Real-time Scheduling
Tanenbaum
Section 2.5, Section 7.4.2-7.4.4

Real Time Scheduling
• Correctness of the system may depend not only on the logical result of the computation but also on the time when these results are produced, e.g.
 – Tasks attempt to control events or to react to events that take place in the outside world
 – These external events occur in real time and processing must be able to keep up
 – Processing must happen in a timely fashion, neither too late, nor too early

Real Time System (RTS)
• RTS accepts an activity A and guarantees its requested (timely) behaviour B if and only if
 – RTS finds a schedule
 • that includes all already accepted activities Ai and the new activity A,
 • that guarantees all requested timely behaviour Bi and B, and
 • that can be enforced by the RTS.
 • Otherwise, RT system rejects the new activity A.

Typical Real Time Systems
– Control of laboratory experiments
– Robotics
– (Air) Traffic control
– Controlling Cars / Trains / Planes
– Telecommunications
– Medical support (Remote Surgery, Emergency room)
– Multi-Media
• Remark: Some applications may have only soft-real time requirements, but some have really hard real-time requirements

Hard-Real Time Systems
• Requirements:
 – Must always meet all deadlines (time guarantees)
 – You have to guarantee that in any situation these applications are done in time, otherwise dangerous things may happen
Examples:
 1. If the landing of a fly-by-wire jet cannot react to sudden side-winds within some milliseconds, an accident might occur.
 2. An airbag system or the ABS has to react within milliseconds

Soft-Real Time Systems
Requirements:
Must mostly meet all deadlines, e.g. 99.9% of cases
Examples:
 1. Multi-media: 100 frames per day might be dropped (late)
 2. Car navigation: 5 late announcements per week are acceptable
 3. Washing machine: washing 10 sec over time might occur once in 10 runs, 50 sec once in 100 runs.
Properties of Real-Time Tasks
- To schedule a real time task, its properties must be known \textit{a priori}.
- The most relevant properties are:
 - Arrival time (or release time) a_i
 - Maximum execution time (service time) s_i
 - Deadline d_i

Categories of Real time tasks
- Periodic
 - Each task is repeated at a regular interval
 - Max execution time is the same each period
 - Arrival time is usually the start of the period
 - Deadline is usually the end
- Aperiodic (sporadic)
 - Each task can arrive at any time

Real-time scheduling approaches
- Static table-driven scheduling
 - Given a set of tasks and their properties, a schedule (table) is precomputed offline.
 - Used for periodic task set
 - Requires entire schedule to be recomputed if we need to change the task set
- Static priority-driven scheduling
 - Given a set of tasks and their properties, each task is assigned a fixed priority
 - A preemptive priority-driven scheduler used in conjunction with the assigned priorities
 - Used for periodic task sets

Real-time scheduling approaches
- Dynamic scheduling
 - Task arrives prior to execution
 - The scheduler determines whether the new task can be admitted
 - Can all other admitted tasks and the new task meet their deadlines?
 - If no, reject the new task
 - Can handle both periodic and aperiodic tasks

Scheduling in Real-Time Systems
- We will only consider periodic systems.

Schedulable real-time system
- Given
 - m periodic events
 - Event i occurs within period P_i and requires C_i seconds
- Then the load can only be handled if
 \[\sum_{i=1}^{m} \frac{C_i}{P_i} \leq 1 \]
A Scheduling Example

• Three periodic Tasks

Is the Example Schedulable

\[\sum_{i=1}^{m} \frac{C_i}{P_i} \leq 1 \]

\[\frac{10}{30} + \frac{15}{40} + \frac{5}{50} = 0.808 \]

• YES

Two Schedules: RMS and EDF

Let’s Modify the Example Slightly

• Increase A’s CPU requirement to 15 msec
• The system is still schedulable

\[\frac{15}{30} + \frac{15}{40} + \frac{5}{50} = 0.975 \]

RMS and EDF

RMS failed, why?

• It has been proven that RMS is only guaranteed to work if the CPU utilisation is not too high
 – For three tasks, CPU utilisation must be less than 0.780
 • We were lucky with our original example

\[\sum_{i=1}^{m} \frac{C_i}{P_i} \leq m(2^{1/m} - 1) \]
EDF

- EDF always works for any schedulable set of tasks, i.e. up to 100% CPU utilisation

Summary
- If CPU utilisation is low
 - Can use RMS which is simple and easy to implement
- If CPU utilisation is high
 - Must use EDF