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Summary of the FS abstraction

User's view Under the hood

Hierarchical structure Flat address space

Arbitrarily-sized files Fixed-size blocks

Symbolic file names Numeric block addresses

Contiguous address space inside 
a file

Fragmentation

Access control No access control

(Some degree of) reliability Data written to the disk survives 
OS crashes.
RAID provides additional 
protection against disk crashes.
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A brief history of file systems

• Early batch processing systems
– No OS

– I/O from/to punch cards

– Tapes and drums for external storage, but no FS

– Rudimentary library support for reading/writing tapes and drums

IBM 709 [1958]
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A brief history of file systems

• The first file systems were single-
level (everything in one directory)

• Files were stored in contiguous 
chunks
– Maximal file size must be known in 

advance

• Now you can edit a program and 
save it in a named file on the tape!

PDP-8 with DECTape [1965]



5

A brief history of file systems

• Time-sharing OSs
– Required full-fledged file systems 

• MULTICS
– Multilevel directory structure (keep files that belong to 

different users separately)

– Access control lists

– Symbolic links

Honeywell 6180 running
MULTICS [1976]
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A brief history of file systems

• UNIX
– Based on ideas from MULTICS

– Simpler access control model

– Everything is a file!

PDP-7
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

Syscall interface:
• creat
• open
• read
• write
• ...
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Hard disk platters:
• tracks
• sectors

Application
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Disk controller:

• Hides disk geometry, 
  bad sectors
• Exposes linear 
  sequence of blocks

 0                            N

Application
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Device driver:

• Hides device-specific
  protocol
• Exposes block-device
  Interface (linear 
  sequence of blocks)

 0                            N

Application
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File system: 

• Hides physical location
  of data on the disk

• Exposes: directory 
  hierarchy, symbolic file
  names, random-access
  files, protection

Application
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Optimisations: 

• Keep recently accessed
  disk blocks in memory

• Schedule disk accesses
  from multiple processes
  for performance and 
  fairness

Application
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

OF table

FD table

Device driver

Virtual FS: 

• Unified interface to 
  multiple FSs

Application

Disk scheduler

FS2

Device driver

Buffer cache
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File desctriptor and
Open file tables: 

• Keep track of files 
  opened by user-level
  Processes
• Implement semantics
  of FS syscalls

Application
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application

This and next week

Weeks 9-10
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Architecture of the OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application
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Some popular file systems

• FAT16

• FAT32

• NTFS

• Ext2

• Ext3

• Ext4

• ReiserFS

• XFS

• ISO9660

• HFS+

• UFS2

• ZFS

• JFS

• OCFS

• Btrfs

• JFFS2

• ExFAT

• UBIFS

Question: why are there so many?
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Question 1
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Assumptions

• In this lecture we focus on file systems for magnetic 
disks
– Rotational delay

• 8ms worst case for 7200rpm drive

– Seek time
• ~15ms worst case

– For comparison, disk-to-buffer transfer speed of a modern 
drive is ~10µs per 4K block.

• Conclusion: keep blocks that are likely to be accessed 
together close to each other
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Implementing a file system

• The FS must map symbolic file 
names into block addresses

• The FS must keep track of

– which blocks belong to which files.

– in what order the blocks form the 
file

– which blocks are free for allocation 

• Given a logical region of a file, the 
FS must track the corresponding 
block(s) on disk.

– Stored in file system metadata
4 7

8 2
5 1

6 3

File system
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Allocation strategies

• Contiguous allocation
✔ Easy bookkeeping (need to keep track of the starting block 

and length of the file)
✔ Increases performance for sequential operations
✗ Need the maximum size for the file at the time of creation
✗ As files are deleted, free space becomes divided into many 

small chunks (external fragmentation)

Example: ISO 9660 (CDROM FS)

1 2 3 4 5 6 7 8

metadata
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Allocation strategies

• Dynamic allocation

– Disk space allocated in portions as needed

– Allocation occurs in fixed-size blocks
✔ No external fragmentation
✔ Does not require pre-allocating disk space
✗ Partially filled blocks (internal fragmentation)
✗ File blocks are scattered across the disk
✗ Complex metadata management (maintain the list of blocks for each 

file)
1
2
3
4
5
6
7
8
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External and internal fragmentation

• External fragmentation
– The space wasted external to the allocated memory 

regions

– Memory space exists to satisfy a request but it is unusable 
as it is not contiguous

• Internal fragmentation
– The space wasted internal to the allocated memory 

regions

– Allocated memory may be slightly larger than requested 
memory; this size difference is wasted memory internal to 
a partition
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Linked list allocation

• Each block contains a pointer to the next block in the 
chain. Free blocks are also linked in a chain.
✔ Only single metadata entry per file
✔ Best for sequential files

Question: What are the downsides?

1 4 2 3
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Question 2
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File allocation table

• Keep a map of the entire FS in a separate table
– A table entry contains the number of the next block of the file

– The last block in a file and empty blocks are marked using 
reserved values

• The table is stored on the disk and is replicated in memory

• Random access is fast (following the in-memory list)

1 4 2 3

Question: any issues with this design?
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Question 3
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File allocation table

• Examples
– FAT12, FAT16, FAT32

reserved FAT1 FAT2 data blocks
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inode-based FS structure

• Idea: separate table (index-node or i-node) for each file.
– Only keep table for open files in memory

– Fast random access

• The most popular FS structure today

1 4 2 3
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i-node implementation issues

• i-nodes occupy one or several disk areas

• i-nodes are allocated dynamically, hence free-space 
management is required for i-nodes
– Use fixed-size i-nodes to simplify dynamic allocation

– Reserve the last i-node entry for a pointer to an extension 
i-node

i-nodes data blocks
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i-node implementation issues
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i-node implementation issues
• Free-space management

– Approach 1: linked list of free blocks

– Approach 2: keep bitmaps of free blocks and free i-nodes
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Free block list

• List of all unallocated blocks

• Background jobs can re-order list for better contiguity

• Store in free blocks themselves
– Does not reduce disk capacity

• Only one block of pointers need be kept in the main 
memory
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Free block list

(a) Almost-full block of pointers to free disk blocks in RAM
● three blocks of pointers on disk

(b) Result of freeing a 3-block file

(c) Alternative strategy for handling 3 free blocks
● shaded entries are pointers to free disk blocks
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Bit tables

• Individual bits in a bit vector flags used/free blocks

• 16GB disk with 512-byte blocks --> 4MB table

• May be too large to hold in main memory

• Expensive to search
– But may use a two level table

• Concentrating (de)allocations in a portion of the bitmap 
has desirable effect of concentrating access 

• Simple to find contiguous free space
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Implementing directories

• Directories are stored like normal files 
– directory entries are contained inside data blocks

• The FS assigns special meaning to the content of these 
files
– a directory file is a list of directory entries

– a directory entry contains file name, attributes, and  the file 
i-node number

• maps human-oriented file name to a system-oriented 
name
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Fixed-size vs variable-size directory entries

• Fixed-size directory entries
– Either too small

• Example: DOS 8+3 characters

– Or waste too much space

• Example: 255 characters per file name

• Variable-size directory entries
– Freeing variable length entries can create external 

fragmentation in directory blocks

• Can compact when block is in RAM
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Directory listing

• Locating a file in a directory
– Linear scan

• Use a directory cache to speed-up search

– Hash lookup

– B-tree (100's of thousands entries)
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Storing file attributes

(a) disk addresses and attributes in directory entry

– FAT

(b) directory in which each entry just refers to an i-node
– UNIX
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Trade-off in FS block size

• Larger blocks require less FS metadata

• Smaller blocks waste less disk space

• Sequential Access

– The larger the block size, the fewer I/O operations required

• Random Access

– The larger the block size, the more unrelated data loaded.

– Spatial locality of access improves the situation

• Choosing an appropriate block size is a compromise

• File systems deal with 2 types of blocks
– Disk blocks or sectors (usually 512 bytes)

– File system blocks 512 * 2^N bytes

– What is the optimal N?



41

Example block-size trade-off

• Dark line (left hand scale) gives data rate of a disk
• Dotted line (righ-hand scale) gived disk space efficiency

– All files 2KB (an approximate median size)
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