Processes and Threads

1 THE UNIVERSITY OF
NEW SOUTH WALES

Learning Outcomes

* An understanding of fundamental concepts of
processes and threads

* An understanding of the typical implementation
strategies of processes and threads

— Including an appreciation of the trade-offs between
the implementation approaches

 Kernel-threads versus user-level threads

A detailed understanding of “context switching”

Major Requirements of an
Operating System

* Interleave the execution of several
processes to maximize processor
utilization while providing reasonable
response time

 Allocate resources to processes

« Support interprocess communication and
user creation of processes

&=
R THE UNIVERSITY OF
NEW SOUTH WALES

Processes and Threads

* Processes:
— Also called a task or job
— Execution of an individual program
— “Owner” of resources allocated for program execution
— Encompasses one or more threads

e Threads:

— Unit of execution

— Can be traced
* list the sequence of instructions that execute

— Belongs to a process

=2
Ll THE UNIVERSITY OF 4
NEW SOUTH WALES

Address Nain Memory Program Count

0
ik | 8000y
Dispatcher
5000
Execution snapshot Process A
of three single-
B0
threaded processes i
(NO Vll’tual Process B
Memory) -
Process C

Figure 3.1 Snapshot of Example Execution (Figure 3
at Instruction Cycle 13

Logical Execution Trace

5000 a000 12000
5001 8001 12001
5002 a002 12002
5003 a003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A (h) Trace of Process B (c) Trace of Process C

2000 = Starting address of program of Process A
000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 Traces of Processes of Figure 3.1

Combined Traces

(Actual CPU
Instructions)

What are the
shaded sections?

1 5000 27 12004

2 5001 2% 12005

3 5002

4 5003 20 100

5 5004 30 101

i 5005 i1 102
Time out 32 103

7 100 33 104

g 101 34 105

g 102 35 5006

10 103 36 5007

11 104 37 5008

12 105 3% 5009

13 000 39 A010

14 2001 41 5011

15 8002

16 2003 41 100

.................. A0 request 42 101

17 100 43 102

12 101 44 103

19 102 45 104

20 103 45 105

21 104 47 12006

22105 4% 12007

23 12000 49 12008

24 12001 500 12009

25 12002 51 12010

26 12003 52 12011

100 = Stamtmg address of dispatcher program

shaded areas mdicate exemution of dispatcher process,
first and thard cobumns comrt mstraction cyeles,

second and fonrth cohimns shoar address of mstrctionbeing ecemited

Time out

Titre out

Titre out

Figure 33 Combhined Trace of Processes of Figure 3.1

Summary: The Process Model

One program counter
N— Four program counters

A Process
E switch
B

C A¢ B Y C¢ DY

Process

> W O O

J— I

D Time —=

(a) (b) (c)

* Multiprogramming of four programs

* Conceptual model of 4 independent, sequential
processes (with a single thread each)

* Only one program active at any instant

one process
one thread

one process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

s = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

Process and thread models of

selected OSes

« Single process, single thread
— MSDOS

« Single process, multiple threads
— 0S/161 as distributed

Multiple processes, single thread
— Traditional unix

Multiple processes, multiple threads
— Modern Unix (Linux, Solaris), Windows 2000

Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
threads (for historical reasons)

10

Process Creation

Principal events that cause process creation

1. System initialization
« Foreground processes (interactive programs)

 Background processes
Emalil server, web server, print server, etc.
Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a
running process

« New login shell for an incoming telnet/ssh connection
3. User request to create a new process
4. Initiation of a batch job

Note: Technically, all these cases use the same
system mechanism to create new processes.

LR THE UNIVERSITY OF 1

:’:\a- NEW SOUTH WALES

=2

Process Termination

Conditions which terminate processes

1.

2.
3.
4.

Normal exit (voluntary)

Error exit (voluntary)

Fatal error (involuntary)

Killed by another process (involuntary)

T THE UNIVERSITY OF
NEW SOUTH WALES

12

Process/Thread States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

» Possible process/thread states
— running
— blocked
— ready

* Transitions between states shown

L] THE UNIVERSITY OF
NEW SOUTH WALES

13

Some Transition Causing

Events

Running >Ready
— Voluntary Yield ()

— End of timeslice

Running >Blocked
— Waiting for input
* File, network,
— Waiting for a timer (alarm signal)
— Waiting for a resource to become available

14

Dispatcher

 Sometimes also called the scheduler
— The literature is also a little inconsistent on
this point
* Has to choose a Ready process to run
— How?

— It is inefficient to search through all
processes

L] THE UNIVERSITY OF
@8] NEW SOUTH WALES

15

The Ready Queue

Juene
Enter Dispatch Exit
l e
Pause
(b) Queulng dlagram
- THE UNIVERSITY OF 16

What about blocked processes?

 When an unblocking event occurs, we also
wish to avoid scanning all processes to
select one to make Ready

B | THE UNIVERSITY OF 17
NEW SOUTH WALES

Using Two Queues

Ready Queue Release
Admit Dispatch
‘ o
Timeout
Elocked Queue
Event Event Walt
Oocurs
(a) Single blocked queue
=]
1 THE UNIVERSITY OF 18

NEW SOUTH WALES

Ready (Queue — Release

e LTt

Timeout

Event 1 Queune

Event 1 . Event 1 Wall
Occurs

Event 2 (Quene

Event 2 e Event 2 Wallt
Occurs

¥
| 4
¥

Event n Queune

Event n Event n Walt
-—
occurs

() Multiple blocked queunes

Implementation of Processes

* A processes’ information is
stored in a process control block

(PCB) gg

 The PCBs form a process table Ps

— Sometimes the kernel stack for P4

each process is in the PCB P3

— Sometimes some process info is P2

on the kernel stack P1

« E.Q. registers in the trapframe in PO
0S/161

B NEW SOUTH WALFS

20

Implementation of Processes

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Example fields of a process table entry

21

Threads
The Thread Model

Process 1 Process 1 Process 1 Process
\\ | | i
User y
space
Thread Thread
Kernel
space Kernel Kernel
(a) (b)

(a) Three processes each with one thread

The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

 [tems shared by all threads in a process
 [tems private to each thread

JBL) THE UNIVERSITY OF 23

The Thread Model

Thread 2
Thread 1 Thread s
h\ // Process
Thread 1's Thread 3's stack
stack
Kernel

Each thread has its own stack

E=
sl 1 HE UNIVERSITY OF 24

Thread Model

« Local variables are per thread
— Allocated on the stack

* Global variables are shared between all threads
— Allocated in data section
— Concurrency control is an issue

« Dynamically allocated memory (malloc) can be
global or local
— Program defined (the pointer can be global or local)

B THE UNIVERSITY OF 25

Thread Usage

Four score and ssven
years ago, our fathers
brought forth upon this
cantinen a new nation:
conceived in liberty,
and dedicated o the
propesition that all
men are creaed equal

Mow we ar engaged
in & great civil war
testing whether that

nation, or any nation
sa canceived and so
dedicated, can long
endurs. We are met on
a great battlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. 1t s
altogether fitting and
proper that we should
do this.

But, in a larger serse,
wecamet dedicate, we
cannot consecrate we
cannot hallow this
gwund. The bave
men, living and dead,

wha stiuggled here
have consecrated it, far|
above omr poor pawer
1w acd or detract. The
warld will little note,
nor long remember,
what we say here, but]
it can never forget
whatthey did here

1t is for ws the living,
mther, to be dedicated

bz to the unfinished
work which they who
fought hew have ths
far so nobly advanced
1t is mther for vs to be
here dedicatsd 1o the
gieat sk remaining
before us, that from
these honared dead we
take increased devotion
10 that cavse for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the

pecple, for the pecple

8

NV

11
=T |
y |
o |
T
T
=

Nl

Keyboard

Kernel

Disk

A word processor with three threads

26

Thread Usage

Web server process

Dispatcher thread
- ,..27) ‘ Worker thread
Web page cache
Kernel
Network
connection

B2
Ll THE UNIVERSITY OF
NEW SOUTH WALES

User
> space

Kernel
space

A multithreaded Web server

27

Thread Usage

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);
}
(a) (b)

* Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

™ THE UNIVERSITY OF
NEW SOUTH WALES

Thread Usage

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

BL| THE UNIVERSITY OF 29

Summarising “Why Threads?”

« Simpler to program than a state machine

» Less resources are associated with them than a
complete process
— Cheaper to create and destroy
— Shares resources (especially memory) between them

« Performance: Threads waiting for I/O can be overlapped
with computing threads

— Note if all threads are compute bound, then there is no
performance improvement (on a uniprocessor)

« Threads can take advantage of the parallelism available
on machines with more than one CPU (multiprocessor)

1 THE UNIVERSITY OF 30
NEW SOUTH WALES

Implementing Threads in User
Space

Process Thread

_/

(T \

=3 043

=
Kernel{ / . I
SHEEE erne
i X
/ \
Run-time Thread Process
system table table
A user-level threads package
m- THE UNIVERSITY OF 31

User-level Threads

* Implementation at user-level

— User-level Thread Control Block (TCB), ready
gueue, blocked queue, and dispatcher

— Kernel has no knowledge of the threads (it
only sees a single process)

— If a thread blocks waiting for a resource held
by another thread, its state is save and the
dispatcher switches to another ready thread

— Thread management (create, exit, yield, wait)
are implemented in a runtime support library

THE UNIVERSITY OF 32

B NEW SOUTH WALFS

User-Level Threads

* Pros

— Thread management and switching at user level is
much faster than doing it in kernel level

* No need to trap into kernel and back to switch

— Dispatcher algorithm can be tuned to the application
« E.g. use priorities
— Can be implemented on any OS (thread or non-
thread aware)

— Can easily support massive numbers of threads on a
per-application basis
« Use normal application virtual memory

« Kernel memory more constrained. Difficult to efficiently
support wildly differing numbers of threads for different
applications.

33

User-level Threads

e Cons

— Threads have to yield() manually (no timer
interrupt delivery to user-level)

» Co-operative multithreading

— A single poorly design/implemented thread can
monopolise the available CPU time

* There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

— Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

THE UNIVERSITY OF 34

User-Level Threads

« Cons

— If a thread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks
« Can’t overlap I/0O with computation
« Can use wrappers as a work around
— Example: wrap the read () call
— Use select () to test if read system call would block
» select () then read ()
» Only call read () if it won'’t block
» Otherwise schedule another thread
— Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking
system calls?

« Can change to kernel to support non-blocking system call
— Lose “on any system” advantage, page faults still a problem.

1 THE UNIVERSITY OF 35
NEW SOUTH WALES

Implementing Threads in the Kernel

Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel

1 THE UNIVERSITY OF 36
NEW SOUTH WALES

Kernel Threads

* Threads are implemented in the kernel

— TCBs are stored in the kernel

* A subset of information in a traditional PCB
— The subset related to execution context

« TCBs have a PCB associated with them

— Resources associated with the group of threads (the
process)

— Thread management calls are implemented
as system calls
« E.g. create, wait, exit

B NEW SOUTH WALFS

Kernel Threads

e Cons

— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

* More expensive than user-level equivalent
* Pros
— Preemptive multithreading

— Parallelism
« Can overlap blocking I/0O with computation
« Can take advantage of a multiprocessor

THE UNIVERSITY OF 38

Multiprogramming Implementation

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
interrupt occurs — a thread/context switch

=2
LI THE UNIVERSITY OF 39
NEW SOUTH WALES

Thread Switch

* A switch between threads can happen any time
the OS is invoked

— On a system call
« Mandatory if system call blocks or on exit();

— On an exception
« Mandatory if offender is killed

— On an interrupt

 Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
Instructions

Note instructions do not equal program statements

==
L] THE UNIVERSITY OF 40
NEW SOUTH WALES

Context Switch

* Thread switch must be transparent for threads

— When dispatched again, thread should not notice that
something else was running in the meantime (except
for elapsed time)

—0S must save all state that affects the thread
* This state is called the thread context

« Switching between threads consequently results
In a context switch.

B THE UNIVERSITY OF 41

i f::\a- NEW SOUTH WALES

Simplified
Explicit

Thread a Thread b

thread switch(a,b)

] " | Thread Switch

1
1
{ 1
1
1
1
} | thread switch(b,a)
1
{ I
1
1
1
1
1
1
1
thread switch(a,b) > } :
1
{ I
1
1
1
1
1
1
=
-7 THE UNIVERSITY OF 42

Example Context Switch

* Running in user mode, SP points to user-
level activation stack

Representation of
Kernel Stack SP
(Memory)

1 THE UNIVERSITY OF 43
NEW SOUTH WALES

Example Context Switch

* Take an exception, syscall, or interrupt,
SP

and we switch to the kernel stack

L THE UNIVERSITY OF 44
NEW SOUTH WALES

Example Context Switch

 We push a frapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

SP

/

1 THE UNIVERSITY OF 45
NEW SOUTH WALES

[
S

Example Context Switch

« Call ‘C’ code to process syscall, exception,
or interrupt

— Results in a ‘C’ activation stack building up

SP

_‘C’ activation stack| trapframe

SBL| THE UNIVERSITY OF 40

Example Context Switch

* The kernel decides to perform a context switch
— It chooses a target thread (or process)
— It pushes remaining kernel context onto the stack

SP

| |Kernel State|'C’ activation stack| trapframe

JBL) THE UNIVERSITY OF 47

Example Context Switch

* Any other existing thread must
— be in kernel mode (on a uni processor),
— and have a similar stack layout to the stack we are
currently using
Kernel
stacks of SP
other
threads

- Kernel State

‘C’ activation stack| trapframe

‘C’ activation stack| trapframe

‘C’ activation stack| trapframe

48

Example Context Switch

* We save the current SP in the PCB (or TCB),
and load the SP of the target thread.

— Thus we have switched contexts

SP

o) _

BT THE UNIVERSITY OF s
NEW SOUTH WALES

Example Context Switch

* Load the target thread’s previous context,
and returnto C

SP

LR THE UNIVERSITY OF >

NEW SOUTH WALES

Example Context Switch

* The C continues and (in this example)
returns to user mode.

SP

LR THE UNIVERSITY OF :
NEW SOUTH WALES

Example Context Switch

* The user-level context is restored

SP

LR THE UNIVERSITY OF >
NEW SOUTH WALES

Example Context Switch

* The user-level SP is restored

SP

LR THE UNIVERSITY OF >
NEW SOUTH WALES

The Interesting Part of a Thread
Switch

* \What does the “push kernel state” part
do???

SP

1 THE UNIVERSITY OF 54
NEW SOUTH WALES

0S/161 md switch

md switch(struct pcb *old, struct pcb *nu)
{
if (old==nu) {
return;
}
/*
* Note: we don't need to switch curspl, because splhigh()
* should always be in effect when we get here and when we

* leave here.

*/

old->pcb kstack = curkstack;
old->pcb ininterrupt = in_interrupt;

curkstack = nu->pcb kstack;
in_interrupt = nu->pcb_ ininterrupt;

mips switch(old, nu);

0S/161 mips switch

mips switch:

/%

* a0 contains a pointer to the old thread's struct pcb.

* al contains a pointer to the new thread's struct pcb.

*

* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved
* on the stack, namely:

*

* s0-s8

* gp, ra

*

* The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 1l registers. 1l1*4 = 44 */

addi sp, sp, -—-44

THE UNIVERSITY OF
NEW SOUTH WALES

56

0S/161 mips switch

/* Save the registers */
sSw ra, 40 (sp)
sSwW gp, 36(sp)
sSwW s8, 32 (sp)
sSwW s7, 28 (sp)
sSw s6, 24 (sp)
sSw s5, 20 (sp)
sSw s4, 16 (sp)
sSwW s3, 12 (sp)

sSwW s2, 8(sp)
sSwW sl, 4(sp)
sSwW sO0, O(sp)

/* Store the old stack pointer in the old pcb */
sSw sp, 0(a0)

|
i g

B% NEW SOUTH WALES

0S/161 mips switch

/* Get the new stack pointer from the new pcb */
1w sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

1lw sO0, O(sp)
1w sl, 4(sp)
1w s2, 8(sp)
lw s3, 12 (sp)
1lw s4, 16(sp)
1lw s5, 20 (sp)
1lw s6, 24 (sp)
1lw s7, 28(sp)
1lw s8, 32 (sp)
1w gp, 36(sp)
lw ra, 40(sp)
nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */
.end mips_switch

Thread a Thread b ReV|S|t|ng

Thread Switch

mips_'_switch(a,b) > }
1
{ 1
1
1
1
1
} : < mips_gwitch(b,a)
1
{ I
1
1
1
1
1
1
1
1
1
mips; switch(a,b) > } :
1
{ I
1
1
1
1
1
1
1
1
1
1
==
L] THE UNIVERSITY OF 59

NEW SOUTH WALES

