
Concurrency and Synchronisation

Leonid Ryzhyk

2

Textbook

• Sections 2.3 & 2.5

3

Concurrency in operating systems

• Inter-process communication

• Intra-process communication

• Concurrency in the kernel

web
server DB

SQL request

worker
thread

SQL request

UI
thread

process1 process2

kernel

net iface queue

4

Concurrency in operating systems

• Inter-process communication

• Intra-process communication

• Concurrency in the kernel

web
server DB

SQL request

worker
thread

SQL request

UI
thread

process1 process2

kernel

net iface queue

C
o

m
m

unication
S

ynch
ro

nisatio
n

5

Concurrent vs sequential

• Sequential: program state depends on its previous state and
the last instruction

void insert(struct node *item)
{
 item->next = head;
 head = item;
}

head

head

head

6

Concurrent vs sequential

• Concurrent: must take thread interleavings into account
void insert(item)
{
 item->next = head;
 head = item;
}

void insert(item)
{
 item->next = head;
 head = item;
}

7

Concurrent vs sequential

• Concurrent: must take thread interleavings into account
void insert(item)
{
 item->next = head;

 head = item;
}

void insert(item)
{

 item->next = head;

 head = item;
}

8

Race conditions

• Race condition: the result of the computation depends on
the relative speed of two or more processes
– Occur non-deterministically

– Hard to debug
void insert(struct node *item)
{
 item->next = head;
 head = item;
}

1 2 3
item->next=head head=item

state1

state2

state3

3 states, 2 transition, 1 execution trace

9

Race conditions

• Race condition: the result of the computation depends on
the relative speed of two or more processes
– Occur non-deterministically

– Hard to debug

• Question: How many states?

void insert(struct node *item)
{
 item->next = head;
 head = item;
}

void insert(struct node *item)
{
 item->next = head;
 head = item;
}

10

Question 1

11

Question 1

12

Race conditions

void insert(struct node *item)
{
 item->next = head;
 head = item;
}

void insert(struct node *item)
{
 item->next = head;
 head = item;
}

N processes

…

• Question: How many states?

13

Question 2

14

Observation

• Unfortunately, it is usually easier to show something
does not work, than it is to prove that it does work.
– Ideally, we’d like to prove, or at least informally

demonstrate, that our solutions work.

15

Dealing with race conditions

• Approach 1: Mutual exclusion
– Identify shared variables

– Identify code sections that access these variables (critical
sections or critical regions)

– Ensure that at most one process can enter a critical
section

16

Dealing with race conditions

• Approach 2: Lock-free data structures
– Allow concurrent access to shared variables, but make

sure that they end up in a consistent state

– Hard for non-trivial data structures

– Performance overhead in the non-contended case

17

Dealing with race conditions

• Approach 3: Message-based communication
– Eliminate shared variables

– Processes communicate and synchronise using message
passing

18

Mutual exclusion

• We can control access to the shared resource by
controlling access to the code that accesses the
resource

• Programming primitives:
– enter_region() - called at the entrance to the critical

region

– leave_region() - called at the exit from the critical
region

19

Mutual exclusion

Mutual exclusion using critical regions

20

Example critical sections

struct node *remove(void)
{
 struct node *t;
 enter_region(lock);
 t = head;
 if (t != NULL) {
 head = head->next;
 }
 leave_region(lock);
 return t;
}

void insert(struct node *item)
{
 enter_region(lock);
 item->next = head;
 head = item;
 leave_region(lock);
}

21

Implementing
enter_region and leave_region

Requirements

• Mutual exclusion
– No two processes simultaneously in the critical section

• No assumptions made about speeds of numbers of
CPUs

• Liveness
– No process must wait forever to enter the critical section

22

A solution?

• A lock variable
– If lock == 1,

• somebody is in the critical section and we must wait

– If lock == 0,

• nobody is in the critical section and we are free to enter

23

A solution?

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

• Question: Any issues with this solution?

24

Question 3

25

Mutual exclusion by taking turns

while(TRUE) {

 while (turn!=0);

 critical();

 turn = 1;

 non_critical();

}

while(TRUE) {

 while (turn!=0);

 critical();

 turn = 1;

 non_critical();

}

• Works due to strict alternation

• Process must wait its turn even while the other process
is doing something else.
– Does not guarantee progress if a process no longer needs

a turn.

– Poor solution when processes require the critical section at
differing rates

26

Peterson’s solution
int turn;

int interested[2];

void enter_region(int process) {

 int other

 other = 1 – process;

 intereseted[process] = true;

 turn = process;

 while (turn == process && interested[other == TRUE]);

}

void leave_region(int process) {

 interested[process] = FALSE;

}

• Can be generalised to arbitrary number of processes
– Run time is proportional to the maximal number of

processes

27

Hardware support for mutual exclusion

• Test and set instruction
– Writes 1 to a memory location and returns its old value as a

single atomic operation

• Atomic: As an indivisible unit (even on a multiprocessor).

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

If we could complete these 2 operations
atomically, there would be no race

28

Mutual exclusion with test-and-set

void enter_region(bool* lock)

{

while(test_and_set(lock) == 1);

}

void leave_region(bool* lock)

{

 *lock = 0;

}

29

Other atomic instructions

• Compare-and-swap
– atomically compares the contents of a memory location to

a given value and, if they are the same, modifies the
contents of that memory location to a given new value.

• x86 supports atomic versions of most arithmetic
instructions (using the lock prefix)

30

Mutual exclusion for uniprocessors

• A uniprocessor system runs one thread at a time

• Concurrency arises from preemptive scheduling

• Question (recap of week 2): how does a thread switch
occur?

31

Question 4

32

Mutual exclusion by disabling interrupts

• Before entering a critical region, disable interrupts

• After leaving the critical region, enable interrupts

• Pros
– Simple

• Cons
– Only available in the kernel

– Blocks everybody else, even with no contention

• Slows interrupt response time

– Does not work on a multiprocessor

33

Tackling the busy-wait problem

• Most implementations of mutual exclusion discussed so
far rely on busy waiting
– A process sits in a tight loop waiting for the critical section

to become available
 while(test_and_set(lock) == 1);

– Waste of CPU cycles and energy

• Sleep / Wakeup
– Call sleep to block, instead of busy waiting

– Another process calls wakeup to unblock the sleeping
process

34

Tackling the busy-wait problem

void enter_region(bool* lock)

{

 if (test_and_set(lock) == 1)

 sleep();

}

void leave_region(bool* lock)

{

 *lock = 0;

 wakeup();

}

• Question: What's wrong with this implementation?

35

Question 5

36

Tackling the busy-wait problem

typedef struct {

 bool locked;

 queue_t q; // queue of processes waiting for the mutex

 bool guard; // busy lock that protects access to the queue

} mutex;

• Correct solution:

Hmm, you're using a lock to implement
another lock. Isn't this a chicken and
egg problem?

No, because we already know how to
implement a busy lock.

37

Tackling the busy-wait problem

void mutex_lock(mutex* lock) {

 enter_region(&lock->guard);

 add current process to lock->q

 mark current process as sleeping; //but keep it on the run queue

 leave_region(&lock->guard);

 schedule(); //move the process to the inactive queue

} //(if marked as sleeping)

void mutex_unlock(mutex* lock) {

 enter_region(&lock->guard);

 wake the first process in lock->q

 leave_region(&lock->guard);

}

• Correct solution:

38

Mutual exclusion for user-level code

• Busy locks can be implemented at the user level, but are
seldom used outside the kernel

• Blocking locks can only be implemented in the kernel
and can be accessed from user-level processes via
system calls.

39

Semaphores

• Semaphores, introduced by Dijkstra (1965), are a
generalisation of mutual exclusion
– A mutex allows at most one process to use a resource

– A semaphore allows at most N processes

• Conceptually, a semaphore is a counter with two
operations:

– down() - atomically decrement the counter or block if
the counter is 0

– up() - atomically wake up one blocked process or
increment the counter if there are no blocked processes

40

Semaphores

• A semaphore with the counter initialised to one can be
used as a mutex

• Implementation of semaphores is similar to the blocking
mutex implementation
– It uses a queue of waiting processes, a counter, and a

busy lock used to protect the queue and the counter

– Sleeping is implemented via calls to the OS scheduler

41

The producer-consumer problem

• Also called the bounded buffer problem

• A producer produces data items and stores the items in
a buffer

• A consumer takes the items out of the buffer and
consumes them.

X X X

Producer

Consumer

42

Issues

• We must keep an accurate count of items in buffer
– Producer

• can sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

– The consumer can call wakeup when it consumes the first entry of the
full buffer

– Consumer
• Can sleep when the buffer is empty
• And wake up when there are items available

– Producer can call wakeup when it adds the first item to the buffer

X X X

Producer

Consumer

43

Pseudo-code for producer and consumer

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

• Question: Any issues with this pseudo-code?

44

Question 6

45

Question 6

46

Proposed solution

• Lets use a mutex to protect the concurrent access

47

Proposed solution

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

enter_region()

insert_item();

count++;

leave_region()

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep();

enter_region()

remove_item();

count--;

leave_region();

if (count == N-1)

wakeup(prod);

}

}

48

Problematic execution sequence

prod() {
while(TRUE) {

item = produce()
if (count == N)

sleep();
enter_region()

insert_item();
count++;

leave_region()
if (count == 1)

wakeup(con);
 }

}

con() {
while(TRUE) {

if (count == 0)

sleep();
enter_region()
remove_item();
count--;
leave_region();
if (count == N-1)

wakeup(prod);
}

wakeup without a
matching sleep is

lost

49

Problem

• The test for some condition and actually going to sleep
needs to be atomic

• The following does not work
 enter_region()
 if (count == N)

sleep();
 leave_region()

The lock is held while asleep ⇒ count will never change

50

Solving the producer-consumer problem
with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0;

51

Solving the producer-consumer problem
with semaphores

prod() {

while(TRUE) {

 item = produce()

 down(empty);

 down(mutex)

 insert_item();

 up(mutex);

 up(full);

}

}

con() {

while(TRUE) {

 down(full);

 down(mutex);

 remove_item();

 up(mutex);

 up(empty);

}

}

52

Summarising semaphores

• Semaphores can be used to solve a variety of
concurrency problems

• However, programming with then can be error-prone
– Must up for every down for mutexes

• Too many, or too few up's or down's, or up's and
down's in the wrong order, can have catastrophic
results

– Must make sure that every use of a shared resource is
protected by the semaphore

53

Monitors

• To ease concurrent programming, Hoare (1974) proposed
monitors.
– A higher level synchronisation primitive

– Programming language construct

• Idea
– A set of procedures, variables, data types are grouped in a

special kind of module, a monitor.

• Variables and data types only accessed from within the
monitor

– Only one process/thread can be in the monitor at any one time

• Mutual exclusion is implemented by the compiler (which
should be less error prone)

5454

Monitor

• When a thread calls
a monitor procedure
that has a thread
already inside, it is
queued and it sleeps
until the current
thread exits the
monitor.

55

Simple example

monitor counter

{

int count;

procedure inc() {

count = count + 1;

}

procedure dec() {

count = count –1;

}

}

• Compiler guarantees only
one thread can be active in
the monitor at any one time

• Easy to see this provides
mutual exclusion
– No race condition on count.

56

Simple example

• Monitors provide more than just mutual exclusion

• Imagine that we want to implement a producer-consumer
buffer as a monitor.

monitor ProducerConsumer

 integer count;

 procedure insert(item: integer);

 begin

 if count=N then

 sleep;

 ...

 end

 procedure remove: integer;

 begin

 ...

 wakeup;

 ...

end

end monitor;

sleeping inside the
monitor prevents other
threads from entering
the monitor...

...hence wakeup will
never be called

57

How do we block waiting for an event?

• We need a mechanism to block waiting for an event
inside a monitor

• Condition Variables

58

Condition variables

• To allow a process to wait within the monitor, a condition
variable must be declared, as

condition x, y;
• Condition variable can only be used with the operations

wait and signal.
– The operation

x.wait();
means that the process invoking this operation is suspended until
another process invokes

x.signal();
– The x.signal operation resumes exactly one suspended process.

If no process is suspended, then the signal operation has no
effect.

59

Condition variables

• wait() releases the monitor lock, so that other processes
can enter the monitor

• The lock is re-acquired before wait() returns

• To avoid race conditions, releasing the lock and blocking
the process happen as one atomic operation

60

Condition variables

61

Monitors

• Outline of producer-consumer problem with monitors

62

OS/161 provided synchronisation primitives

• Locks

• Semaphores

• Condition Variables

63

Locks

• Functions to create and destroy locks

struct lock *lock_create(const char *name);
void lock_destroy(struct lock *);

• Functions to acquire and release them

void lock_acquire(struct lock *);
void lock_release(struct lock *);

64

Example use of locks

int count;

struct lock *count_lock

main() {

count = 0;

count_lock =

lock_create(“count lock”);

if (count_lock == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

lock_acquire(count_lock);

count = count + 1;

lock_release(count_lock);

}

procedure dec() {

lock_acquire(count_lock);

count = count –1;

lock_release(count_lock);

}

65

Semaphores

struct semaphore *sem_create(const char *name, int
initial_count);

void sem_destroy(struct semaphore *);

void P(struct semaphore *);

void V(struct semaphore *);

66

Example use of semaphores

int count;

struct semaphore *count_mutex;

main() {

count = 0;

count_mutex =

 sem_create(“count”, 1);

if (count_mutex == NULL)

 panic(“I’m dead”);

stuff();

}

procedure inc() {

P(count_mutex);

count = count + 1;

V(count_mutex);

}

procedure dec() {

P(count_mutex);

count = count –1;

V(count_mutex);

}

67

Condition variables

struct cv *cv_create(const char *name);
void cv_destroy(struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);

• Releases the lock and blocks

• Upon resumption, it re-acquires the lock

– Note: we must recheck the condition we slept on

void cv_signal(struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);

• Wakes one/all, does not release the lock

• First “waiter” scheduled after signaller releases the lock will re-
acquire the lock

Note: All three variants must hold the lock passed in.

68

A producer-consumer solution using OS/161
CVs

int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
lock_aquire(l)
while (count == N)

cv_wait(f,l);
insert_item(item);
count++;
if (count == 1)

cv_signal(e,l);
lock_release()

}
}

con() {
while(TRUE) {

lock_acquire(l)
while (count == 0)

cv_wait(e,l);
item = remove_item();
count--;
if (count == N-1)

cv_signal(f,l);
lock_release(l);
consume(item);

}
}

69

Dining philosophers

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time
• How to prevent deadlock

7070

Dining philosophers

Solution to dining philosophers problem (part 1)

71

Dining philosophers

A nonsolution to the dining philosophers problem

7272

Dining philosophers

Solution to dining philosophers problem (part 2)

73

The readers and writers problem

• Models access to a database
• E.g. airline reservation system

– Can have more than one concurrent reader

• To check schedules and reservations

– Writers must have exclusive access

• To book a ticket or update a schedule

74

The readers and writers problem

A solution to the readers and writers problem

75

The sleeping barber problem

76

The sleeping barber problem

Solution to sleeping barber problem.

See the textbook

77

FYI
• Counting semaphores versus binary semaphores:

– In a counting semaphore, count can take arbitrary integer values
– In a binary semaphore, count can only be 0 or 1

• Can be easier to implement

– Counting semaphores can be implemented in terms of binary
semaphores (how?)

• Strong semaphores versus weak semaphores:
– In a strong semaphore, the queue adheres to the FIFO policy
– In a weak semaphore, any process may be taken from the

queue
– Strong semaphores can be implemented in terms of weak

semaphores (how?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

