, 11]. Under certain circum-
stances, it is possible for deceptive idleness to cause such
schedulers to multiplex between requests from different pro-
cesses, and consistently violate deadlines. We believe that
the anticipatory scheduling framework is applicable to real-
time scheduling, but a full exploration of the design and
merits of an anticipation heuristic is beyond the scope of
this paper.

5.2 Potential improvements
We suggest two approaches to improve on our proposed de-
sign. These are aside from the obvious improvements of
making the timing mechanism and the positioning time es-
timator cheaper and more accurate.

5.2.1 Accumulate more statistics
It is possible for the anticipation heuristic to make subop-
timal decisions. We can reduce this chance by augmenting
its adaptation mechanism with additional statistics:

(1) Besides tracking expected thinktimes and positioning
times, we could collect statistics about the variance of these
estimates. This gives the heuristic an idea of how accurate
these estimates really are. We could then use a technique
such as eovariance resetting to discard all previously accu-
mulated statistics whenever this variance becomes too high.
(2) The heuristic could keep track of how frequently time-
outs expire for each process; if this exceeds some thresh-
old rate, then regardless of all other notions of accuracy, it
would know that something is wrong. (3) The positioning
time estimator may not be accurate; however, it can mea-
sure positioning time after a request has completed service.
This provides an indicator for the error in estimation, and
thus, our confidence in future decisions. (4) An application
might use aio_read to issue requests that are actually syn-
chronous; the heuristic can determine this post-facto, and
remember it to optimize future decisions.

5.2.2 Relax the two workload assumptions
The anticipatory scheduling framework waits for the last
request issuing process, and collects statistics at a process
granularity. Though this is easily the common case, relaxing
the assumptions in Section 3.1 can enable the anticipation
heuristics to support a wider range of applications, of the
following types:

(1) Some proportional-share disk schedulers have a notion
of resource principals different from processes, like resource
containers [4] and reservation domains [8]. (2) Also, some-
times a group of processes may collectively issue synchronous
requests. (3) Applications may simultaneously generate dif-
ferent access patterns on different file descriptors. (4) Some
programs may issue two kinds of disk requests from two
different parts of the program code, but on the same file de-
scriptor. (5) Seek reduction intrinsically deals with requests
in the same region on the disk; online clustering can classify
requests into groups.

To relax the assumptions, the heuristic can collect statistics
at all levels of abstraction, i.e., processes, threads, instruc-
tion pointer for thread, file descriptors, and disk region -

128

along with their variances. The heuristic can then choose the
highest consistent level out of these. This has low variance,
is expected to be correct, and contains most information.

6. RELATED WORK
This section points out interesting phenomena analogous
to deceptive idleness, and methods related to anticipatory
scheduling, in each of three domains: disk, CPU and net-
work interface scheduling.

Anticipatory scheduling is based on the non-work-conserving
scheduling discipline. To our knowledge, the only other non-
work-conserving disk scheduler solves a memory manage-
ment issue for mixed real-time and best-effort workloads. It
refrains from servicing all outstanding best-effort requests,
and conserves buffer space for future real-time requests [10].

The basic idea of anticipatory disk scheduling has been inde-
pendently suggested in a posting to the Linux-kernel mailing
list - coincidentally under the same name [25].

For write requests, the AIX operating system implements
I/O pacing to prevent programs from saturating the sys-
tem's I /O facilities. This enforces per-file high and low wa-
ter marks on the number of queued requests [33]. This low
water mark buffers write requests and increases opportuni-
ties for seek reduction; it can be viewed as the counterpart
of anticipatory scheduling for delayed write requests.

Also in the context of efficiently handling asynchronous re-
quests, freeblock scheduling [16] has been proposed to in-
crease media bandwidth utilization by potentially servicing
asynchronous requests enroute to the synchronous ones.

Filesystem prefetching is a well-researched area [24], and for
regular workloads, asynchronous prefetch can transparently
eliminate deceptive idleness (Section 2.1). There is a large
body of work in improving the feasibility and effectiveness of
prefetch using techniques such as application-level hints [18]
and transparent compiler-directed approaches [17].

Deceptive idleness creates a momentary shortage of suitable
requests; a different type of scheduler starvation arises in
the context of the Aged-SPTF scheduler. Recall from Sec-
tion 3.3 that priorities axe assigned to requests in the SPTF
queue, and these are increased over time. If this increase
is performed abruptly at some time threshold, and if the
rate of incoming requests exceeds service rate, then every
request choice will get forced, and the scheduler degenerates
to FCFS. The solution in this case involves gradually raising
request priorities [15].

The CPU scheduling discipline being preemptible, there is
no analog of deceptive idleness. There is, however, the
equivalent of high preemption cost in switching between
processes: affinity scheduling attempts to schedule between
many threads to improve cache reuse [28]. On a different
note, non-work-conserving CPU schedulers have been moti-
vated by the need to handle bursty and unexpected work-
loads; these are based on maintaining one or more CPUs in
reserve [20]. Similarly, non-work-conserving request sched-
ulers have been used to support prioritized workloads in
web content hosting, for differentiated levels of service [1].
In comparison, anticipatory disk scheduling is a distinctly
different type of non-work-conserving scheduling.

The network packet scheduling discipline is non-preemptible,
but deceptive idleness is unlikely in this domain. High band-
width-delay products drive applications to maintain win-
dows of outstanding requests, due to which the packet sched-
uler never faces a shortage of requests from an individual
flow. Interestingly, there is reason to optimize in the op-
posite direction: context switching overhead is negligible,
and it is important to avoid burstiness. WF2Q is a work-
conserving scheduling policy that tries to interleave requests
as much as possible, more than even WFQ does [5]. Finally,
non-work-conserving schedulers have been used in packet
scheduling by Zhang and Knightly to handle bursty work-
loads, by holding packets in the network and simulating the
original traffic stream [36].

7. CONCLUSION
This paper identifies the problem of deceptive idleness in
the disk subsystem, and proposes the anticipatory schedul-
ing framework as a general and effective solution. This sim-
ple, application-transparent method brings about significant
improvements in throughput and adherence to quality of
service objectives for synchronous disk I /O. The framework
consists of a scheduler-independent core, with separate an-
ticipation heuristics proposed for a variety of seek reducing
and proportional-share schedulers to address their disparate
needs. This solution complements prefetching techniques
deployed at the application and kernel levels, and is most
useful in frequently occurring situations where prefetching
is difficult or infeasible. It is easy to implement, and suited
for incorporation into general-purpose operating systems.

This paper evaluates anticipatory scheduling under a range
of workloads. Microbenchmarks characterize the intrinsic
properties of the solution, whereas real applications and
standard benchmarks evaluate its applicability and effective-
ness in realistic scenarios. The Apache webserver is found
to deliver 29% and 71% more throughput in two configura-
tions. The Andrew filesystem benchmark runs faster by 8%
(54% for the synchronous phase). Variants of the TPC-B
database benchmark exhibit improvements between 2% and
60%. Proportional-share schedulers become empowered to
deliver application-desired proportions for synchronously is-
sued requests. All this is accomplished with little overhead.

8. ACKNOWLEDGMENTS
We are grateful to Margo Seltzer (our shepherd) and our
anonymous reviewers for their detailed feedback, and to
Juan Navarro, Karthick Rajamani and Arvind Sankar for
several insightful discussions. This work was supported in
part by NSF Grant CCR-9803673, by Texas TATP Grant
003604, by an IBM Partnership Award, and by an equip-
ment donation from HP Labs. We thank the Massachusetts
Institute of Technology for its hospitality during our visit in
Spring 2001.

9. REFERENCES
[1] J. Almeida, M. Dabu, A. Manikutty, and P. Gao.

Providing differentiated quality of service in web
hosting services. In WISP, June 1998.

[2] M. Aron and P. Druschel. Soft timers: Efficient
microsecond software timer support for network
processing. In 17th ACM SOSP, Dec. 1999.

129

[3] M. Aron, S. Iyer, and P. Druschel. A resource
management framework for predictable quality of
service in web servers, July 2001. Submitted.
http://www.cs.rice.edu/-ssiyer/r/mbqos/.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management in
server systems. In 3rd USENIX OSDI, Feb. 1999.

[5] J. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In IEEE Infocom, Mar. 1996.

[6] HTTP log files at the University of California,
Berkeley. http: //www.cs.berkeley.edu/logs/http /.

[7] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and
A. Silberschatz. Disk scheduling with quality of
service guarantees. In IEEE ICMCS, June 1999.

[8] J. Bruno, E. Gabber, B. ()zden, and A. Silberschatz.
The Eclipse operating system: Providing quality of
service via reservation domains. In USENIX 1998
Annual Technical Conference, June 1998.

[9] S. Chen, J. A. Stankovic, J. F. Kurose, and
D. Towsley. Performance evaluation of two new disk
scheduling algorithms for real-time systems. Journal
of Real-Time Systems, 3(3):307-336, Sept. 1991.

[10] L. Golubchik, J. C. S. Lui, E. de Souza e Silva, and
H. R. Gail. Evaluation of tradeoffs in resource
management techniques for multimedia storage
servers. In IEEE ICMCS, June 1999.

[11] P. Goyal, X. Guo, and H. Vin. A hierarchical CPU
scheduler for multimedia operating systems. In 2nd
USENIX OSDI, Oct. 1996.

[12] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and performance in a distributed file system.
ACM Transactions on Computer Systems, 6(1):51-81,
Feb. 1988.

[13] L. Huang and T. Chiueh. Implementation of a
rotation latency sensitive disk scheduler. Technical
Report ECSL-TR81, SUNY, Stony Brook, Mar. 2000.

[14] S. Iyer and P. DruscheL The effect of deceptive
idleness on disk schedulers. Technical Report
CSTR01-379, Rice University, June 2001.

[15] D. Jacobson and J. Wilkes. Disk scheduling algorithms
based on rotational position. Technical Report
HPL-CSP-91-Trevl, Hewlett-Packard, Feb. 1991.

[16] C. Lumb, J. Schindler, G. Ganger, D. Nagle, and
E. Riedel. Towards higher disk head utilization:
Extracting free bandwidth from busy disk drives. In
~th USENIX OSDI, Oct. 2000.

[17] T. Mowry, A. Demke, and O. Krieger. Automatic
compiler inserted I /O prefetching for out-of-core
applications. In Pnd USENIX OSDI, Oct. 1996.

[18] H. Patterson, G. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In
15th ACM SOSP, Dec. 1995.

[19] D. Roselli, J. R. Lorch, and T. E. Anderson. A
comparison of file system workloads. In USENIX
Annual Technical Conference, June 2000.

[20] E. Rosti, E. Smirni, G. Serazzi, and L. W. Dowdy.
Analysis of non-work-conserving processor
partitioning policies. Lecture Notes in Computer
Science, 949:165-181, 1995.

[21] C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling. IEEE Computer, 27(3):17-28, 1994.

[22] M. Seltzer, P. Chen, and J. Ousterhout. Disk
scheduling revisited. In USENIX Winter Technical
Conference, Jan. 1990.

[23] P. Shenoy and H. Via. Cello: A disk scheduling
framework for next generation operating systems. In
ACM Sigmetrics, June 1998.

[24] E. Shriver, C. Small, and K. Smith. Why does file
system prefetching work? In USENIX Annual
Technical Conference, June 1999.

[25] J. B. Siegal, Jan. 2000.
http : //www.cs.rice.edu /~ssiyer / r / antsched /linux.html.

[26] D. Sullivan and M. Seltzer. Isolation with flexibility:
A resource management framework for central servers.
In USENIX Annual Technical Conference, June 2000.

[27] Transaction Processing Performance Council. TPC-B
standard specification, revision 2.0, 1994.

[28] R. Vaswani and J. Zahorjan. The implications of cache
affinity on processor scheduling for shared memory
multiprocessors. In 13th ACM SOSP, Oct. 1991.

[29] B. Verghese, A. Gupta, and M. Rosenblum.
Performance isolation: Sharing and isolation in shared
memory multiprocessors. In ASPLOS, Oct. 1998.

[30] W. Vogels. File system usage in Windows NT 4.0. In
17th ACM SOSP, June 2000.

[31] C. Waldspurger and W. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In
1st USENIX OSDI, Nov. 1994.

[32] C. Waldspurger and W. Weihl. Stride scheduling:
Deterministic proportional resource management.
Technical report, MIT/LCS/TM-528, June 1995.

[33] F. Waters. AIX performance tuning guide, chapter 8.
Prentice Hall, 1994.

[34] B. Worthington, G. Ganger, and Y. Part. Scheduling
algorithms for modern disk drives. In ACM
Sigmetrics, 1994.

[35] X. Yu, B. Gum, Y. Chen, R. Wang, K. Li,
A. Krishnamurthy, and T. Anderson. Trading capacity
for performance in a disk array. In ~th USENIX OSDI,
Oct. 2000.

[36] H. Zhang. Providing end-to-end performance
guarantees using non-work-conserving disciplines.
Computer Communications, 18(10), Oct. 1995.

http : / /~w~. es. ~ce. edu/'ssiyer/r/antsehed /

130

