Threads and Processes — Part 1
Slide 1 COMP3231/COMP9201 Operating Systems

2005/s2

MAJOR REQUIREMENTS OF AN OS
O Inferleave the execution of several programs
o fo maximize utilization of CPU and other resources while
providing reasonable response time
Slide 2 o to support multiple user working interactively
e for convenience (e.g., compile program while editing other
file)
O Allocate resources required for execution of programs
O Support communication between executing programs

MAJOR REQUIREMENTS OF AN OS

Previously, we listed several definitions of the term Process:
O A program in execution
O Aninstance of a program running on a computer
[0 A unit of execution characterised by
e asingle, sequential thread of execution
e a current state

e an associated set of system resources (memory, devices,
files)

Slide 3

O Unit of resource ownership

Many applications consist of more than one thread of
execution which share resources
— distinction between thread and process

PROCESSES AND THREADS

Process:

O “Owner” of resources allocated for individual program
execution

O Can encompass more than one thread of execution

- Outlook, Evolution: different threads for calendar, mail

Slide 4 components efc

Thread:
O Unit of execution
0 Belongs to a process
0 Can be traced

e list the sequence of instructions that execute

EXAMPLE: WEB SERVER

Slide 5

Slide 6

EXAMPLE: WEB SERVER

Web server process

|
!

Dispatcher thread

Worker thread User
space

Web page cache
Kernel
Kernel space

Network
connection

O Sequential processing of requests:

SINGLE-THREADED WEB SERVER IMPLEMENTATIONS

- web server gets request, processes it, accepts next request

CPU idle while data retrieved from disk
Poor performance

O Finite-State Machine:

use non-blocking read
program records state of current request
gets next event

on reply (signal) from disk, fetches and processes data
good performance, complicated to implement and debug

O Processes instead of Threads

o Communicate by sharing data, messages

ADVANTAGES OF THREADS

ADVANTAGES OF THREADS

O Program does not stall when one of its operations blocks

e save contfents of a page to disk while downloading other

page

Slide 7 0O Overhead for thread creation and destruction is less than for
processes (depending on implementation, can be about a

factor of 100 faster)

O Simplification of programming model
0 Performace gains on machines with multiple CPU’s

THREADS AND PROCESSES

5

one process

Slide 8 onethread

multiple processes
onethread per process

DR L L L

08!

one process
multiple threads

multiple processes
multiple threads per process

s =instruction trace

THREADS AND PROCESSES

Logical traces of threads:
THREADS AND PROCESSES

i i 1 5000 18 100
O Single process, single thread 2 5007 19 107
_ 3 5002 20 102
e MS-DOS, old MacOS 7 3003 5 103
0 Single process, multiple threads 5 5004 22 104
6 5005 23 105
e OS/161 as distributed Time out 24 12000
7 100 25 12001
i O Multiple processes, single thread i 8 101 26 12002
Slide 9 ! . Slide 11 5 102 5 12008
o fraditional Unix 10 103 28 12004
)) 11 104 29 12005
O Multiple processes, multiple threads 12 105 — Time out
. . . 13 8000 30 100
e modern Unices (Solaris, Linux), Windows-2000 14 8001 31 101
15 8002 32 102
Note: Literature (incl. textbooks) often do not cleanly }? 2882 gi }82
distinguish those concepts (for historical reasons)! — |/Orequest 35 105

Logical traces of threads:
THREAD STATES

Three states (may be more, depending on implementation):

5000 8000 12000)
5001 8001 12001 5000: Starting address of code for Thread A O Running: currently active, using CPU
2885 288§ }%88% 8000: Starting address of code for Thread B O Ready: runnable, waiting to be scheduled
Slide 10 gggg 138% 12000:Starting address of code for Thread C Slide 12 O Blocked: waiting for an event to occur (I/O, alarm)
5006 12006
5007 12007
5008 12008 1. Process blocks for input
5009 12009 2. Scheduler picks another process
28}(]3 Bg}? 3. Scheduler picks this process

4. Input becomes available

Thread A Thread B Thread C

THREADS AND PROCESSES 5 REASONS FOR LEAVING THE RUNNING STATE

Slide 13

Slide 14

REASONS FOR LEAVING THE RUNNING STATE

O Thread terminates
e exit() system call (voluntary termination)
e killed by another thread
e killed by OS (due to exception)
O Thread cannot continue execution
e blocked waiting for event (1/O)
0 OS decides to give someone else a chance
e requires the OS fo be invoked
- via system call or exception
- via interrupt
O Thread voluntarily gives another thread a chance

e yield() system call

NON-RUNNING THREADS

O Many separate reasons for a thread not running
e another thread is running on the CPU
o thread is blocked (waiting for an event)
e thread is in initialisation phase (during creation)
e thread is being cleaned up (during exit, kill)
0 Dispatching ought to be fast

e Shouldn’t search through all threads to find runnable one

e Achieved by distinguishing more thread states

SEPARATE QUEUES

SEPARATE QUEUES

Ready Queue

Release

Y

Admit Dispatch

Timeout

i

Slide 15 Blocked Queue

S T [~—"
Occurs

o Simplifies scheduler’s job

e How about wakeup of blocked thread when event

occurs?

Multiple wait queues:

Ready Queue Release
Admit Dispatch T
e T T T2
A
» Timeout
Event 1 Queue Event 1 Wait
. Event 1 ven al
ccurs
Event 2 Queue
Event 2 _ Event 2 Wait
Occurs -
¥
¥
¥
Event n Queue .
Event n > Event n Wait
Occurs -

COOPERATIVE VS. PREEMPTIVE MULTITHREADING

COOPERATIVE VS. PREEMPTIVE MULTITHREADING

Cooperative multithreading:

O Threads determine exact order of execution

0 Use yield() to switch between threads

0 Problems if thread doesn’t yield (e.g., buggy)

Slide 17 preemptive multitasking:

0 OS preempts thread’s execution after some time

O Only guaranteed to work if H/W provides fimer interrupt

O Implies unpredictable execution sequencel
e thread switch can happen between any two instructions
e threads may require concurrency control

USER-LEVEL OPERATIONS ON THREADS IN OS/161

0 Start a new thread in OS/161

thread_fork(const char = nane,
voi d * dat al,
unsi gned | ong dat a2,
voi d (* func)(void =*,

struct thread *+*ret);

Slide 18
O Terminate thread

e thread_exit()
0 Yield CPU

e thread.yi el d()
O Synchronisation:

e thread_sl eep(const void *addr)
e thread wakeup(const void *addr)

unsi gned | ong),

PROCESSES AND THREADS

Slide 19

Slide 20

PROCESSES AND THREADS

The OS stores information about Threads and Processes in

Thread Control Block (TCB) and Process Controll Block (PCB)
0 PCBs stored in process table

TCBs stored in thread table

| Process | Thread |
Address Space 0
Registers O
Program Counter O
Stack O
Open Files O
State 0
Signals and Handlers | [
Accounting Info O O
Global Variables
THREAD SWITCH
Single-Threaded Multithreaded
Process M odel Process M odel
Thread | Thread ~_ Thread
Thread |} 1f Thread |} 1f Thread |}
Process User Contral |1 : Control |1 : Control |1
Control Stack Block |1 1_Block |1 1 Block |!
Block Ly Ly I
NI .
Process User |1 user |1 user i
User Kernel Stack |' 1| Stack ' i| Stack [i
Control ! 0 1
Address Stack Block ! ! i
Space i i i
1 1 1
User Kernel |1 E Kernel |1 E Kernd [i
Address Stack |} 1| Stack | I Stack |}
Space 70 . i

Note: Meaning of PCB is different in OS/161!

THREAD CREATION (SPAWN)

CONTEXT SWITCH

THREAD CREATION (SPAWN))
e Thread switch must be fransparent for threads:
O Assign unique thread identifier (thread ID)

0 Allocate and initialise a TCB
O Allocate astack and set pointer to it in TCB

- When dispatched again, thread should not notice
that something else was running in the meantime

except for elapsed time, possibly changes to global
O Set up links to appropriate lists/queues (P P P Y 9 9

data)
Slide 21 e lists of threads Slide 23
o lists of threads belonging to process 0 OS must save all state that affects the thread
e ready queue - This state is called the thread context

0 Update appropriate process info - Switching between threads consequently results in a

e e.g., accounting (charge for thread’s memory) context switch
Correspondingly for thread termination... - Hardware support is necessary in case of exception or
interrupt

THREAD SWITCH THREAD SWITCH

e can happen after the thread yields the CPU, or 0 Save state of executing thread (to running TCB)
o any time the OS is invoked: * save registers, pc
e perform other updates to TCB of running thread

- e.g., update total CPU time used
e set state to ready, blocked

- on asystem call
x mandatory if system call blocks or on exi t ()

Slide 22 - on an exception Slide 24 o Link TCB to wait queue if appropriate
x mandatory if offender is killed 0 Select another thread for execution (scheduling)
- on an interrupt O set running TCB pointer to new thread

+ triggering a dispatch is the main purpose of the O Activate newly scheduled thread (dispatching)

timer inferrupt e update TCB of thread to be scheduled

Restore context of the selected thread
[0 Thread switch can happen between any two *

. . O Return fo user mode (e.g. r f e instruction)
instructions!

CONTEXT SWITCH 11 THREAD SWITCH IN OS/161 12

THREAD SWITCH IN OS/161

What happpens in OS/161 if a thread uses up all its fime?

. Main steps:

Slide 25 O fimer interrupt
O hardware saves pc, exception cause to co-processor registers
O general exception handler calls timer interrupt handler
O fimer interrupt handler causes new thread to be activated

PROCESSOR STATE EXAMPLE: MIPS R3000
0 32 general purpose (GP) registers, plus hi , 1 o
0O PC
O remainder of status in co-processor 0
(system co-processor, CPO) registers
slide 26 e STATUS register

e exception CAUSE register
e EPC: pre-exception PC value
o MMU registers, etc.
0 accessed via special instructions:
e nf c0: copy CPO register to GP register
e nt c0: copy GP register to CPO register

PROCESSOR STATE EXAMPLE: MIPS R3000

Slide 27

Slide 28

MIPS-32 general purpose registers:

register menmonic convention

ro zero always zero
ril AT assembler temporary
r2-r3 vO-v1 integer function results
ra-r7 a0-a3 first four integer function args
r8-r15 to-t7 temporary (not preserved)
r16-r23 s0-s7 preserved across calls

r24-r 25 t8-t9 temporary (not preserved)
r26-r 27 k0O-k1 kernel reserved

r28 ap global (data segment) pointer
r29 sp stack pointer

r30 s8/fp frame pointer (preserved)

r31 ra return address

MIPS assembly instructions:

O

I |

General format:
operator destination, sourcel(, source?2)
Store word (sw): source, destination
destination is always a register
source is a register or an immediate value
for load and store instructions:
e destination is the register to be loaded/stored
e sourcel contains the memory address (no source?)
register-relative address mode with optional constant offset.
Example : w a0 4(al)
e loads a0
o from address ((contents of al) + 4)

13 PROCESSOR STATE EXAMPLE: MIPS R3000 14

T~ curkstack

o Sp
Slide 29 user stack k0
k1
magic numbers
MIPS TIMER INTERRUPT
e MIPS processor does the following:
CPO.EPC — PC
CPO.CAUSE.ExcCode « 0 ; interrupt
i CP0.CAUSE.IP — 0x01 ; Clock interrupt
Slide 30
PC «— 0x80000080 ; gen excpt handler
CPO.STATUS.EXL — 1

o Sefting CPO.STATUS.EXL setfs exception mode:
- disables interrupts
- turns on kernel mode

MIPS TIMER INTERRUPT

excepti on:

[+ Save previous stack pointer in k1 =/
[+ Get status register x/

nmove k1, sp
nfcO kO, cO_status

andi kO, kO, CST_KuUp /* Check the we-were-in-user-node bit =*/
beq kO, $0, 1f [+ 1f clear, fromkernel, already have stack =*/
/+* Com ng fromuser node - |oad kernel stack into sp */
Slide 31 la kO, curkstack /+* get address of "curkstack" =*/
I'w sp, 0(kO) [+ get its value */
nfcO kO, cO_cause /* Now, |oad the exception cause. =*/
j common_exception [+ Skip to common code */
nop
l o curkstack
N 5o
Slide 32 user stack kO
°_ kil
magic numbers
15 MIPS TIMER INTERRUPT 16

common_except i on:

coriE T~ curkstack
addi sp, sp, -164 /+ allocate space for trap frame »/ (trapframe)
[+ and miniml argument bl ock */ T
vc:excepli onreturn
/+ Save context information */
sw s8, 156(sp) [+ save s8 x/ \l/
sw gp, 148(sp) [+ save gp */ [° a0
o sp
sw k1, 152(s /* real saved sp */)

Slide 33 (sp) . Slide 35 user stack k0
nfcO k1, cO_epc /* Copr.0 reg 13 == PC for exception */ K
sw k1, 160(sp) /+ real saved PC x/
sw t9, 136(sp) l’
sw AT, 40(sp)
sw ra, 36(sp) magic numbers

void mps_trap(struct trapfrane =tf)

{
/+ Prepare to call mips_trap(struct trapfranme *) */
addiu a0, sp, 16 [+ set argunent */ /%
jal mps_trap [+ call it =/ * Call the interrupt handler.
nop * Note that interrupts are off here so it’'s ok to access
Slide 34 exception_return: Slide 36 * the global |anebus structure.

*l
/= 16(sp) no need to restore tf_vaddr =/ | amebus- >l s_irgfuncs[sl ot] (| amebus->l s_devdata[sl ot]);
Iw t0, 20(sp) /+ load status register value into t0 =/

O inferrupt handler of timer interrupt: | timer .irq
0 calls har dcl ock, which in furn calls t hr ead_yi el d

MIPS TIMER INTERRUPT 17 MIPS TIMER INTERRUPT 18

struct pcb {
u_int32_t pcb_swtchstack; // stack saved during context switch

thread_yi el d(voi d)

{
int I = spl high();
sk spihigh() struct switchframe {
Slide 37 mi_swit ch(S_READY) ; Slide 39 u_! nt32_t sf_soO;
u_int32_t sf_si;

spl x(spl);

} u_int32_t sf_s8§;
u_int32_t sf_gp;
u_int32_t sf_ra;

b
old thread'’s pcb
static void m _switch(threadstate_t nextstate) ey
(trapframe)

{ activation record new thread’s pcb
..... rc:except‘lometum
next = schedul er(); : <

[_al
/* update curthread */ - 5
. curthread = next; . - =
Slide 38 Slide 40 VEET etk SP
| *
* Call the machi ne-dependent code that actually does the
* context switch.
*/
md_swi tch(&cur->t_pch, &next->t_pch);
magic numbers

MIPS TIMER INTERRUPT 19 MIPS TIMER INTERRUPT 20

| *

* a0 contains a pointer to the old thread s struct
* al contains a pointer to the new thread s struct

*

*/

/+ Allocate stack space for saving 11 registers. 11*4 = 44 «/

addi sp, sp, -44

Slide 41 /* Save the registers x/
sw ra, 40(sp)
sw gp, 36(sp)
sw sO, O(sp)
/+ Store the old stack pointer in the old pcbh */
sw sp, 0(a0)
old thread’s pcb
context o context
(trapframe) (trapframe)
activation record w thread’s pcb activation record
ra:exception_return ra:exception_return
: sf ‘
switch frame switch frame
Slide 42 user stack 5P user stack

magic numbers

magic numbers

MIPS TIMER INTERRUPT

pch.
pchb.

21

/* CGet the new stack pointer
lw sp, 0(al)

/+ Now, restore the registers */
Iw s0O, O(sp)

Slide 43 Iw ra, 40(sp)

/* and return.

j ra
addi sp, sp,

.end mps_switch

/+ in delay slot

fromthe new pcb */

*/

Slide 44

4 sp

context
(trapframe)

activation record
ra:exception_return

user stack

magic numbers

MIPS TIMER INTERRUPT

22

exception_return:
Iw t0, 20(sp) /+ load status register value into t0 =/

/* restore special registers */
lwtl, 28(sp)

/* load the general registers */

) Ilwra, 36(s
slide 45 (sP)
I'w kO, 160(sp) [+ fetch exception return PCinto kO */
Iw sp, 152(sp) |+ fetch saved sp (must be last) =*/
[+ done */
jr ko [+ junp back */
rfe /+ in delay slot */
Slide 46 AN o user stack

magic numbers

MIPS TIMER INTERRUPT 23

