RAID

Chapter 5

RAID

• Redundant Array of Inexpensive Disks
 – Industry tends to use “Independent Disks” 😊
• Idea:
 – Use multiple disks to parallelise Disk I/O for better performance
 – Use multiple redundant disks for better availability
• Alternative to a Single Large Expensive Disk (SLED)

RAID Level

• Various configurations of multiple disks are termed a RAID Level
 – Note the Level, does not necessarily imply that one configuration is above or below another.
• We will look at RAID Levels 0 to 5
• All instances of RAID present a single logical disk to the file system.

RAID 0

• Logical Disk divided into strips
 – Strip = a fixed number of sectors
 – First strip written to disk 0
 – Consecutive strips written to different disk in the array in round-robin fashion
• Splits I/O workload across several disks
 – Best with many independent request streams
 – Avoids hotspots on a single disk
• Increases bandwidth available to/from the logical disk.
RAID 0

• Not really true RAID
 – No redundancy
• RAID 0 is less reliable than a SLED
 – Example: Assume MTBF of 10000 hours
 – MTBF of the array is MTBF divided by the number of disks
 • A 4 disk array would have an MTBF of 2500 hours

RAID 1

• Each strip is written to two disks
• Provides redundancy
 – If disk fails, we can use the copy
• Read performance can double
 – To fetch some blocks, we send half the requests to one disk set, and the other half to the other
• Write performance stays the same
 – A logical write results in two parallel writes to real disks

RAID 1

• Splits I/O workload across disks
• However
 – RAID 1 requires twice as many disks

RAID 2

• Makes more sense with more drives
 – 38 drives (32-bit words, with 6-bit ECC)
 – Still 19% storage overhead
• Disadvantage – needs synchronised spindles
• Not used

RAID 3

• Like RAID 2, but instead of ECC, use a single parity bit.
• Can only detect a single error, not correct it
 – Unless we know which bit is wrong
Quick Look At Parity

Disk 1 Disk 3 Parity
1 0 1 0

What is the lost bit?

RAID 3

- Disadvantage:
 - Synchronised spindles
 - Fast for reading contiguous data, but does not improve performance for independent small requests
 - Each drive seeks together

RAID 4

- Parity computed on a block basis
 - Block 0-3 XOR’d together to generate a parity block
 - P block(0) = Block0(0) ⊕ Block1(0) ⊕ Block2(0) ⊕ Block3(0)
 - Parity stored on an extra disk
 - Only needs one extra disk to implement
 - Can handle failure of a single disk

Examining the first byte in each block

Byte 0
Block 0 011010011
Block 1 111111010
Block 2 010000001
Block 3 001010100
Parity 111111110

What is the lost byte?

RAID 4

- Does not require synchronised spindles
- Can parallelised many independent request
- Small update are a problem
 - Requires two reads (old block + parity) and two writes (new block + parity) to update a disk block
 - Parity disk may become a bottleneck
RAID 5

- Like RAID 4, except we distribute the parity on all disks
- Avoids parity disk updates becoming a bottleneck
- Update performance still less than a single disk
- Reconstruction after failure is tricky

Summary

- RAID 0 provides performance improvements, but no availability improvement
- RAID 1 provides performance and availability improvements but expensive to implement (double the number of disks)
- RAID 5 is cheap (single extra disk), but has poor write update performance
- Others are not used

HP AutoRAID

- Active data used RAID 1
 - Good read and write performance
- Inactive data uses RAID 5
 - Rarely accessed, RAID 5 provides low storage overheads
- Adaptive Storage
 - Empty disk uses entire RAID 1; as disk fills, data incrementally converted to RAID 5 to increase available capacity
 - Data updates convert data back to RAID 1
- On-line array expansion
 - New disks can be added and system rebalances
 - New Disks can be an arbitrary size
- Active Hot Spare
 - The hot spare is used for mirroring until needed.
