RAID

Chapter 5

RAID

- Redundant Array of Inexpensive Disks
 - Industry tends to use “Independent Disks” 😊
- Idea:
 - Use multiple disks to parallelise Disk I/O for better performance
 - Use multiple redundant disks for better availability
- Alternative to a Single Large Expensive Disk (SLED)

RAID Level

- Various configurations of multiple disks are termed a RAID Level
 - Note the Level, does not necessarily imply that one configuration is above or below another.
- We will look at RAID Levels 0 to 5
- All instances of RAID present a single logical disk to the file system.

RAID 0

- Logical Disk divided into strip(e)s
 - Stripe = a fixed number of sectors
 - First strip written to disk 0
 - Consecutive strips written to different disk in the array in round-robin fashion
- Splits I/O workload across several disks
 - Best with many independent request streams
 - Avoids hotspots on a single disk
- Increases bandwidth available to/from the logical disk.

Figure 11.10 Data Mapping for a RAID Level 0 Array [MANS97]
RAID 0

- Not really true RAID
 - No redundancy
- RAID 0 is less reliable than a SLED
 - Example: Assume MTBF of 10000 hours
 - MTBF of the array is MTBF divided by the number of disks
 - A 4 disk array would have an MTBF of 2500 hours

RAID 1

- Each strip is written to two disks
 - Also termed Mirroring (true RAID 1)
- Provides redundancy
 - If disk fails, we can use the copy
- Read performance can double
 - To fetch some blocks, we send half the requests to one disk set, and the other half to the other
- Write performance stays the same
 - A logical write results in two parallel writes to real disks

RAID 0+1, 1+0, 01, 10

- With striping, sometimes termed RAID 0+1, 1+0, 01, 10
- Diagram RAID 0+1
 - Two striped sets (RAID 0)
 - Mirror the two sets (RAID 1)
- Alternative RAID 1+0
 - Many sets mirror pairs (RAID 1)
 - Strip across all sets (RAID 0)

RAID 2

- Example: split data into 4-bit nibbles
- Write each bit to a separate disk
 - Use synchronised spindles to ensure each bit is available at the same time
- Additionally, write 3 Hamming code (ECC) bits to 3 extra disks
 - Hamming code can correct a single bit error

RAID 2

- Makes more sense with more drives
 - 38 drives (32-bit words, with 6-bit ECC)
 - Still 19% storage overhead
- Disadvantage – needs synchronised spindles
- Not used
RAID 3

• Like RAID 2, but instead of ECC, use a single parity bit.
• Can only detect a single error, not correct it
 – Unless we know which bit is wrong

Quick Look At Parity

<table>
<thead>
<tr>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

What is the lost bit?

RAID 3

• Fortunately, if a disk fails, we know which bit is "wrong" and can use the parity bit to recover it
• Advantage:
 – Only need a single extra disk to implement RAID 3
• Can handle failure of complete disk

RAID 3

• Disadvantage:
 – Synchronised spindles
 – Fast for reading contiguous data, but does not improve performance for independent small requests
 – Each drive seeks together

Examining the first byte in each block

<table>
<thead>
<tr>
<th>Block 0</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>P(0-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110100111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111111011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010101000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111111100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the lost byte?
RAID 4
- Does not require synchronised spindles
- Can parallelised many independent request
- Small updates are a problem
 - Requires two reads (old block + parity) and two writes (new block + parity) to update a disk block
 - Parity disk may become a bottleneck

RAID 5
- Like RAID 4, except we distribute the parity on all disks
- Avoids parity disk updates becoming a bottleneck
- Update performance still less than a single disk
- Reconstruction after failure is tricky

Summary
- RAID 0 provides performance improvements, but no availability improvement
- RAID 1 (01, 10) provides performance and availability improvements but expensive to implement (double the number of disks)
- RAID 5 is cheap (single extra disk), but has poor write update performance
- Others (2 & 3) are not used

HP AutoRAID
- Active data used RAID 1
 - Good read and write performance
- Inactive data uses RAID 5
 - Rarely accessed, RAID 5 provides low storage overheads
- Adaptive Storage
 - Empty disk uses entirely RAID 1, as disk fills, data incrementally converted to RAID 5 to increase available capacity
 - Data updates convert data back to RAID 1
- On-line array expansion
 - New disks can be added and system rebalances
 - New Disks can be an arbitrary size
- Active Hot Spare
 - The hot spare is used for mirroring until needed.