
1COMP3231

Security

2COMP3231

Security in the “Real” World

• We are all familiar with securing valuables

– Guards

– Locked doors, cabinets, safes

– ID badges

• Goal: Only authorised people have access

to the valuables

• How does this relate to computer

systems?

3COMP3231

Computer System “Valuables”

• Hardware

– Threats include theft, accidental or deliberate

damage.

– Hardware security is similar to physical

security of valuables

• Use similar techniques to secure the physical

hardware.

4COMP3231

Computer System “Valuables”

• Data

– Three general goals of data security

– Confidentiality
• Data is only readable by authorised people

– Able to specify who can read what on system, and be
enforced

– Preserve secrecy or privacy

– Integrity
• Data is only modifiable by authorised people

– Availability
• Data is available to authorized parties

5COMP3231

Threats

• Denial of Service

– An asset of the system is destroyed, or

becomes unavailable or unusable

– Attack on Availability

– Example:

• Destruction of hardware

• Cutting a communication line

• Disabling a file server

• Overloading a server or network

6COMP3231

Threats

• Interception

– An unauthorised party gains access to an

asset

– Attack on Confidentiality

– Examples:

• Wiretapping to capture data on a network

• Illicit copying of files and programs

7COMP3231

Threats

• Modification

– An unauthorized party not only gained

access, but tampers with data

– Attack on Integrity

– Examples:

• Changing values in a file

• Altering a program so that it performs differently

• Modifying the content of messages being

transmitted on a network

8COMP3231

Data Security

• Can be partially solved using physical security

• Usually too expensive or inconvenient to do so
– Example:

• Each user has private computer, in a locked guarded room.

• No sharing of information is permitted

• No outside connectivity permitted

– No email, shared file server, shared printer, shared tape drive

– No printouts or storage media can enter or exit the room.

• Users can still memorise information a bit at a time and leak
secrets

• However, physical security is still an important
part of any computer security system.

9COMP3231

Intruders
• Strategies to provide security typically consider the expected

intruders (also called adversaries) to be protected against.

• Common categories

1. Casual prying by nontechnical users

• Stumble across others users files on file server

2. Snooping by insiders

• Local programmer explicitly attempting to break security

3. Determined attempts to make money

• Bank programmers installing software to steal money

4. Commercial or military espionage

• Well funded attempts to obtain corporate or government secrets

• Depending on the value of the data, and the perceived adversary,

– more resources may be provided to secure the system

– less convenient methods of access may be tolerated by users

10COMP3231

Data Loss

• Protecting against data loss is an important

part of any security policy

• Examples:

1. Acts of God

- fires, floods, wars

2. Hardware or software errors

- CPU malfunction, bad disk, program bugs

3. Human errors

- data entry, wrong tape mounted

- General approach is off-site backups

11COMP3231

User Authentication

• Thus far, we have described various concepts with

reference to authorised users

• Assume we can decide whether a given user is

authorised to perform an operation, but how can we

determine if the user is who he says he is?

⇒How can we authenticate the users?

12COMP3231

Approaches to User Authentication

• Three general approaches to identifying a user

– Based on some unique property they possess

1. Something the user knows

2. Something the user has

3. Something the user is

– Each approach has its own complexities and

security properties

13COMP3231

Authentication Using Passwords

• Most common form of authentication is
entering a login name and password

– The password entered is not displayed for
obvious reasons

– Windows 2K/XP is broken in this regard
• Prints ‘*’ for each character typed

– Reveals the length of password

• Also remembers the last login name

– UNIX approach is much better
• In security, the less revealed the better

14COMP3231

Example: Less is More

• Careless login program can give away

important information

a) Successful login

b) Valid login ID revealed

c) No useful information revealed

15COMP3231

Problems with Password

Security
• One study from 1979

– Given a list of first name, last names, street

names, moderate dictionary, license plate

number, some random strings, the previous

spelt backwards, etc..

– A comparison with a password file obtained

86% of all passwords

• A more recent study (1990) produced

similar results

16COMP3231

The Importance Password

Security
• Good password security is vital if

computer is publicly accessible .

– E.g. dialup server

– Connected to a network or the Internet

• It’s common for war dialers to probe phone

numbers or crackers to probe internet

connect machines

17COMP3231

Approaches to improving password

security

• Passwords are are stored encrypted

– Avoids sysadmins, and potentially unwanted
computer “maintainers” from obtaining
passwords
• Example: from backup tapes

• Login procedure takes user-supplied
string,

– encrypts it

– compares result to stored encrypted
password

18COMP3231

An Attack on Encrypted

Passwords
• Take the dictionary of words, names, etc,

and encrypt all of then using the same

encryption algorithm

• Simply match pre-encrypted list with

password file to get matches

19COMP3231

Improving Password Security

with a Salt
• Idea:

– Encrypt the password together with a n-bit random number (the

salt) and store both the number and encrypted result

– Example

result = e(‘Dog1234’), 1234

• Cracker must encrypt each dictionary word 2n different

ways

– Make pre-computed list 2n times larger

• UNIX takes this approach with n = 12

• Additional security via making encrypted passwords

unreadable (shadow passwords)

20COMP3231

Improving Password Security

• Storing passwords more securely does not
help if user ‘homer’ has the password
‘homer’

• User must be educated (or forced) to
choose good passwords

– Approaches:
• Warn users who choose poor passwords

• Pick passwords for users
– easy to remember nonsense words

• Force them to change the password regularly

21COMP3231

Issues with ‘Good’ Passwords

• By forcing frequent password changes,

users tend to choose simpler passwords

• By choosing too ‘good’ a password for

users, users put them on post-it notes on

the monitor

• Still many attacks involving intercepting

password between user and service.

– phishing

22COMP3231

Aside: One-Way Functions

• Function such that given formula for f(x)

–easy to evaluate y = f(x)

• But given y

–computationally infeasible to find x

23COMP3231

One-time Passwords

• Password changing in the extreme

• Advantage:
– Snooping login provides no useful information

• Only a stale previous password

• Approach:
– Choose a secret phrase and the number of one time
passwords required.

– Each password is generated via re-applying a one-
way function

– Passwords are then used in reverse order
• Easy to compute the previous password, but not the next.

24COMP3231

One-time Password: Example

• P0=f(f(f(f(s))))

• P1=f(f(f(s)))

• P2=f(f(s))

• P3=f(s)

• Server initially stores P0

• Server receives O-T password

(P) and computes f(P)

• If f(P) matches P0, login

successful, server stores P (=

P1)

• On home PC

– Compute one-time

password to supply via 3

iterations of 1 way function

– Subsequent via 2, 1, 0

• Note

– Server never stores secret

(s)

– Home PC store number of

passwords used, but does

not need to store secret

either.

25COMP3231

Challenge-Response

• Server and client both know secret key (k)

• Server sends a challenge random number (c) to
client

• Client combines the secret key (k) with random
number (c) and applies a publicly-known
function r = f(c,k)

• Client sends the response to server

• On server, if supplied r equals f(c,k) we have
successful login

26COMP3231

Challenge-Response

• Advantage:

– Secret Key is never transmitted on potentially

insecure networks

– Eavesdropping is fruitless

• Assuming function (f) is such that k cannot be easily deduced

from a large number of observed challenge-responses

• Con:

– Need a ‘computer’ present to login (compute

response)

• PDA, phone, etc.

27COMP3231

Authentication Using a Physical

Object

• Magnetic cards

– magnetic stripe cards

– chip cards: stored value cards, smart cards

28COMP3231

Authentication Using

Biometrics

• A device for measuring

finger length.

• Alternatives:

– Retina scans

– Voice analysis

– Analysing signature

dynamics

29COMP3231

Issue: User Acceptance

• Low user acceptance results in:

– Users themselves compromising the system

• Example: using post-it notes

– Refusal to login

• E.g. login using a blood sample

• Challenge:

– To find a secure, unobtrusive, simple scheme

30COMP3231

Authentication Summary
• Authentication is an important component of
security

• Password-based schemes only modestly robust
to attack. Many attacks possible
– Insecure user behaviour

– Password storage

– Attacks on cryptographic algorithms (for storage or
transfer)

– Snooping Networks

• Physical and Biometric authentication improves
security
– Attacks still possible, but more resources required.

31COMP3231

Software Threats

• Given an reasonable authentication mechanism,
many other software threats exist.

• Software Exploits
– Trojan Horses

– Login Spoofing

– Logic Bombs

– Trapdoors

– Buffer Overflows

• Self replicating
– Viruses

32COMP3231

Trojan Horses

• Seemingly innocent program executed by an

unsuspecting user

– Either directly or indirectly

• Program can then do anything the user can

– Modify or delete files, send them elsewhere on the

net.

• Sample exploit

– If a user has “.”, “:/bin” or similar in their PATH, place

a file called ls in your directory (or /tmp).

33COMP3231

Login Spoofing
• Write a program that emulates the login screen

– Login, run the program to collect password of unsuspecting user,

then exit to the real login prompt.

• Windows 2K/XP provides a key combination (CTRL-

ALT-DEL) that can’t be bypassed to produce the real

login program

34COMP3231

Logic Bombs

• Code secretly embedded in an application

or the OS that goes off when certain

conditions are met.

– Example: Payroll programmer embeds code

that checks he is on the payroll, if not, the

payroll software becomes malicious

35COMP3231

Trap Doors
• Code inserted by the programmer to bypass some

check.

– Example: The login program

36COMP3231

Buffer Overflows
• Main calls A which has a local buffer

• Overflow the buffer with code + starting address of the

code

• Good for both local and remote attacks

• Caused by programmers not checking buffer bounds

37COMP3231

Viruses

• A program that reproduces itself by attaching its

code to another program.

• Can do anything the normal program could do

– Print harmless message

– Destroy all files on hard disk

– Send all your data to the net

– Trash the EEPROM BIOS to make your computer

inoperable

– Denial of service attack

38COMP3231

How Viruses Work

• Virus written in assembly language

• Inserted into another program

–use tool called a “dropper”

• Virus dormant until program executed

– then infects other programs

–eventually executes its “payload”

39COMP3231

How Viruses Work
• Parasitic Viruses

– Add their code to various locations in the executable

– Redirect the start address in the header

– On execution, it may replicate by modifying another

executable file (and other malicious activities).

40COMP3231

How Viruses Work

• Boot Sector Viruses

– Copies original boot block to different location

– Replaces boot block with itself

– When machine boots, virus is loaded into

RAM

– It installs itself, and then boots OS via original

boot block

• How does it regain control later?

41COMP3231

How Viruses Work
• Virus installs interrupt handlers which rely on OS not

installing all its own handlers prior to next interrupt

occurring

– Older versions of Windows behaved that way

• Virus reinstalls trap handlers at next opportunity

42COMP3231

How Viruses Work
• Memory Resident Viruses

– Install themselves in main memory

– Typically redirect the exception/interrupt handlers to itself

• Still calls the real code to remain undetected

• checks and reinstalls redirections changed

• Replicate during, or manipulate and spy-on on syscalls

43COMP3231

How Viruses Work

• Macro Viruses

– Rely on overly powerful/feature overloaded

macro languages

– MS office uses visual basic – complete

programming language that can read/write

files

– Opening a Word document is like running a

program (it could do anything)

44COMP3231

How Viruses Spread

• Virus placed where it’s likely to be
copied

• When copied
– infects programs on hard drive, floppy

– may try to spread over LAN

• Attach to innocent looking email
– when it runs, use mailing list (address book)
to replicate

45COMP3231

Antivirus Approach

• Scanning

– Search each file and check if virus present

• 10,000 potential viruses and 10,000 files

• Hard to make fast

– Use fuzzy searches to catch small changes in

known viruses

• Slower, false positives

– Trade-off between accuracy and acceptable

performance

46COMP3231

Antivirus and Anti-Antivirus Techniques

(a) A program

(b) Infected program

Change in file length a give away

47COMP3231

Antivirus and Anti-Antivirus Techniques

(c) Compressed infected program

Presence of virus code still a give away

48COMP3231

Antivirus and Anti-Antivirus Techniques

(d) Encrypted virus

Presence of (de)compressor a give away

49COMP3231

Antivirus and Anti-Antivirus Techniques

(e) Compressed virus with encrypted compression
code

Can still search for remaining decryptor code

50COMP3231

Antivirus and Anti-Antivirus Techniques

Examples of a polymorphic virus

All of these examples do the same thing

51COMP3231

Antivirus and Anti-Antivirus

Techniques

• Integrity checkers

– Scan the disk and determine checksums for all
executable files

– Check checksums, if changed we have a virus

– Counter, viruses can hack checksum database
is

• Behavioral checkers

– Look for virus like behavoiur
• Example: overwriting executable file

– False alarms (e.g. a compiler)

52COMP3231

Antivirus and Anti-Antivirus

Techniques

• Virus avoidance

– good OS

• Separate user/system mode/protection to minimise damage

– Run/install only reputable software

– use antivirus software

– Do not open attachments to email

– frequent backups

• Recovery from virus attack

– halt computer, reboot from safe disk, run antivirus

– restore from backups

53COMP3231

Running Foreign Code

• We can see that running foreign code can

be dangerous (trojan horse, viruses,

simply malicious, etc.)

• Problem is that all the code we run has all

the privileges we do

• We need a method of running untrusted

code safely

54COMP3231

Principle of Least Privilege

• A guiding principle we would like to apply

• Idea:

– Give the suspicious program only the

privileges required to complete the task you

expect, nothing more

– Example:

• Can only perform file related system calls

• Can only access files within a specified directory

55COMP3231

Example: Active Web Content

• We’d like to browse “active” web content

– Run content in the web browser

– The browser has all the privileges we do

• Some approaches

– Sandboxing

– Interpretation

– Code Signing

56COMP3231

Sandboxing

• Idea:
– Code runs within a sandbox
within a browser (or some other
larger application)

– The applet can access only the
data contained within its
sandbox, and nothing else.

– It can only jump to code within its
sandbox (and cannot modify the
code)

• How can we create a sandbox
within a process?

57COMP3231

Sandbox Implementation
• Firstly, assume we can restrict access to code to
avoid problem of self modifying code

• To restrict code to the code segment
– Scan the code

– Check all jumps and branches jump to addresses
within the sandbox
• Handle both absolute and relative addresses

– For computed (dynamic jumps) we insert extra
instruction into the code to check the destination
addresses are within the code
• Involves fairly complex code rewriting, but it is doable

• To restrict data access to data section, we do
the some thing we did for code

58COMP3231

Sandbox Implementation

• What about system calls

– We use a reference monitor that

• Intercepts all system calls

• Determine whether the call is allowed to succeed

or not

– Based on the type of call, or the arguments supplied.

– Reference monitor restricts the system calls to

a safe subset

59COMP3231

Interpretation

• Instead of running code directly (natively), we run it using

an interpreter

– Interpreter can apply addressing restrictions

– Can consider the interpreter as implementing a sandbox

– Example: JAVA

60COMP3231

Code Signing
• Authenticity of the code is guaranteed

• Issues

– Does not protect you against bad or buggy code

– Example: Shockwave has had various “authentic” security

problems

61COMP3231

Summary

• Even given strong authentication, there

are many software threats to data security

policies.

• The affect of exploiting those threats can

be minimised by adopting the principle of

least privilege.

