
Slide 1

Software solution: Peterson’s algorithm

P0:

...

flag[0] = true;

turn = 1;

while (flag[1]

&& turn == 1)

/* do nothing */;

<critical section>

flag[0] = false;

...

P1:

...

flag[1] = true;

turn = 0;

while (flag[0]

&& turn == 0)

/* do nothing */;

<critical section>

flag[1] = false;

...

Slide 2

Peterson’s algorithm:
➜ implements mutual exclusion

➜ not widely used:

✘ burns CPU cycles
✘ can be extended to work for n processes, but overhead

increases
✘ cannot be extended to work for an unknown number of

processes

HARDWARE APPROACHES TO MUTUAL EXCLUSION 1

Slide 3

HARDWARE APPROACHES TO MUTUAL EXCLUSION
➜ How can the hardware help us to implement mutual exclusion?

Interrupt disabling:
➜ Useful on uniprocessor systems only
➜ Prevents preemption

...

<disable interrupts/signals>

<critical section>

<enable interrupts/signals>

...

Example: OS/161

spl = splhigh();

<critical section>

splx(spl);

➽ useful within OS, not appropriate for user processes

Slide 4

SPECIAL MACHINE INSTRUCTIONS

➜ Software approaches exploit a property guaranteed by the
hardware:

each memory access is atomic

➜ Problems occured as we sometimes would like a number of
memory accesses to be atomic

➜ Could the hardware provide complex atomic operations that
help us?

SPECIAL MACHINE INSTRUCTIONS 2

Slide 5

Test and set:

atomic bool testset (int i)

{

if (0 == i) {

i = 1;

return true;

} else

return false;

}

Exchange:

atomic void exchange (int register,

int memory)

{

int tmp;

tmp = memory;

memory = register;

register = tmp;

}

Slide 6

Mutual exclusion with test-and-set:

int bolt = 0;

void proc (int i) {

for (;;) {

while (!testset (bolt))

/* do nothing */;

<critical section>

bolt = 0;

<remainder>

}

}

void main () {

bolt = 0;

parbegin (proc (1), proc (2), ..., proc (N));

}

SPECIAL MACHINE INSTRUCTIONS 3

Slide 7

Advantages of special machine instructions:
✔ Applicable to any number of processes on either a single

processor or multiple processors sharing main memory

✔ Simple and therefore easy to verify

Disadvantages of special machine instructions:

✘ Busy-waiting consumes processor time

✘ Starvation is possible when a process leaves a critical section
and more than one process is waiting.

✘ Deadlock

• If a low priority process has the critical region and a higher
priority process requires access, the higher priority process
will obtain the processor to wait for the critical region

Slide 8

SEMAPHORES

➜ Dijkstra (1965) introduced the concept of a semaphore in his
study of cooperating sequential processes

➜ Semaphores are variables that are used to signal the status of
shared resources to processes

How does that work?
➜ If a resource is not available, the corresponding semaphore

blocks any process waiting for the resource
➜ Blocked processes are put into a process queue maintained by

the semaphore (avoids busy waiting!)
➜ When a process releases a resource, it signals this by means of

the semaphore
➜ Signalling resumes a blocked process if there is any
➜ Wait and signal operations cannot be interrupted
➜ Complex coordination can be specified by multiple

semaphores

SEMAPHORES 4

Slide 9

How are semaphores implemented?
➜ A semaphore is a variable s consisting of

• an integer value count and
• a process queue queue

➜ Initially, count is set to a nonnegative value and queue is empty

➜ There are two operations that a process current can apply:

wait(s): Decrement count; if count becomes negative, put
current into queue

signal(s): Increment count; if count is not positive, unblock a
process from queue

Slide 10

typedef struct {

int count;

queue_t queue;

} semaphore;

void wait (semaphore s) {

s.count--;

if (s.count < 0) {

<place current in s.queue>

<block current>

}

}

void signal (semaphore s) {

s.count++;

if (s.count <= 0)

<remove a process P from s.queue>

<place P on ready list>

}

SEMAPHORES 5

Slide 11

There are various flavours of semaphores:

➜ Counting semaphores versus binary semaphores:

• In a counting semaphore, count can take arbitrary integer
values

• In a binary semaphore, count can only be 0 or 1
• Counting semaphores can be implemented in terms of

binary semaphores (how?)

➜ Strong semaphores versus weak semaphores:

• In a strong semaphore, queue adheres to the FIFO policy
• In a weak semaphore, any process may be taken from queue

• Strong semaphores can be implemented in terms of weak
semaphores (how?)

Slide 12

MUTUAL EXCLUSION

Implementation of mutual exclusion with semaphores:

semaphore s;

s.count = 1;

s.queue = empty_queue ();

void proc (int i) {

for (;;) {

wait (s);

<critical section>

signal (s);

<remainder>

}

}

void main () {

parbegin (proc (1), proc (2), ..., proc (n));}

MUTUAL EXCLUSION 6

Slide 13

Mutex:

➜ A semaphore that allows only one process in a critical section is
often called a mutex

➜ There exist various flavours, such as, read-write mutexes and
read-write-update mutexes

➜ Given exchange or test-and-set are available, easy to
implement in user-level:
➀ test-and-set lock
➁ if succesful, return
➂ if not, yield current thread, repeat

Slide 14

SEMAPHORES IN OS/161
➜ defined in src/kern/thread/synch.cand

src/kern/include/synch.h

➜ operations are called:

- P (proberen: try), instead of wait
- V (verhogen: increase), instead of signal

➜ definition of data type semaphore

struct semaphore {

char * name;

volatile int count;

};

struct semaphore* sem_create (const char *name, int initial_count);

void P (struct semaphore *);

void V (struct semaphore *);

void sem_destroy(struct semaphore *);

➜ where is the queue??

SEMAPHORES IN OS/161 7

Slide 15

void P(struct semaphore *sem) {

int spl;

assert(sem != NULL);

/* May not block in an interrupt handler.

* For robustness, always check, even if we can actually

* complete the P without blocking. */

assert(in_interrupt==0);

spl = splhigh();

while (sem->count==0) {

thread_sleep(sem); }

assert(sem->count>0);

sem->count--;

splx(spl);

}

Slide 16

void V(struct semaphore *sem) {

int spl;

assert(sem != NULL);

spl = splhigh();

sem->count++;

assert(sem->count>0);

thread_wakeup(sem);

splx(spl);

}

MUTEXES IN OS/161 8

Slide 17

MUTEXES IN OS/161

struct lock {

char * name;

struct thread *volatile holder;

};

struct lock *lock_create (const char *name);

void lock_acquire (struct lock *);

void lock_release (struct lock *);

int lock_do_i_hold (struct lock *);

void lock_destroy (struct lock *);

Slide 18

PRODUCER/CONSUMER PROBLEM

➜ One or more producers are generating data and placing these
in a buffer

➜ A single consumer is taking items out of the buffer one at time

➜ Only one producer or consumer may access the buffer at any
one time

b[1] b[2]

out

b[3] b[4] b[5] ¥ ¥ ¥ ¥

in

Note: shaded area indicates portion of buffer that is occupied

PRODUCER/CONSUMER PROBLEM 9

Slide 19

int in, out;

elem_t b[];

producer:

for (;;) {

<produce item v>

b[in] = v;

in++;

}

consumer:

for (;;) {

while (in <= out)

/* do nothing */;

w = b[out];

out++;

<consume item w>

}

Slide 20

semaphore n = init_sem (0); /* number of items in buffer */

semaphore s = init_sem (1); /* access to critical section */

void producer () {

for (;;) {

v = produce ();

wait (s);

append (v);

signal (s); signal (n);

} }

void consumer () {

for (;;) {

wait (n); wait (s);

w = take ();

signal (s);

consume (w);

} }

PRODUCER WITH C IRCULAR BUFFER 10

Slide 21

PRODUCER WITH CIRCULAR BUFFER

b[1] b[2]

out

(a)

b[3] b[4] b[5] b[n]¥ ¥ ¥ ¥

in

b[1] b[2]

out

(b)

b[3] b[4] ¥ ¥ ¥ ¥

in

b[5] b[n]

b[1] b[2]

out

(a)

b[3] b[4] b[5] b[n]¥ ¥ ¥ ¥

in

b[1] b[2]

out

(b)

b[3] b[4] ¥ ¥ ¥ ¥

in

b[5] b[n]

Slide 22

int in, out;

elem_t b[];

Producer:
for (;;) {

<produce item v>

while ((in + 1) % n == out)

/* do nothing */;

b[in] = v;

in = (in + 1) % n;

}

Consumer:
for (;;) {

while (in == out)

/* do nothing */;

w = b[out];

out = (out + 1) % n;

<consume item w>

}

MONITORS 11

Slide 23

MONITORS

➜ A monitor is a software module implementing mutual exclusion

➜ Monitors are easier to program than semaphores

➜ Natively supported by a number of programming languages:
Concurrent Pascal, Modula-[23] & Java

➜ Chief characteristics:

• Local data variables are accessible only by the monitor (not
externally)

• Process enters monitor by invoking one of its procedures
• Only one process may be executing in the monitor at a time

➜ Main problem: provides less control; coarse grain

Slide 24

Synchronisation in a monitor:

cwait (c): Suspend current on condition c (opens monitor to other
processes)

csignal (c): Resume execution of a processes suspended on
condition c (ignored if no such process)

MONITORS 12

Slide 25

Structure of a monitor:

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

urgent queue

csignal

condition cn

cwait(cn)

¥

¥

¥

local data

condition variables

Procedure 1

Procedure k

initialization code

¥
¥
¥

monitor waiting area

MONITOR

Slide 26

Producer/consumer using a monitor:

char buffer[N];

int nextin = 0, nextout = 0, count = 0;

condition_t not_full, not_empty;

void append (char c) {

if (N == count)

cwait (not_full);

buffer[nextin] = c;

nextin = (nextin + 1) % N;

count++;

csignal (not_empty);

}

void take (char c) {

if (0 == count)

cwait (not_empty);

x = buffer[nextout];

nextout = (nextout + 1) % N;

count--;

csignal (not_full);

}

MONITORS IN JAVA 13

Slide 27

MONITORS IN JAVA

Resources or critical sections can be protected using the
synchronized keyword:

synchronized (<expression>) {

<statements>

}

➜ <expression> must evaluate to an object or array

➜ thread only proceeds after obtaining the lock of the object

➜ synchronized can be applied to a method: entire method is a
critical section

MONITORS IN JAVA 14

