
Slide 1

Week 4

COMP3231 Operating Systems

2005/S2

➀ Concurreny Control

- Interprocess Communication (IPC)
- Deadlocks

➁ Memory Management

Slide 2

IPC MECHANISMS

Several different mechanisms can be used for
communication

➀ Shared memory: can be used to exchange information, but
synchronisation issues remain

• threads: run in common memory space
• mmap() system call

➁ File system

• normal files
• pipes (FIFOs)
• sockets

➂ Message passing

• more abstract communication mechanism

A CLOSER LOOK AT mmap AND P IPES 1

Slide 3

A CLOSER LOOK AT mmap AND PIPES

Memory mapped files:

➜ Processes can share files to communicate

➜ mmap maps by default a file into memory

Type of mmap:

void *mmap (void *addr, /* dst address for map */

size_t len, /* length of data to map */

int prot, /* protection */

int flags, /* misc flags */

int fildes, /* file descriptor */

off_t offset) /* offset into file */

By using mmap can be used to simulate “shared memory”.

Slide 4

Example: simplified, no error checking!

int main () {

char *data, *fname = "foo";

int fd;

struct stat sbuf;

fd = open (fname, O_RDONLY);

stat (fname, &sbuf);

data = mmap ((caddr t) 0, let the system choose the dest.

sbuf.st size, will be rounded to pagesize

PROT READ, mem. area will be read only

MAP SHARED, shared: changes visible to all proc

fd, file desc. of previously opened file

0); offset

printf ("Test mmap:...%c", data[0]);}

P IPES 2

Slide 5

PIPES

What is a file descriptor?

➜ fopen, fwrite, etc are implemented in terms of systems calls like
open, write

➜ fopen returns a FILE pointer

➜ open returns a file descriptor (int)

➜ stdin, stdout, stderr are file descriptors

pipe() returns a pair of file descriptors:

Pipe
read() write()

fd[0] fd[1]

Slide 6

Example: (no error checking)

int fd[2];

char buf[20];

pipe (fd);

write (fd[1], "test1", 6);

write (fd[1], "test2", 6);

read (fd[0], buf, 6);

printf ("read %s from pipe \n", buf);

Usage:
➜ pipes can be used in combination with fork

➜ named pipes: mknod

mknod ("testFIFO", S_FIFO | 0644, 0);

ASSIGNMENT 1 3

Slide 7

ASSIGNMENT 1

Implementing (a sort of) Pipes

void pipe_create (pipe_in **p_in, pipe_out **p_out);

void pipe_destroy_in (pipe_in *p);

void pipe_destroy_out (pipe_out *p);

void pipe_read (pipe_out *p, void *dest, int n bytes);

void pipe_write (pipe_in *p, void *src, int n bytes);

Assignment 1:

➜ Will be out in the next few days

➜ Anybody not in a group on Wednesday will automatically have
a partner assigned

Slide 8

SOCKETS

What is a socket?

➜ two-way communication pipe

➜ can be used to communicate in a wide variety of domains
(e.g., internet)

Communication between Processes:

Sockets are also a file in the Unix file system, but offer a
different interface

➜ socket(), bind(), receive() instead of open(), read() and
write() (read() and write() are actually also available on
sockets)

➜ typically used in client/server style programs

SOCKETS 4

Slide 9

Server:

➀ create socket:
s = socket(AF UNIX, SOCK STREAM)

➁ bind socket to local address:
bind (s, <socket name>)

➂ listen for incoming connections:
listen (s, <max size of incomming connection queue>)

➃ main server loop:
➀ accept connection

s2 = accept (s, &<remote socket name>)

➁ receive/send
recv (s2, &<request>)

send (s2, <answer>)

➂ close
close (s2)

Slide 10

Client:

➀ create socket:
s = socket(AF UNIX, SOCK STREAM)

➁ connect:
connect (s, <socket name>)

➂ send/receive:
send (s, <request>)

recv (s, &<answer>)

➃ close:
close (s)

MESSAGE-PASSING IPC 5

Slide 11

MESSAGE-PASSING IPC

Primitives:
➜ Sending a message: send(dest, msg)

➜ Receiving a message: receive(source, &msg)

Different message passing styles:
➜ synchronisation: blocking (synchronous) vs. non-blocking

(asynchronous)
- blocking send, blocking receive
- non-blocking send, blocking receive
- non-blocking send, non-blocking receive

➜ addressing: direct vs. indirect
- identifier of destination process
- message to shared data structure (mailbox, port),

one-to-one, one-to-many, many-to-many
➜ message format: depends on objectives, single computer vs.

distributed system, fixed vs. variable-length messages

Slide 12

IPC Implementation Issues:
➜ Security & Safety

- messages may be lost
- authentication

➜ How are links established?
- automatically
- have to be set up explicitely

➜ What is the capacity of a link?

➜ Is the message format fixed or variable?

➜ Is a link uni-directional or bi-directional?

IPC: D IRECT COMMUNICATION 6

Slide 13

IPC: DIRECT COMMUNICATION

Processes must name each other explicitly

➜ send(pid, &msg)

➜ receive(pid, &msg) — sometimes id of sender cannot be
anticipated

Properties of communication link :

➜ links established automatically

➜ link associated with pair of processes

➜ exactly one link between each pair

➜ link may be uni- or bi-directional

Slide 14

INDIRECT COMMUNICATION

➜ Messages go via mailboxes (aka. ports)

• each port has unique ID
• communication requires sharing of a port

➜ Properties of communication link:

• links established if processes share a port
• link may be associated with many processes
• each pair may share many links
• link (port) may be uni- or bi-directional

➜ Operations: create, delete, send, receive

GENERAL MESSAGE FORMAT 7

Slide 15

GENERAL MESSAGE FORMAT

The format of a message depends on
➜ objectives of message facility

➜ local or distributed

➜ security and safety requirements

Message Type

Destination ID

Source IDHeader

Body

Message Length

Control Information

Message Contents

Slide 16

Message Buffering:

➜ Associate message buffer with link:

• Zero capacity 0 messages

– sender blocks until receive (rendezvous)
• Bounded capacity: finite # messages

– if full sender blocks or fails
• Unbounded capacity: infinite # messages

– sender never blocks

IPC Exception Conditions:

➜ Partner process terminated

➜ Partner uncommunicative (protocol failure)

➜ Message buffer overflow

➜ Message lost

➜ Message scrambled

GENERAL MESSAGE FORMAT 8

