
Slide 1

Threads and Processes — Part 1

COMP3231/COMP9201 Operating Systems

2005/S2

Slide 2

MAJOR REQUIREMENTS OF AN OS
➜ Interleave the execution of several programs

• to maximize utilization of CPU and other resources while
providing reasonable response time

• to support multiple user working interactively
• for convenience (e.g., compile program while editing other

file)

➜ Allocate resources required for execution of programs

➜ Support communication between executing programs

MAJOR REQUIREMENTS OF AN OS 1

Slide 3

Previously, we listed several definitions of the term Process:

✱ A program in execution

✱ An instance of a program running on a computer

✱ A unit of execution characterised by

• a single, sequential thread of execution
• a current state
• an associated set of system resources (memory, devices,

files)

✱ Unit of resource ownership

Many applications consist of more than one thread of
execution which share resources
=⇒ distinction between thread and process

Slide 4

PROCESSES AND THREADS

Process:
➜ “Owner” of resources allocated for individual program

execution

➜ Can encompass more than one thread of execution

- Outlook, Evolution: different threads for calendar, mail
components etc

Thread:

➜ Unit of execution

➜ Belongs to a process

➜ Can be traced

• list the sequence of instructions that execute

EXAMPLE: WEB SERVER 2

Slide 5

EXAMPLE: WEB SERVER

Dispatcher thread

Worker thread

Web page cache

Kernel

Network

connection

Web server process

User

space

Kernel

space

Slide 6

SINGLE-THREADED WEB SERVER IMPLEMENTATIONS

➜ Sequential processing of requests:

- web server gets request, processes it, accepts next request
- CPU idle while data retrieved from disk
- Poor performance

➜ Finite-State Machine:

- use non-blocking read
- program records state of current request
- gets next event
- on reply (signal) from disk, fetches and processes data
- good performance, complicated to implement and debug

➜ Processes instead of Threads

• Communicate by sharing data, messages

ADVANTAGES OF THREADS 3

Slide 7

ADVANTAGES OF THREADS

➀ Program does not stall when one of its operations blocks

• save contents of a page to disk while downloading other
page

➁ Overhead for thread creation and destruction is less than for
processes (depending on implementation, can be about a
factor of 100 faster)

➂ Simplification of programming model

➃ Performace gains on machines with multiple CPU’s

Slide 8

THREADS AND PROCESSES

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

THREADS AND PROCESSES 4

Slide 9

THREADS AND PROCESSES

➜ Single process, single thread

• MS-DOS, old MacOS

➜ Single process, multiple threads

• OS/161 as distributed

➜ Multiple processes, single thread

• traditional Unix

➜ Multiple processes, multiple threads

• modern Unices (Solaris, Linux), Windows-2000

Note: Literature (incl. textbooks) often do not cleanly
distinguish those concepts (for historical reasons)!

Slide 10

Logical traces of threads:

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

Thread A

8000
8001
8002
8003

Thread B

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

Thread C

5000: Starting address of code for Thread A

8000: Starting address of code for Thread B

12000:Starting address of code for Thread C

THREADS AND PROCESSES 5

Slide 11

Logical traces of threads:

Time out

I/O request

Time out

1 5000
2 5001
3 5002
4 5003
5 5004
6 5005

7 100
8 101
9 102
10 103
11 104
12 105
13 8000
14 8001
15 8002
16 8003
17 8004

18 100
19 101
20 102
21 103
22 104
23 105
24 12000
25 12001
26 12002
27 12003
28 12004
29 12005

30 100
31 101
32 102
33 103
34 104
35 105

Slide 12

THREAD STATES

Three states (may be more, depending on implementation):

➀ Running: currently active, using CPU

➁ Ready: runnable, waiting to be scheduled

➂ Blocked: waiting for an event to occur (I/O, alarm)

1 23

4Blocked

Running

Ready

1. Process blocks for input

2. Scheduler picks another process

3. Scheduler picks this process

4. Input becomes available

REASONS FOR LEAVING THE RUNNING STATE 6

Slide 13

REASONS FOR LEAVING THE RUNNING STATE

➜ Thread terminates

• exit() system call (voluntary termination)
• killed by another thread
• killed by OS (due to exception)

➜ Thread cannot continue execution

• blocked waiting for event (I/O)

➜ OS decides to give someone else a chance

• requires the OS to be invoked

– via system call or exception
– via interrupt

➜ Thread voluntarily gives another thread a chance

• yield() system call

Slide 14

NON-RUNNING THREADS

➜ Many separate reasons for a thread not running

• another thread is running on the CPU
• thread is blocked (waiting for an event)
• thread is in initialisation phase (during creation)
• thread is being cleaned up (during exit, kill)

➜ Dispatching ought to be fast

• Shouldn’t search through all threads to find runnable one
• Achieved by distinguishing more thread states

SEPARATE QUEUES 7

Slide 15

SEPARATE QUEUES

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

¥
¥
¥

• Simplifies scheduler’s job

• How about wakeup of blocked thread when event
occurs?

Slide 16

Multiple wait queues:

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

¥
¥
¥

COOPERATIVE VS. PREEMPTIVE MULTITHREADING 8

Slide 17

COOPERATIVE VS. PREEMPTIVE MULTITHREADING

Cooperative multithreading:

➜ Threads determine exact order of execution

➜ Use yield() to switch between threads

➜ Problems if thread doesn’t yield (e.g., buggy)

Preemptive multitasking:

➜ OS preempts thread’s execution after some time

➜ Only guaranteed to work if H/W provides timer interrupt

➜ Implies unpredictable execution sequence!

• thread switch can happen between any two instructions
• threads may require concurrency control

Slide 18

USER-LEVEL OPERATIONS ON THREADS IN OS/161
➜ Start a new thread in OS/161

thread_fork(const char * name,

void * data1,

unsigned long data2,

void (* func)(void *, unsigned long),

struct thread **ret);

➜ Terminate thread

• thread exit()

➜ Yield CPU

• thread yield()

➜ Synchronisation:

• thread sleep(const void *addr)

• thread wakeup(const void *addr)

PROCESSES AND THREADS 9

Slide 19

PROCESSES AND THREADS

The OS stores information about Threads and Processes in
Thread Control Block (TCB) and Process Controll Block (PCB)

➜ PCBs stored in process table

➜ TCBs stored in thread table

Process Thread
Address Space ✔
Registers ✔
Program Counter ✔
Stack ✔
Open Files ✔
State ✔
Signals and Handlers ✔
Accounting Info ✔ ✔
Global Variables

Slide 20

THREAD SWITCH

Single-Threaded
Process Model

Process
Control
Block

User
Address

Space

User
Stack

Kernel
Stack

Multithreaded
Process Model

Process
Control
Block

User
Address

Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Thread
Control
Block

Thread
Control
Block

Note: Meaning of PCB is different in OS/161!

THREAD CREATION (SPAWN) 10

Slide 21

THREAD CREATION (SPAWN)
➀ Assign unique thread identifier (thread ID)

➁ Allocate and initialise a TCB

➂ Allocate a stack and set pointer to it in TCB

➃ Set up links to appropriate lists/queues

• lists of threads
• lists of threads belonging to process
• ready queue

➄ Update appropriate process info

• e.g., accounting (charge for thread’s memory)

Correspondingly for thread termination...

Slide 22

THREAD SWITCH

• can happen after the thread yields the CPU, or

• any time the OS is invoked:

– on a system call

∗ mandatory if system call blocks or on exit()

– on an exception

∗ mandatory if offender is killed

– on an interrupt

∗ triggering a dispatch is the main purpose of the
timer interrupt

➽ Thread switch can happen between any two
instructions!

CONTEXT SWITCH 11

Slide 23

CONTEXT SWITCH

• Thread switch must be transparent for threads:

– When dispatched again, thread should not notice
that something else was running in the meantime
(except for elapsed time, possibly changes to global
data)

➽ OS must save all state that affects the thread

- This state is called the thread context

- Switching between threads consequently results in a
context switch

- Hardware support is necessary in case of exception or
interrupt

Slide 24

THREAD SWITCH

➀ Save state of executing thread (to running TCB)

• save registers, pc
• perform other updates to TCB of running thread

– e.g., update total CPU time used
• set state to ready, blocked

• Link TCB to wait queue if appropriate

➁ Select another thread for execution (scheduling)

➂ set running TCB pointer to new thread

➃ Activate newly scheduled thread (dispatching)

• update TCB of thread to be scheduled
• Restore context of the selected thread

➄ Return to user mode (e.g. rfe instruction)

THREAD SWITCH IN OS/161 12

Slide 25

THREAD SWITCH IN OS/161

What happpens in OS/161 if a thread uses up all its time?

Main steps:

➀ timer interrupt

➁ hardware saves pc, exception cause to co-processor registers

➂ general exception handler calls timer interrupt handler

➃ timer interrupt handler causes new thread to be activated

Slide 26

PROCESSOR STATE EXAMPLE: MIPS R3000
➜ 32 general purpose (GP) registers, plus hi, lo

➜ PC

➜ remainder of status in co-processor 0
(system co-processor, CP0) registers

• STATUS register
• exception CAUSE register
• EPC: pre-exception PC value
• MMU registers, etc.

➜ accessed via special instructions:

• mfc0: copy CP0 register to GP register
• mtc0: copy GP register to CP0 register

PROCESSOR STATE EXAMPLE: MIPS R3000 13

Slide 27

MIPS-32 general purpose registers:

register menmonic convention

r0 zero always zero

r1 AT assembler temporary

r2–r3 v0–v1 integer function results

r4–r7 a0–a3 first four integer function args

r8–r15 t0–t7 temporary (not preserved)

r16–r23 s0–s7 preserved across calls

r24–r25 t8–t9 temporary (not preserved)

r26–r27 k0–k1 kernel reserved

r28 gp global (data segment) pointer

r29 sp stack pointer

r30 s8/fp frame pointer (preserved)

r31 ra return address

Slide 28

MIPS assembly instructions:

➜ General format:
operator destination, source1[, source2]

➜ Store word (sw): source, destination

➜ destination is always a register

➜ source is a register or an immediate value

➜ for load and store instructions:

• destination is the register to be loaded/stored
• source1 contains the memory address (no source2)

➜ register-relative address mode with optional constant offset.
Example : lw a0 4(a1)

• loads a0
• from address ((contents of a1) + 4)

PROCESSOR STATE EXAMPLE: MIPS R3000 14

Slide 29 user stack

magic numbers

curkstack

sp

k0
k1

Slide 30

MIPS TIMER INTERRUPT

• MIPS processor does the following:

CP0.EPC ← PC

CP0.CAUSE.ExcCode ← 0 ; interrupt

CP0.CAUSE.IP ← 0x01 ; clock interrupt

PC ← 0x8000 0080 ; gen excpt handler

CP0.STATUS.EXL ← 1

• Setting CP0.STATUS.EXL sets exception mode:

– disables interrupts

– turns on kernel mode

MIPS T IMER INTERRUPT 15

Slide 31

exception:

move k1, sp /* Save previous stack pointer in k1 */

mfc0 k0, c0_status /* Get status register */

andi k0, k0, CST_KUp /* Check the we-were-in-user-mode bit */

beq k0, $0, 1f /* If clear, from kernel, already have stack */

/* Coming from user mode - load kernel stack into sp */

la k0, curkstack /* get address of "curkstack" */

lw sp, 0(k0) /* get its value */

1:

mfc0 k0, c0_cause /* Now, load the exception cause. */

j common_exception /* Skip to common code */

nop

Slide 32 user stack

magic numbers

curkstack

sp

k0
k1

MIPS T IMER INTERRUPT 16

Slide 33

common_exception:

addi sp, sp, -164 /* allocate space for trap frame */

/* and minimal argument block */

/* Save context information */

sw s8, 156(sp) /* save s8 */

sw gp, 148(sp) /* save gp */

sw k1, 152(sp) /* real saved sp */

mfc0 k1, c0_epc /* Copr.0 reg 13 == PC for exception */

sw k1, 160(sp) /* real saved PC */

sw t9, 136(sp)

.....

sw AT, 40(sp)

sw ra, 36(sp)

Slide 34

/* Prepare to call mips_trap(struct trapframe *) */

addiu a0, sp, 16 /* set argument */

jal mips_trap /* call it */

nop

exception_return:

/* 16(sp) no need to restore tf_vaddr */

lw t0, 20(sp) /* load status register value into t0 */

.....

MIPS T IMER INTERRUPT 17

Slide 35 user stack

context
(trapframe)
activation record

ra:exception return

magic numbers

curkstack

a0
sp

k0
k1

Slide 36

void mips_trap(struct trapframe *tf)

{

...

/*

* Call the interrupt handler.

* Note that interrupts are off here so it’s ok to access

* the global lamebus structure.

*/

lamebus->ls_irqfuncs[slot](lamebus->ls_devdata[slot]);

➜ interrupt handler of timer interrupt: ltimer irq

➜ calls hardclock, which in turn calls thread yield

MIPS T IMER INTERRUPT 18

Slide 37

thread_yield(void)

{

int spl = splhigh();

...

mi_switch(S_READY);

splx(spl);

}

Slide 38

static void mi_switch(threadstate_t nextstate)

{

.....

next = scheduler();

/* update curthread */

curthread = next;

/*

* Call the machine-dependent code that actually does the

* context switch.

*/

md_switch(&cur->t_pcb, &next->t_pcb);

MIPS T IMER INTERRUPT 19

Slide 39

struct pcb {

u_int32_t pcb_switchstack; // stack saved during context switch

.......

};

struct switchframe {

u_int32_t sf_s0;

u_int32_t sf_s1;

.....

u_int32_t sf_s8;

u_int32_t sf_gp;

u_int32_t sf_ra;

};

Slide 40 user stack

context
(trapframe)
activation record

ra:exception return
.
.
.

magic numbers

sp
a0
a1

sf

new thread’s pcb

sf

old thread’s pcb

MIPS T IMER INTERRUPT 20

Slide 41

/*

* a0 contains a pointer to the old thread’s struct pcb.

* a1 contains a pointer to the new thread’s struct pcb.

*

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

/* Save the registers */

sw ra, 40(sp)

sw gp, 36(sp)

.....

sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */

sw sp, 0(a0)

Slide 42 user stack

context
(trapframe)
activation record

ra:exception return
.
.
.

switch frame

magic numbers

user stack

context
(trapframe)
activation record

ra:exception return
.
.
.

switch frame

magic numbers

sp

sf

new thread’s pcb

sf

old thread’s pcb

MIPS T IMER INTERRUPT 21

Slide 43

/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)

/* Now, restore the registers */

lw s0, 0(sp)

......

lw gp, 36(sp)

lw ra, 40(sp)

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */

.end mips_switch

Slide 44 user stack

context
(trapframe)
activation record

ra:exception return
.
.
.

magic numbers

sp

MIPS T IMER INTERRUPT 22

Slide 45

exception_return:

lw t0, 20(sp) /* load status register value into t0 */

/* restore special registers */

lw t1, 28(sp)

.....

/* load the general registers */

lw ra, 36(sp)

.....

lw k0, 160(sp) /* fetch exception return PC into k0 */

lw sp, 152(sp) /* fetch saved sp (must be last) */

/* done */

jr k0 /* jump back */

rfe /* in delay slot */

Slide 46 user stack

magic numbers

sp

MIPS T IMER INTERRUPT 23

