# Scheduling



# What is Scheduling?

- On a multi-programmed system
  - We may have more than one Ready process
- On a batch system
  - We may have many jobs waiting to be run
- On a multi-user system
  - We may have many users concurrently using the system
- The scheduler decides who to run next.
  - The process of choosing is called *scheduling*.



# Is scheduling important?

- It is not in certain scenarios
  - If you have no choice
    - Early systems
      - Usually batching
      - Scheduling algorithm simple
        - » Run next on tape or next on punch tape
  - Only one thing to run
    - Simple PCs
      - Only ran a word processor, etc....
    - Simple Embedded Systems
      - TV remote control, washing machine, etc....



# Is scheduling important?

- It is in most realistic scenarios
  - Multitasking/Multi-user System
    - Example
      - Email daemon takes 2 seconds to process an email
      - User clicks button on application.
    - Scenario 1
      - Run daemon, then application
        - » System appears really sluggish to the user
    - Scenario 2
      - Run application, then daemon
        - » Application appears really responsive, small email delay is unnoticed
- Scheduling decisions can have a dramatic effect on the perceived performance of the system
  - Can also affect correctness of a system with deadlines



# **Application Behaviour**



Bursts of CPU usage alternate with periods of I/O wait



# **Application Behaviour**



- a) CPU-Bound process
  - Spends most of its computing
  - Time to completion largely determined by received CPU time



# **Application Behaviour**



#### b) I/O-Bound process

- Spend most of its time waiting for I/O to complete
  - Small bursts of CPU to process I/O and request next I/O
- Time to completion largely determined by I/O request time



#### **Observations**



- Generally, technology is increasing CPU speed much faster than I/O speed
  - ⇒ CPU bursts becoming shorter, I/O waiting is relatively constant
  - ⇒ Processes are becoming more I/O bound



#### **Observations**



- We need a mix of CPU-bound and I/O-bound processes to keep both CPU and I/O systems busy
- Process can go from CPU- to I/O-bound (or vice versa) in different phases of execution



## **Observations**



- Choosing to run an I/O-bound process delays a CPU-bound process by very little
- Choosing to run a CPU-bound process prior to an I/O-bound process delays the next I/O request significantly
  - No overlap of I/O waiting with computation
  - Results in device (disk) not as busy as possible





# When is scheduling performed?

- A new process
  - Run the parent or the child?
- A process exits
  - Who runs next?
- A process waits for I/O
  - · Who runs next?
- A process blocks on a lock
  - Who runs next? The lock holder?
- An I/O interrupt occurs
  - Who do we resume, the interrupted process or the process that was waiting?
- On a timer interrupt? (See next slide)
- Generally, a scheduling decision is required when a process (or thread) can no longer continue, or when an activity results in more than one ready process.



# Preemptive versus Non-preemptive Scheduling

#### Non-preemptive

- Once a thread is in the *running* state, it continues until it completes, blocks on I/O, or voluntarily yields the CPU
- A single process can monopolised the entire system

#### Preemptive Scheduling

- Current thread can be interrupted by OS and moved to ready state.
- Usually after a timer interrupt and process has exceeded its maximum run time
  - Can also be as a result of higher priority process that has become ready (after I/O interrupt).
- Ensures fairer service as single thread can't monopolise the system
  - Requires a timer interrupt



## Categories of Scheduling Algorithms

- The choice of scheduling algorithm depends on the goals of the application (or the operating system)
  - No one algorithm suits all environments
- We can roughly categorise scheduling algorithms as follows
  - Batch Systems
    - No users directly waiting, can optimise for overall machine performance
  - Interactive Systems
    - Users directly waiting for their results, can optimise for users perceived performance
  - Realtime Systems
    - Jobs have deadlines, must schedule such that all jobs (mostly) meet their deadlines.



- All Algorithms
  - Fairness
    - Give each process a fair share of the CPU
  - Policy Enforcement
    - What ever policy chosen, the scheduler should ensure it is carried out
  - Balance/Efficiency
    - Try to keep all parts of the system busy



- Batch Algorithms
  - Maximise throughput
    - Throughput is measured in jobs per hour (or similar)
  - Minimise turn-around time
    - Turn-around time  $(T_r)$ 
      - difference between time of completion and time of submission
      - Or waiting time  $(T_w)$  + execution time  $(T_e)$
  - Maximise CPU utilisation
    - Keep the CPU busy
    - Not as good a metric as overall throughput



- Interactive Algorithms
  - Minimise response time
    - Response time is the time difference between issuing a command and getting the result
      - E.g selecting a menu, and getting the result of that selection
    - Response time is important to the user's perception of the performance of the system.
  - Provide Proportionality
    - Proportionality is the user expectation that short jobs will have a short response time, and long jobs can have a long response time.
    - Generally, favour short jobs



- Real-time Algorithms
  - Must meet deadlines
    - Each job/task has a deadline.
    - A missed deadline can result in data loss or catastrophic failure
      - Aircraft control system missed deadline to apply brakes
  - Provide Predictability
    - For some apps, an occasional missed deadline is okay
      - E.g. DVD decoder
    - Predictable behaviour allows smooth DVD decoding with only rare skips



# Scheduling Algorithms

**Batch Systems** 



# First-Come First-Served (FCFS)

#### Algorithm

- Each job is placed in single queue, the first job in the queue is selected, and allowed to run as long as it wants.
- If the job blocks, the next job in the queue is selected to run
- When a blocked jobs becomes ready, it is placed at the end of the queue



# Example





## FCFS Schedule





## **FCFS**

- Pros
  - Simple and easy to implement
- Cons
  - I/O-bound jobs wait for CPU-bound jobs
  - ⇒Favours CPU-bound processes
    - Example:
      - Assume 1 CPU-bound process that computes for 1 second and blocks on a disk request. It arrives first.
      - Assume an I/O bound process that simply issues a 1000 blocking disk requests (very little CPU time)
      - FCFS, the I/O bound process can only issue a disk request per second
        - » the I/O bound process take 1000 seconds to finish
      - Another scheme, that preempts the CPU-bound process when I/O-bound process are ready, could allow I/O-bound process to finish in 1000\* average disk access time.



#### **Shortest Job First**

- If we know (or can estimate) the execution time a priori, we choose the shortest job first.
- Another non-preemptive policy



# Our Previous Example





## **Shortest Job First**





#### **Shortest Job First**

#### Con

- May starve long jobs
- Needs to predict job length

#### Pro

- Minimises average turnaround time (if, and only if, all jobs are available at the beginning)
- Example: Assume for processes with execution times of a, b, c, d.
  - a finishes at time a, b finishes at a + b, c at a + b + c, and so on
  - Average turn-around time is (4a + 3b + 2c + d)/4
  - Since a contributes most to average turn-around time, it should be the shortest job.



- A preemptive version of shortest job first
- When ever a new jobs arrive, choose the one with the shortest remaining time first
  - New short jobs get good service



# Example

































# Scheduling in Batch Systems



Three level scheduling



# Three Level Scheduling

- Admission Scheduler
  - Also called *long-term* scheduler
  - Determines when jobs are admitted into the system for processing
  - Controls degree of multiprogramming
  - More processes ⇒ less CPU available per process



# Three Level Scheduling

- CPU scheduler
  - Also called short-term scheduler
  - Invoked when ever a process blocks or is released, clock interrupts (if preemptive scheduling), I/O interrupts.
  - Usually, this scheduler is what we are referring to if we talk about a scheduler.



# Three Level Scheduling

- Memory Scheduler
  - Also called medium-term scheduler
  - Adjusts the degree of multiprogramming via suspending processes and swapping them out

