Disk I/O Management

Chapter 5

Disk Management

- Management and ordering of disk access requests is important:
 - Huge speed gap between memory and disk
 - Disk throughput is extremely sensitive to
 - Request order \(\Rightarrow \) Disk Scheduling
 - Placement of data on the disk \(\Rightarrow \) file system design
 - Disk scheduler must be aware of disk geometry

Evolution of Disk Hardware

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IBM 360 KB floppy disk</th>
<th>WD 18300 hard disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cylinders</td>
<td>40</td>
<td>10901</td>
</tr>
<tr>
<td>Tracks per cylinder</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Sectors per track</td>
<td>5</td>
<td>256 (avg)</td>
</tr>
<tr>
<td>Tracks per disk</td>
<td>720</td>
<td>36702000</td>
</tr>
<tr>
<td>Sectors per sector</td>
<td>767</td>
<td>767</td>
</tr>
<tr>
<td>Rotational time</td>
<td>250 sec</td>
<td>1.8 sec</td>
</tr>
<tr>
<td>Transfer time (average)</td>
<td>77.7 msec</td>
<td>6.9 msec</td>
</tr>
<tr>
<td>Disk capacity</td>
<td>360 KB</td>
<td>1.8 GB</td>
</tr>
<tr>
<td>Motor rotation time (avg)</td>
<td>580 sec</td>
<td>20 sec</td>
</tr>
<tr>
<td>Time to transfer 1 sector</td>
<td>22.5 sec</td>
<td>17 sec</td>
</tr>
</tbody>
</table>

Disk parameters for the original IBM PC floppy disk and a Western Digital WD 18300 hard disk

Things to Note

- Average seek time is approx 12 times better
- Rotation time is 24 times faster
- Transfer time is 1300 times faster
 - Most of this gain is due to increase in density
- Represents a gradual engineering improvement

Storage Capacity is 50000 times greater

- Area Density of Magnetic HDD and DRAM
 - Various density (MB/Inch) improvement over years
 - Current trends towards higher density technologies

- Exponential growth in storage capacity
 - Early 1970s: Small capacity
 - Late 2000s: Massive storage

- Advances in technology and materials science
 - Magnetic recording
 - Phase-change memory
 - Neuromorphic computing

- Future directions include
 - Quantum computing
 - Solid-state drives
 - Optical storage
IBM 3380 – First Gigabyte Disk

Circa. early 1981
Approx: $100,000

Disk Performance

- Disk is a moving device \(\Rightarrow \) must be positioned correctly for I/O
- Execution of a disk operation involves
 - Wait time: the process waits to be granted device access
 - Wait for device: time the request spends in wait queue
 - Wait for channel: time until a shared I/O channel is available
 - Access time: time hardware need to position the head
 - Seek time: position the head at the desire track
 - Rotational delay (latency): spin disk to the desired sector
 - Transfer time: sectors to be read/written rotate below head

Wait for Device	Wait for Channel	Seek	Rotational Delay	Data Transfer

Estimating Access Time

- **Seek time** \(T_s \): Moving the head to the required track
 - not linear in the number of tracks to traverse:
 - startup time
 - settling time
 - Typical average seek time: a few milliseconds
- **Rotational delay**:
 - rotational speed, \(r \), of 5,000 to 10,000 rpm
 - At 10,000rpm, one revolution per 6ms \(\Rightarrow \) average delay 3ms
- **Transfer time**:
 - to transfer \(b \) bytes, with \(N \) bytes per track:
 \[T = \frac{b}{rN} \]
 - Total average access time:
 \[T_a = T_s + \frac{1}{2r} + \frac{b}{rN} \]

A Timing Comparison

- \(T_s = 2 \) ms, \(r = 10,000 \) rpm, 512B sect, 320 sect/track
- Read a file with 2560 sectors (= 1.3MB)
- File stored compactly (8 adjacent tracks):
 - Read first track
 - Average seek 2ms
 - Rot. delay 3ms
 - Read 320 sectors 6ms
 - Total: 11ms \(\Rightarrow \) All sectors: \(11 + 7 \times 8 = 67 \) ms
 - Sectors distributed randomly over the disk:
 - Read any sector
 - Average seek 2ms
 - Rot. delay 3ms
 - Read 1 sector 0.01675ms
 - 5,01675ms \(\Rightarrow \) All: \(2560 \times 5,01675 = 20,328 \) ms

Disk Comparative Performance

- Will only get worse as capacity increases much faster than increase in seek time and rotation speed
 - Note it has been easier to spin the disk faster than improve seek time
- Operating System should minimise mechanical delays as much as possible

Disk Performance is Entirely Dominated by Seek and Rotational Delays
Low-level Disk Formatting

A disk sector

• When reading sequential blocks, the seek time can result in missing block 0 in the next track
• Disk can be formatted using a cylinder skew to avoid this

Low-Level Disk Formatting

• Issue: After reading one sector, the time it takes to transfer the data to the OS and receive the next request results in missing reading the next sector
• To overcome this, we can use interleaving
 a) No interleaving
 b) Single interleaving
 c) Double interleaving

Modern drives can overcome interleaving type issues by simply reading the entire track (or part thereof) into the on-disk controller and caching it.

Disk Arm Scheduling Algorithms

Time required to read or write a disk block determined by 3 factors
1. Seek time
2. Rotational delay
3. Actual transfer time
• Seek time dominates
• For a single disk, there will be a number of I/O requests
 – Processing them in random order leads to worst possible performance

First-in, First-out (FIFO)

• Process requests as they come
• Fair (no starvation)
• Good for a few processes with clustered requests
• Deteriorates to random if there are many processes

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184
Shortest Seek Time First
- Select request that minimises the seek time
- Generally performs much better than FIFO
- May lead to starvation

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

Elevator Algorithm (SCAN)
- Move head in one direction
 - Services requests in track order until it reaches the last track, then reverses direction
- Better than FIFO, usually worse than SSTF
- Avoids starvation
- Makes poor use of sequential reads (on down-scan)
- Less Locality

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

Modified Elevator (Circular SCAN, C-SCAN)
- Like elevator, but reads sectors in only one direction
 - When reaching last track, go back to first track non-stop
- Better locality on sequential reads
- Better use of read ahead cache on controller
- Reduces max delay to read a particular sector

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

Implementing Stable Storage
- Use two disks to implement stable storage
 - Problem is when a write (update) corrupts old version, without completing write of new version
 - Solution: Write to one disk first, then write to second after completion of first