
File system internals
Tanenbaum, Chapter 4

COMP3231

Operating Systems

2

Summary of the FS abstraction

User's view Under the hood

Hierarchical structure Flat address space

Arbitrarily-sized files Fixed-size blocks

Symbolic file names Numeric block addresses

Contiguous address space inside
a file

Fragmentation

Access control No access control

(Some degree of) reliability Data written to the disk survives
OS crashes.
RAID provides additional
protection against disk crashes.

3

A brief history of file systems

• Early batch processing systems
– No OS

– I/O from/to punch cards

– Tapes and drums for external storage, but no FS

– Rudimentary library support for reading/writing tapes and drums

IBM 709 [1958]

4

A brief history of file systems

• The first file systems were single-
level (everything in one directory)

• Files were stored in contiguous
chunks
– Maximal file size must be known in

advance

• Now you can edit a program and
save it in a named file on the tape!

PDP-8 with DECTape [1965]

5

A brief history of file systems

• Time-sharing OSs
– Required full-fledged file systems

• MULTICS
– Multilevel directory structure (keep files that belong to

different users separately)

– Access control lists

– Symbolic links

Honeywell 6180 running
MULTICS [1976]

6

A brief history of file systems

• UNIX
– Based on ideas from MULTICS

– Simpler access control model

– Everything is a file!

PDP-7

7

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

Syscall interface:
• creat
• open
• read
• write
• ...

8

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Hard disk platters:
• tracks
• sectors

Application

9

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Disk controller:

• Hides disk geometry,
 bad sectors
• Exposes linear
 sequence of blocks

 0 N

Application

10

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Device driver:

• Hides device-specific
 protocol
• Exposes block-device
 Interface (linear
 sequence of blocks)

 0 N

Application

11

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File system:

• Hides physical location
 of data on the disk

• Exposes: directory
 hierarchy, symbolic file
 names, random-access
 files, protection

Application

12

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Optimisations:

• Keep recently accessed
 disk blocks in memory

• Schedule disk accesses
 from multiple processes
 for performance and
 fairness

Application

13

Architecture of the OS storage stack

Disk scheduler

FS

VFS

OF table

FD table

Device driver

Virtual FS:

• Unified interface to
 multiple FSs

Application

Disk scheduler

FS2

Device driver

Buffer cache

14

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File desctriptor and
Open file tables:

• Keep track of files
 opened by user-level
 Processes
• Implement semantics
 of FS syscalls

Application

15

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application

This and next week

Weeks 9-10

16

Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application

17

Some popular file systems

• FAT16

• FAT32

• NTFS

• Ext2

• Ext3

• Ext4

• ReiserFS

• XFS

• ISO9660

• HFS+

• UFS2

• ZFS

• JFS

• OCFS

• Btrfs

• JFFS2

• ExFAT

• UBIFS

Question: why are there so many?

18

Question 1

19

Assumptions

• In this lecture we focus on file systems for magnetic
disks
– Rotational delay

• 8ms worst case for 7200rpm drive

– Seek time
• ~15ms worst case

– For comparison, disk-to-buffer transfer speed of a modern
drive is ~10µs per 4K block.

• Conclusion: keep blocks that are likely to be accessed
together close to each other

20

Implementing a file system

• The FS must map symbolic file
names into block addresses

• The FS must keep track of

– which blocks belong to which files.

– in what order the blocks form the
file

– which blocks are free for allocation

• Given a logical region of a file, the
FS must track the corresponding
block(s) on disk.

– Stored in file system metadata
4 7

8 2
5 1

6 3

File system

21

Allocation strategies

• Contiguous allocation
✔ Easy bookkeeping (need to keep track of the starting block

and length of the file)
✔ Increases performance for sequential operations
✗ Need the maximum size for the file at the time of creation
✗ As files are deleted, free space becomes divided into many

small chunks (external fragmentation)

Example: ISO 9660 (CDROM FS)

1 2 3 4 5 6 7 8

metadata

22

Allocation strategies

• Dynamic allocation

– Disk space allocated in portions as needed

– Allocation occurs in fixed-size blocks
✔ No external fragmentation
✔ Does not require pre-allocating disk space
✗ Partially filled blocks (internal fragmentation)
✗ File blocks are scattered across the disk
✗ Complex metadata management (maintain the list of blocks for each

file)
1
2
3
4
5
6
7
8

23

External and internal fragmentation

• External fragmentation
– The space wasted external to the allocated memory

regions

– Memory space exists to satisfy a request but it is unusable
as it is not contiguous

• Internal fragmentation
– The space wasted internal to the allocated memory

regions

– Allocated memory may be slightly larger than requested
memory; this size difference is wasted memory internal to
a partition

24

Linked list allocation

• Each block contains a pointer to the next block in the
chain. Free blocks are also linked in a chain.
✔ Only single metadata entry per file
✔ Best for sequential files

Question: What are the downsides?

1 4 2 3

25

Question 2

26

File allocation table

• Keep a map of the entire FS in a separate table
– A table entry contains the number of the next block of the file

– The last block in a file and empty blocks are marked using
reserved values

• The table is stored on the disk and is replicated in memory

• Random access is fast (following the in-memory list)

1 4 2 3

Question: any issues with this design?

27

Question 3

28

File allocation table

• Examples
– FAT12, FAT16, FAT32

reserved FAT1 FAT2 data blocks

29

inode-based FS structure

• Idea: separate table (index-node or i-node) for each file.
– Only keep table for open files in memory

– Fast random access

• The most popular FS structure today

1 4 2 3

30

i-node implementation issues

• i-nodes occupy one or several disk areas

• i-nodes are allocated dynamically, hence free-space
management is required for i-nodes
– Use fixed-size i-nodes to simplify dynamic allocation

– Reserve the last i-node entry for a pointer to an extension
i-node

i-nodes data blocks

31

i-node implementation issues

32

i-node implementation issues
• Free-space management

– Approach 1: linked list of free blocks

– Approach 2: keep bitmaps of free blocks and free i-nodes

33

Free block list

• List of all unallocated blocks

• Background jobs can re-order list for better contiguity

• Store in free blocks themselves
– Does not reduce disk capacity

• Only one block of pointers need be kept in the main
memory

34

Free block list

(a) Almost-full block of pointers to free disk blocks in RAM
● three blocks of pointers on disk

(b) Result of freeing a 3-block file

(c) Alternative strategy for handling 3 free blocks
● shaded entries are pointers to free disk blocks

35

Bit tables

• Individual bits in a bit vector flags used/free blocks

• 16GB disk with 512-byte blocks --> 4MB table

• May be too large to hold in main memory

• Expensive to search
– But may use a two level table

• Concentrating (de)allocations in a portion of the bitmap
has desirable effect of concentrating access

• Simple to find contiguous free space

36

Implementing directories

• Directories are stored like normal files
– directory entries are contained inside data blocks

• The FS assigns special meaning to the content of these
files
– a directory file is a list of directory entries

– a directory entry contains file name, attributes, and the file
i-node number

• maps human-oriented file name to a system-oriented
name

37

Fixed-size vs variable-size directory entries

• Fixed-size directory entries
– Either too small

• Example: DOS 8+3 characters

– Or waste too much space

• Example: 255 characters per file name

• Variable-size directory entries
– Freeing variable length entries can create external

fragmentation in directory blocks

• Can compact when block is in RAM

38

Directory listing

• Locating a file in a directory
– Linear scan

• Use a directory cache to speed-up search

– Hash lookup

– B-tree (100's of thousands entries)

39

Storing file attributes

(a) disk addresses and attributes in directory entry

– FAT

(b) directory in which each entry just refers to an i-node
– UNIX

40

Trade-off in FS block size

• Larger blocks require less FS metadata

• Smaller blocks waste less disk space

• Sequential Access

– The larger the block size, the fewer I/O operations required

• Random Access

– The larger the block size, the more unrelated data loaded.

– Spatial locality of access improves the situation

• Choosing an appropriate block size is a compromise

• File systems deal with 2 types of blocks
– Disk blocks or sectors (usually 512 bytes)

– File system blocks 512 * 2^N bytes

– What is the optimal N?

41

Example block-size trade-off

• Dark line (left hand scale) gives data rate of a disk
• Dotted line (righ-hand scale) gived disk space efficiency

– All files 2KB (an approximate median size)

	File Management Tanenbaum, Chapter 4
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

