Two-level Translation

- Can be optimised for TLB refill only
 - Does not need to check the exception type
 - Does not need to save any registers
 - It uses a specialised assembly routine that only uses k0 and k1.
 - Does not check if PTE exists
 - Assumes virtual linear array – see extended OS notes
- With careful data structure choice, exception handler can be made very fast

R3000 TLB Refill

- An example routine
 mfc0 k1,0_Context
 mfc0 k0,0_EPC # tslot
 lw k1,0(k1) # may double fault (k0 = orig EPC)
 mtc0 k1,0_ENTRYLO
 tlbwr
 jr k0
 sfa
Virtual Linear Array page table

- Assume a 2-level PT
- Assume 2nd-level PT nodes are in virtual memory
- Assume all 2nd-level nodes are allocated contiguously ⇒ 2nd-level nodes form a contiguous array indexed by page number

Virtual Linear Array Operation

- Index into 2nd-level page table without referring to root PT
- Simply use the full page number as the PT index!
- Leave unused parts of PT unmapped!
- If access is attempted to unmapped part of PT, a secondary page fault is triggered
 - This will load the mapping for the PT from the root PT
 - Root PT is kept in physical memory (cannot trigger page faults)

Virtual Linear Array Page Table

- Use Context register to simply load PTE by indexing a PTE array in virtual memory
- Occasionally, will get double faults
 - A TLB miss, while servicing a TLB miss
 - Handled by general exception handler

c0 Context Register

| 31 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|
| PTEbase | Exd.VPN | 2 | 1 | 0 |

- c0_Context = PTEBase + 4 * PageNumber
 - PTEs are 4 bytes
 - PTEBase is the base local of the page table array (note: aligned on 4 MB boundary)
 - PTEBase is reinitialised by the OS whenever the page table array is changed
 - E.g. on a context switch
 - After an exception, c0_Context contains the address of the PTE required to refill the TLB.

Code for VLA TLB refill handler

- Load address of instruction to return to:
 - Load the PTE
 - Note: this load can cause a TLB refill miss itself, but this miss is handled by the general exception vector.
 - The general exception vector has to understand this situation and deal with it appropriately.