
1

Random Stuff

• No tutorials or comp3891/comp9283

lecture this week

• Release the warm-up exercise

tomorrow

• New weeks tutorial questions –

probably tomorrow also

Introduction to Operating

Systems

Chapter 1 – 1.3

Chapter 1.5 – 1.9

3

Learning Outcomes

• High-level understand what is an operating

system and the role it plays

• A high-level understanding of the structure of
operating systems, applications, and the
relationship between them.

• Some knowledge of the services provided by
operating systems.

• Exposure to some details of major OS
concepts.

4

What is an Operating

System?

5 6

Viewing the Operating System as

an Abstract Machine

• Extends the basic hardware with added

functionality

• Provides high-level abstractions

– More programmer friendly

– Common core for all applications

• It hides the details of the hardware

– Makes application code portable

2

7

UsersDisk

Memory

CPU

Network

Bandwidth

8

Viewing the Operating System

as a Resource Manager

• Responsible for allocating resources to users

and processes

• Must ensure

– No Starvation

– Progress

– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share;

limits (quotas), etc=

– Overall, that the system is efficiently used

9

Traditional View: the Operating

System as the Privileged Component

Operating System

Applications Applications

ApplicationsRequests

(System Calls)

Privileged Mode

User Mode

10

Kernel

• Portion of the operating system that is
running in privileged mode

• Usually resident in main memory

• Contains fundamental functionality

– Whatever is required to implement other
services

– Whatever is required to provide security

• Contains most-frequently used functions

• Also called the nucleus or supervisor

11

The Operating System is

Privileged

• Applications should not be able to interfere or bypass

the operating system

– OS can enforce the “extended machine”

– OS can enforce its resource allocation policies

– Prevent applications from interfering with each other

• Note: Some Embedded OSs have no privileged

component, e.g. PalmOS

– Can implement OS functionality, but cannot enforce it.

• Note: Some operating systems implement significant

OS functionality in user-mode, e.g. User-mode Linux
12

Structure of a Computer

System

Hardware

Operating System

System Libraries

Application

System Libraries

Application

System Libraries

Application

Kernel

Mode

User Mode

3

13

Structure of a Computer

System

Hardware

Operating System

System Libraries

Application

Kernel

Mode

User Mode

Interacts via load

and store

instructions to

CPU and device

registers, and

interrupts
14

Structure of a Computer System

Hardware

Operating System

System Libraries

Application

Kernel

Mode

User Mode Interaction via

function calls to

library procedures

15

Structure of a Computer System

Hardware

Operating System

System Libraries

Application

Kernel

Mode

User Mode Interaction via

System Calls

16

A note on System Libraries

• System libraries are just that, libraries of

support functions (procedures,

subroutines)

– Only a subset of library functions are

actually systems calls

• strcmp(), memcpy(), are pure library functions

• open(), close(), read(), write() are system calls

– System call functions are in the library for

convenience

17

Operating System

Objectives• Convenience
– Make the computer more convenient to use

• Abstraction
– Hardware-independent programming model

• Efficiency
– Allows the computer system to be used in an efficient
manner

• Ability to evolve
– Permit effective development, testing, and
introduction of new system functions without
interfering with existing services

• Protection
18

Services Provided by the

Operating System
• Program development

– Editors, compilers, debuggers
• Not so much these days

• Program execution
– Load a program and its data

• Access to I/O devices

• Controlled access to files
– Access protection

• System access
– User authentication

4

19

Services Provided by the

Operating System

• Error detection and response

– internal and external hardware errors

• memory error

• device failure

– software errors

• arithmetic overflow

• access forbidden memory locations

– operating system cannot grant request of

application
20

Services Provided by the

Operating System

• Accounting

– collect statistics

– monitor performance

– used to anticipate future enhancements

– used for billing users

21

Operating System Software

• Fundamentally, OS functions the same way

as ordinary computer software

– It is a program that is executed (just like apps)

– It has more privileges

• Operating system relinquishes control of the

processor to execute other programs

– Reestablishes control after

• System calls

• Interrupts (especially timer interrupts)

22

23

Major OS Concepts

• Processes

• Concurrency and deadlocks

• Memory management

• Files

• Information Security and Protection

• Scheduling and resource management

24

Processes
• A program in execution

• An instance of a program running on a computer

• The entity that can be assigned to and executed on a
processor

• A unit of resource ownership

• A unit of activity characterized by a single sequential
thread of execution, a current state, and an
associated set of system resources
– Nowadays the execution abstraction is separated out:
Thread

– Single process can contain many threads

5

25

Process• Consist of three
segments
– Text

• contains the code
(instructions)

– Data

• Global variables

– Stack

• Activation records of
procedure

• Local variables

• Note:
– data can dynamically grow

up

– The stack can dynamically
grow down

Stack

Gap

Data

Text

Memory

26

Process

• Consists of three components

– An executable program
• text

– Associated data needed by the program
• Data and stack

– Execution context of the program
• All information the operating system needs to
manage the process
– Registers, program counter, stack pointer, etc=

• A multithread program has a stack and
execution context for each thread

27

Multiple processes creates

concurrency issues

(a) A potential deadlock. (b) an actual deadlock.
28

Memory Management
• The view from thirty thousand feet

– Process isolation
• Prevent processes from accessing each others data

– Automatic allocation and management
• Don’t want users to deal with physical memory directly

– Protection and access control
• Still want controlled sharing

– Long-term storage

– OS services
• Virtual memory

• File system

29

Virtual Memory

• Allows programmers to address
memory from a logical point of view

– Gives apps the illusion of having RAM to
themselves

– Logical addresses are independent of
other processes

– Provides isolation of processes from each
other

• Can overlap execution of one process
while swapping in/out others.

30

Virtual Memory Addressing

6

31

File System

• Implements long-term store

• Information stored in named objects

called files

32

Example File System

33

Information Protection and

Security

• Access control

– regulate user access to the system

– Involves authentication

• Information flow control

– regulate flow of data within the system and

its delivery to users

34

Scheduling and Resource

Management
• Fairness

– give equal and fair access to all processes

• Differential responsiveness

– discriminate between different classes of jobs

• Efficiency

– maximize throughput, minimize response time,

and accommodate as many uses as possible

35

Operating System

Structure
• The layered approach

a) Processor allocation

and multiprogramming

b) Memory Management

c) Devices

d) File system

e) Users

– Each layer depends on

the inner layers

a b c d e

36

Operating System

Structure

• In practice, layering is only a guide

– Operating Systems have many

interdependencies

• Scheduling on virtual memory

• Virtual memory on I/O to disk

• VM on files (page to file)

• Files on VM (memory mapped files)

• And many more=

7

37

The Monolithic Operating

System Structure

• Also called the

“spaghetti nest”

approach

– Everything is

tangled up with

everything else.

• Linux, Windows,

=.

38

The Monolithic Operating

System Structure
• However, some

reasonable structure

usually prevails

Bowman, I. T., Holt, R. C., and Brewster, N. V. 1999. Linux as a case study: its extracted

software architecture. In Proceedings of the 21st international Conference on Software
Engineering (Los Angeles, California, United States, May 16 - 22, 1999). ICSE '99. ACM,

New York, NY, 555-563. DOI= http://doi.acm.org/10.1145/302405.302691

Computer Hardware

Review

Chapter 1.4

40

Learning Outcomes

• Understand the basic components of

computer hardware

– CPU, buses, memory, devices controllers,

DMA, Interrupts, hard disks

• Understand the concepts of memory

hierarchy and caching, and how they

affect performance.

41

Operating Systems

• Exploit the hardware available

• Provide a set of high-level services that
represent or are implemented by the
hardware.

• Manages the hardware reliably and
efficiently

• Understanding operating systems
requires a basic understanding of the
underlying hardware

42

Basic Computer Elements

8

43

Basic Computer Elements
• CPU

– Performs computations

– Load data to/from memory via system bus

• Device controllers
– Control operation of their particular device

– Operate in parallel with CPU

– Can also load/store to memory (Direct Memory Access, DMA)

– Control register appear as memory locations to CPU

• Or I/O ports

– Signal the CPU with “interrupts”

• Memory Controller
– Responsible for refreshing dynamic RAM

– Arbitrating access between different devices and CPU

44

The real world is logically similar,

but a little more complex

45

A Simple Model of CPU

Computation

• The fetch-execute cycle

46

A Simple Model of CPU

Computation
• The fetch-execute cycle

– Load memory contents from

address in program counter

(PC)

• The instruction

– Execute the instruction

– Increment PC

– Repeat

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn

CPU Registers

47

A Simple Model of CPU

Computation
• Stack Pointer

• Status Register
– Condition codes

• Positive result

• Zero result

• Negative result

• General Purpose Registers
– Holds operands of most
instructions

– Enables programmers to
minimise memory references.

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn

CPU Registers

48

Privileged-mode Operation

• To protect operating system
execution, two or more CPU
modes of operation exist
– Privileged mode (system-,
kernel-mode)
• All instructions and registers are
available

– User-mode
• Uses ‘safe’ subset of the
instruction set

– E.g. no disable interrupts
instruction

• Only ‘safe’ registers are
accessible

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn

CPU Registers

Interrupt Mask

Exception Type

Others

MMU regs

9

49

‘Safe’ registers and

instructions

• Registers and instructions are safe if

– Only affect the state of the application itself

– They cannot be used to uncontrollably

interfere with

• The operating system

• Other applications

– They cannot be used to violate a correctly

implemented operating system policy.

50

Privileged-mode Operation

• The accessibility of

addresses within an

address space

changes depending

on operating mode

– To protect kernel code

and data

Accessible to

User- and

Kernel-mode

Memory Address Space

Accessible only

to

Kernel-mode

0x00000000

0xFFFFFFFF

0x80000000

51

I/O and Interrupts
• I/O events (keyboard, mouse, incoming network

packets) happen at unpredictable times

• How does the CPU know when to service an I/O
event?

52

Interrupts
• An interruption of the normal sequence of

execution

• A suspension of processing caused by an event

external to that processing, and performed in

such a way that the processing can be resumed.

• Improves processing efficiency

– Allows the processor to execute other instructions

while an I/O operation is in progress

– Avoids unnecessary completion checking (polling)

53

Interrupt Cycle

• Processor checks for interrupts

• If no interrupts, fetch the next instruction

• If an interrupt is pending, divert to the

interrupt handler

54

Classes of Interrupts

• Program exceptions

(also called synchronous interrupts)

– Arithmetic overflow

– Division by zero

– Executing an illegal/privileged instruction

– Reference outside user’s memory space.

• Asynchronous (external) events

– Timer

– I/O

– Hardware or power failure

10

55

Interrupt Handler

• A software routine that determines the

nature of the interrupt and performs

whatever actions are needed.

• Control is transferred to the handler by

hardware.

• The handler is generally part of the

operating system.

56

Simple Interrupt

User Mode

Kernel Mode

Application

Interrupt

Handler

57

Memory Hierarchy

• Going down the

hierarchy

– Decreasing cost per

bit

– Increasing capacity

– Increasing access

time

– Decreasing

frequency of access

to the memory by the

processor

• Hopefully

• Principle of locality!!!!!
58

Memory Hierarchy
• Rough approximation of memory hierarchy

59

Cache

• Cache is fast memory placed between the CPU and main memory
– 1 to a few cycles access time compared to RAM access time of tens –

hundreds of cycles

• Holds recently used data or instructions to save memory accesses.

• Matches slow RAM access time to CPU speed if high hit rate

• Is hardware maintained and (mostly) transparent to software

• Sizes range from few kB to several MB.

• Usually a hierarchy of caches (2–5 levels), on- and off-chip.

• Block transfers can achieve higher transfer bandwidth than single
words.
– Also assumes probability of using newly fetch data is higher than the

probability of reuse ejected data.

CPU

Registers
Cache Main Memory

Word Transfer Block Transfer

60

Processor-DRAM Gap

(latency)
µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

Slide originally from Dave Patterson, Parcon 98

11

61

Moving-Head Disk Mechanism

62

Example Disk Access Times

• Disk can read/write data relatively fast
– 15,000 rpm drive - 80 MB/sec

– 1 KB block is read in 12 microseconds

• Access time dominated by time to locate the
head over data
– Rotational latency

• Half one rotation is 2 milliseconds

– Seek time
• Full inside to outside is 8 milliseconds

• Track to track .5 milliseconds

• 2 milliseconds is 164KB in “lost bandwidth”

63

A Strategy: Avoid Waiting for

Disk Access

• Keep a subset of the disk’s data in

memory

⇒ Main memory acts as a cache of disk
contents

64

Two-level Memories and Hit

Rates

• Given a two-level memory,

– cache memory and main memory (RAM)

– main memory and disk

what is the effective access time?

• Answer: It depends on the hit rate in the

first level.

65

Effective Access Time

Teff = H × T1 + (1−H)× (T1 + T2)

T1 = access time of memory 1

T2 = access time of memory 2

H = hit rate in memory 1

Teff = effective access time of system

66

Example

• Cache memory access time 1ns

• Main memory access time 10ns

• Hit rate of 95%

Teff = 0.95× 1× 10−9 +

0.05× (1× 10−9 + 10× 10−9)

= 1.5× 10−9

