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Textbook

• Sections 2.3 & 2.5



3

Concurrency in operating systems

• Inter-process communication

• Intra-process communication

• Concurrency in the kernel
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Concurrent vs sequential

• Sequential: program state depends on its previous state and 
the last instruction

void insert(struct node *item)
{
  item->next = head;
  head = item;
}

head

head

head
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Concurrent vs sequential

• Concurrent: must take thread interleavings into account
void insert(item)
{ 
  item->next = head;
  head = item;
}

void insert(item)
{ 
  item->next = head;
  head = item;
}
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Concurrent vs sequential

• Concurrent: must take thread interleavings into account
void insert(item)
{
  item->next = head;

  head = item;
}

void insert(item)
{

  
  item->next = head;

  head = item;
}
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Race conditions

• Race condition: the result of the computation depends on 
the relative speed of two or more processes
– Occur non-deterministically

– Hard to debug
void insert(struct node *item)
{ 
  item->next = head;
  head = item;
}

1 2 3
item->next=head head=item

state1

state2

state3

3 states, 2 transition, 1 execution trace
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Race conditions

• Race condition: the result of the computation depends on 
the relative speed of two or more processes
– Occur non-deterministically

– Hard to debug

• Question: How many states?

void insert(struct node *item)
{ 
  item->next = head;
  head = item;
}

void insert(struct node *item)
{ 
  item->next = head;
  head = item;
}



10

Question 1
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Question 1
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Race conditions

void insert(struct node *item)
{ 
  item->next = head;
  head = item;
}

void insert(struct node *item)
{ 
  item->next = head;
  head = item;
}

N processes

…

• Question: How many states?
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Question 2
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Observation

• Unfortunately, it is usually easier to show something 
does not work, than it is to prove that it does work.
– Ideally, we’d like to prove, or at least informally 

demonstrate, that our solutions work.
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Dealing with race conditions

• Approach 1: Mutual exclusion
– Identify shared variables

– Identify code sections that access these variables (critical 
sections or critical regions)

– Ensure that at most one process can enter a critical 
section
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Dealing with race conditions

• Approach 2: Lock-free data structures
– Allow concurrent access to shared variables, but make 

sure that they end up in a consistent state

– Hard for non-trivial data structures

– Performance overhead in the non-contended case
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Dealing with race conditions

• Approach 3: Message-based communication
– Eliminate shared variables

– Processes communicate and synchronise using message 
passing
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Mutual exclusion

• We can control access to the shared resource by 
controlling access to the code that accesses the 
resource

• Programming primitives: 
– enter_region() - called at the entrance to the critical 

region

– leave_region() - called at the exit from the critical 
region
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Mutual exclusion

Mutual exclusion using critical regions
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Example critical sections

struct node *remove(void)
{
   struct node *t;
   enter_region(lock);
   t = head;
   if (t != NULL) {
      head = head->next;
   }
   leave_region(lock);
   return t;
}

void insert(struct node *item)
{
   enter_region(lock);
   item->next = head;
   head = item;
   leave_region(lock);
}
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Implementing 
enter_region and leave_region

Requirements

• Mutual exclusion
– No two processes simultaneously in the critical section

• No assumptions made about speeds of numbers of 
CPUs

• Liveness
– No process must wait forever to enter the critical section
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A solution?

• A lock variable
– If lock == 1, 

• somebody is in the critical section and we must wait

– If lock == 0, 

• nobody is in the critical section and we are free to enter
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A solution?

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

• Question: Any issues with this solution?
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Question 3
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Mutual exclusion by taking turns

while(TRUE) {

   while (turn!=0);

   critical();

   turn = 1;

   non_critical();

}

while(TRUE) {

   while (turn!=0);

   critical();

   turn = 1;

   non_critical();

}

• Works due to strict alternation

• Process must wait its turn even while the other process 
is doing something else.
– Does not guarantee progress if a process no longer needs 

a turn.

– Poor solution when processes require the critical section at 
differing rates
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Peterson’s solution
int turn;

int interested[2];

void enter_region(int process) {

   int other

   other = 1 – process;

   intereseted[process] = true;

   turn = process;

   while (turn == process && interested[other == TRUE]);

}

void leave_region(int process) {

   interested[process] = FALSE;

}

• Can be generalised to arbitrary number of processes
– Run time is proportional to the maximal number of 

processes
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Hardware support for mutual exclusion

• Test and set instruction
– Writes 1 to a memory location and returns its old value as a 

single atomic operation

• Atomic: As an indivisible unit (even on a multiprocessor).

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

If we could complete these 2 operations 
atomically, there would be no race 
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Mutual exclusion with test-and-set

void enter_region(bool* lock) 

{

while(test_and_set(lock) == 1);

}

void leave_region(bool* lock)

{

   *lock = 0;

}
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Other atomic instructions

• Compare-and-swap
– atomically compares the contents of a memory location to 

a given value and, if they are the same, modifies the 
contents of that memory location to a given new value.

• x86 supports atomic versions of most arithmetic 
instructions (using the lock prefix)
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Mutual exclusion for uniprocessors

• A uniprocessor system runs one thread at a time

• Concurrency arises from preemptive scheduling

• Question (recap of week 2): how does a thread switch 
occur?
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Question 4
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Mutual exclusion by disabling interrupts

• Before entering a critical region, disable interrupts

• After leaving the critical region, enable interrupts

• Pros
–  Simple

• Cons
– Only available in the kernel

– Blocks everybody else, even with no contention

• Slows interrupt response time

– Does not work on a multiprocessor
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Tackling the busy-wait problem

• Most implementations of mutual exclusion discussed so 
far rely on busy waiting
– A process sits in a tight loop waiting for the critical section 

to become available
                   while(test_and_set(lock) == 1);

– Waste of CPU cycles and energy

• Sleep / Wakeup
– Call sleep to block, instead of busy waiting

– Another process calls wakeup to unblock the sleeping 
process
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Tackling the busy-wait problem

void enter_region(bool* lock) 

{

   if (test_and_set(lock) == 1)

      sleep();

}

void leave_region(bool* lock)

{

   *lock = 0;

   wakeup();

}

• Question: What's wrong with this implementation?
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Question 5
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Tackling the busy-wait problem

typedef struct {

   bool locked;

   queue_t q;    // queue of processes waiting for the mutex

   bool guard;   // busy lock that protects access to the queue

} mutex;

• Correct solution:

Hmm, you're using a lock to implement 
another lock. Isn't this a chicken and 
egg problem?

No, because we already know how to 
implement a busy lock.
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Tackling the busy-wait problem

void mutex_lock(mutex* lock) {

   enter_region(&lock->guard);

   add current process to lock->q

   mark current process as sleeping; //but keep it on the run queue

   leave_region(&lock->guard);

   schedule();             //move the process to the inactive queue

}                          //(if marked as sleeping)

void mutex_unlock(mutex* lock) {

   enter_region(&lock->guard);

   wake the first process in lock->q

   leave_region(&lock->guard);

}

• Correct solution:
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Mutual exclusion for user-level code

• Busy locks can be implemented at the user level, but are 
seldom used outside the kernel

• Blocking locks can only be implemented in the kernel 
and can be accessed from user-level processes via 
system calls.
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Semaphores

• Semaphores, introduced by Dijkstra (1965), are a 
generalisation of mutual exclusion
– A mutex allows at most one process to use a resource

– A semaphore allows at most N processes

• Conceptually, a semaphore is a counter with two 
operations:

– down() - atomically decrement the counter or block if 
the counter is 0

– up() - atomically wake up one blocked process or 
increment the counter if there are no blocked processes
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Semaphores

• A semaphore with the counter initialised to one can be 
used as a mutex

• Implementation of semaphores is similar to the blocking 
mutex implementation
– It uses a queue of waiting processes, a counter, and a 

busy lock used to protect the queue and the counter

– Sleeping is implemented via calls to the OS scheduler
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The producer-consumer problem

• Also called the bounded buffer problem

• A producer produces data items and stores the items in 
a buffer

• A consumer takes the items out of the buffer and 
consumes them.

X X X

Producer

Consumer
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Issues

• We must keep an accurate count of items in buffer
– Producer 

• can sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

– The consumer can call wakeup when it consumes the first entry of the 
full buffer

– Consumer 
• Can sleep when the buffer is empty
• And wake up when there are items available

– Producer can call wakeup when it adds the first item to the buffer

X X X

Producer

Consumer
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Pseudo-code for producer and consumer

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

• Question: Any issues with this pseudo-code?



44

Question 6
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Question 6
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Proposed solution

• Lets use a mutex to protect the concurrent access



47

Proposed solution

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

enter_region()

insert_item();

count++;

leave_region()

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep();

enter_region()

remove_item();

count--;

leave_region();

if (count == N-1)

wakeup(prod);

}

}
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Problematic execution sequence

prod() {
while(TRUE) {

item = produce()
if (count == N)

sleep();
enter_region()

insert_item();
count++;

leave_region()
if (count == 1)

wakeup(con);
   }

}

con() {
while(TRUE) {

if (count == 0)

sleep();
enter_region()
remove_item();
count--;
leave_region();
if (count == N-1)

wakeup(prod);
}

wakeup without a 
matching sleep is 

lost
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Problem

• The test for some condition and actually going to sleep 
needs to be atomic

• The following does not work
   enter_region()
   if (count == N)

sleep();
   leave_region()

The lock is held while asleep ⇒ count will never change
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Solving the producer-consumer problem 
with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0; 
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Solving the producer-consumer problem 
with semaphores

prod() {

while(TRUE) {

       item = produce()

       down(empty);

       down(mutex)

       insert_item();

       up(mutex);

       up(full);

}

}

con() {

while(TRUE) {

       down(full);

       down(mutex);

       remove_item();

       up(mutex);

       up(empty);

}

}
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Summarising semaphores

• Semaphores can be used to solve a variety of 
concurrency problems

• However, programming with then can be error-prone
– Must up for every down for mutexes

• Too many, or too few up's or down's, or up's and 
down's in the wrong order, can have catastrophic 
results

– Must make sure that every use of a shared resource is 
protected by the semaphore
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Monitors

• To ease concurrent programming, Hoare (1974) proposed 
monitors.
– A higher level synchronisation primitive

– Programming language construct

• Idea
– A set of procedures, variables, data types are grouped in a 

special kind of module, a monitor.

• Variables and data types only accessed from within the 
monitor

– Only one process/thread can be in the monitor at any one time

• Mutual exclusion is implemented by the compiler (which 
should be less error prone) 
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Monitor

• When a thread calls 
a monitor procedure 
that has a thread 
already inside, it is 
queued and it sleeps 
until the current 
thread exits the 
monitor.
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Simple example

monitor counter 

{

int count;

procedure inc() {

count = count + 1;

}

procedure dec() {

count = count –1;

}

}

• Compiler guarantees only 
one thread can be active in 
the monitor at any one time

• Easy to see this provides 
mutual exclusion
– No race condition on count. 
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Simple example

• Monitors provide more than just mutual exclusion

• Imagine that we want to implement a producer-consumer 
buffer as a monitor.

monitor ProducerConsumer

   integer count;

   procedure insert(item: integer);

   begin

      if count=N then

         sleep;

      ...

   end

   procedure remove: integer;

   begin

      ...

      wakeup;

      ...

end

end monitor;

sleeping inside the 
monitor prevents other 
threads from entering 
the monitor...

...hence wakeup will 
never be called
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How do we block waiting for an event?

• We need a mechanism to block waiting for an event 
inside a monitor

• Condition Variables



58

Condition variables

• To allow a process to wait within the monitor, a condition 
variable must be declared, as

condition x, y;
• Condition variable can only be used with the operations 

wait and signal.
– The operation

x.wait();
means that the process invoking this operation is suspended until 
another process invokes

x.signal();
– The x.signal operation resumes exactly one suspended process.  

If no process is suspended, then the signal operation has no 
effect.
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Condition variables

• wait() releases the monitor lock, so that other processes 
can enter the monitor

• The lock is re-acquired before wait() returns

• To avoid race conditions, releasing the lock and blocking 
the process happen as one atomic operation
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Condition variables
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Monitors

• Outline of producer-consumer problem with monitors



62

OS/161 provided synchronisation primitives

• Locks

• Semaphores

• Condition Variables



63

Locks

• Functions to create and destroy locks

struct lock *lock_create(const char *name);
void         lock_destroy(struct lock *);

• Functions to acquire and release them

void lock_acquire(struct lock *);
void lock_release(struct lock *);
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Example use of locks

int count;

struct lock *count_lock

main() {

count = 0;

count_lock = 

lock_create(“count lock”);

if (count_lock == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

lock_acquire(count_lock);

count = count + 1;

lock_release(count_lock);

}

procedure dec() {

lock_acquire(count_lock);

count = count –1;

lock_release(count_lock);

}
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Semaphores

struct semaphore *sem_create(const char *name, int 
initial_count);

void              sem_destroy(struct semaphore *);

void              P(struct semaphore *);

void              V(struct semaphore *);
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Example use of semaphores

int count;

struct semaphore *count_mutex;

main() {

count = 0;

count_mutex = 

   sem_create(“count”, 1);

if (count_mutex == NULL)

   panic(“I’m dead”);

stuff();

}

procedure inc() {

P(count_mutex);

count = count + 1;

V(count_mutex);

}

procedure dec() {

P(count_mutex);

count = count –1;

V(count_mutex);

}
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Condition variables

struct cv *cv_create(const char *name);
void       cv_destroy(struct cv *);

void       cv_wait(struct cv *cv, struct lock *lock);

• Releases the lock and blocks

• Upon resumption, it re-acquires the lock

– Note: we must recheck the condition we slept on

void       cv_signal(struct cv *cv, struct lock *lock);
void       cv_broadcast(struct cv *cv, struct lock *lock);

• Wakes one/all, does not release the lock

• First “waiter” scheduled after signaller releases the lock will re-
acquire the lock 

Note: All three variants must hold the lock passed in.



68

A producer-consumer solution using OS/161 
CVs

int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
lock_aquire(l) 
while (count == N)

cv_wait(f,l);
insert_item(item);
count++;
if (count == 1)

cv_signal(e,l);
lock_release()

}
}

con() {
while(TRUE) {

lock_acquire(l)
while (count == 0) 

cv_wait(e,l);
item = remove_item();
count--;
if (count == N-1)

cv_signal(f,l);
lock_release(l);
consume(item); 

}
}
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Dining philosophers

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time 
• How to prevent deadlock 
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Dining philosophers

Solution to dining philosophers problem (part 1)
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Dining philosophers

A nonsolution to the dining philosophers problem
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Dining philosophers

Solution to dining philosophers problem (part 2)
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The readers and writers problem

• Models access to a database
• E.g. airline reservation system

– Can have more than one concurrent reader

• To check schedules and reservations

– Writers must have exclusive access

• To book a ticket or update a schedule
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The readers and writers problem

A solution to the readers and writers problem
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The sleeping barber problem 
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The sleeping barber problem 

Solution to sleeping barber problem.

See the textbook
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FYI
• Counting semaphores versus binary semaphores:

– In a counting semaphore, count can take arbitrary integer values
– In a binary semaphore, count can only be 0 or 1

• Can be easier to implement

– Counting semaphores can be implemented in terms of binary 
semaphores (how?)

• Strong semaphores versus weak semaphores:
– In a strong semaphore, the queue adheres to the FIFO policy
– In a weak semaphore, any process may be taken from the 

queue
– Strong semaphores can be implemented in terms of weak 

semaphores (how?)
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