I/O Management

Chapter 5

Operating System Design Issues

• Efficiency
 – Most I/O devices slow compared to main memory (and the CPU)
 • Use of multiprogramming allows for some processes to be waiting on I/O while another process executes
 • Often I/O still cannot keep up with processor speed
 • Swapping may be used to bring in additional ready processes
 – More I/O operations

• Optimise I/O efficiency – especially Disk & Network I/O

Operating System Design Issues

• The quest for generality/uniformity:
 – Ideally, handle all I/O devices in the same way
 • Both in the OS and in user applications
 – Problem:
 • Diversity of I/O devices
 • Especially, different access methods (random access versus stream-based) as well as vastly different data rates.
 • Generally, often compromises efficiency!
 – Hide most of the details of device I/O in lower-level routines so that processes and upper levels see devices in general terms such as read, write, open, close.

I/O Software Layers

Layers of the I/O Software System

Interrupt Handlers

• Interrupt handlers are best “hidden”
 • Can execute at almost any time
 – Raise (complex) concurrency issues in the kernel
 – Have similar problems within applications if interrupts are propagated to user-level code (via signals, upcalls).
 – Generally, systems are structured such that drivers starting an I/O operations block until interrupts notify them of completion
 – Example dev_read() waits on semaphore that the interrupt handler signals.

• Interrupt procedure does its task
 – then unblocks driver waiting on completion

Interrupt Handler Steps

• Steps must be performed in software upon occurrence of an interrupt
 – Save regs not already saved by hardware interrupt mechanism
 – (Optionally) set up context (address space) for interrupt service procedure
 • Typically, handler runs in the context of the currently running process
 – No expensive context switch
 – Set up stack for interrupt service procedure
 • Handler usually runs on the kernel stack of current process
 – implies handler cannot block as the unlucky current process will also be blocked might cause deadlock
 – Ack/Mask interrupt controller, reenable other interrupts
Interrupt Handler Steps

- Run interrupt service procedure
 - Acknowledges interrupt at device level
 - Figures out what caused the interrupt
 - Received a network packet, disk read finished, UART transmit queue empty
 - If needed, it signals blocked device driver
- In some cases, will have woken up a higher priority blocked thread
 - Choose newly woken thread to schedule next.
 - Set up MMU context for process to run next
- Load new/original process’ registers
- Re-enable interrupt; Start running the new process

Device Drivers

- Logical position of device drivers is shown here
- Drivers (originally) compiled into the kernel
 - Including OS/161
 - Device installers were technicians
 - Number and types of devices rarely changed
- Nowadays they are dynamically loaded when needed
 - Linux modules
 - Typical users (device installers) can’t build kernels
 - Number and types vary greatly
 - Even while OS is running (e.g. hot-plug USB devices)

Device Driver

- After issuing the command to the device, the device either
 - Completes immediately and the driver simply returns to the caller
 - Or, device must process the request and the driver usually blocks waiting for an I/O complete interrupt.
- Drivers are reentrant as they can be called by another process while a process is already blocked in the driver.
 - Reentrant: Code that can be executed by more than one thread (or CPU) at the same time
 - Manages concurrency using synch primitives

Device-Independent I/O Software

- There is commonality between drivers of similar classes
- Divide I/O software into device-dependent and device-independent I/O software
- Device independent software includes
 - Buffer or Buffer-cache management
 - Managing access to dedicated devices
 - Error reporting
Driver ⇔ Kernel Interface

• Major issue is uniform interfaces to devices and kernel
 – Uniform device interface for kernel code
 • Allows different devices to be used the same way
 • No need to rewrite filesystem to switch between SCSI, IDE or RAM disk
 • Allows internal changes to device driver with fear of breaking kernel code
 – Uniform kernel interface for device code
 • Drivers use a defined interface to kernel services (e.g. kmalloc, install IRQ handler, etc.)
 • Allows kernel to evolve without breaking existing drivers
 – Together both uniform interfaces avoid a lot of programming implementing new interfaces

Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Single buffering in the kernel followed by copying to user space
(d) Double buffering in the kernel

No Buffering

• Process must read/write a device a byte/word at a time
 – Each individual system call adds significant overhead
 – Process must wait until each I/O is complete
 • Blocking/interrupt/waking adds to overhead
 • Many short runs of a process is inefficient (poor CPU cache temporal locality)

User-level Buffering

• Process specifies a memory buffer that incoming data is placed in until it fills
 – Filling can be done by interrupt service routine
 – Only a single system call, and block/wakeup per data buffer
 • Much more efficient

User-level Buffering

• Issues
 – What happens if buffer is paged out to disk
 • Could lose data while buffer is paged in
 • Could lock buffer in memory (needed for DMA), however many processes doing I/O reduce RAM available for paging.
 Can cause deadlock as RAM is limited resource
 – Consider write case
 • When is buffer available for re-use?
 – Either process must block until potential slow device drains buffer
 – or deal with asynchronous signals indicating buffer drained

Single Buffer

• Operating system assigns a buffer in main memory for an I/O request
• Stream-oriented
 – Used a line at a time
 – User input from a terminal is one line at a time with carriage return signaling the end of the line
 – Output to the terminal is one line at a time
Single Buffer

• Block-oriented
 – Input transfers made to buffer
 – Block moved to user space when needed
 – Another block is moved into the buffer
• Read ahead

Single Buffer

• User process can process one block of data while next block is read in
• Swapping can occur since input is taking place in system memory, not user memory
• Operating system keeps track of assignment of system buffers to user processes

Single Buffer Speed Up

• Assume
 – T is transfer time from device
 – C is computation time to process incoming packet
 – M is time to copy kernel buffer to user buffer
• Computation and transfer can be done in parallel
• Speed up with buffering

$$\frac{T + C}{\max(T, C) + M}$$

Single Buffer

• What happens if kernel buffer is full, the user buffer is swapped out, and more data is received???
 – We start to lose characters or drop network packets

Double Buffer

• Use two system buffers instead of one
• A process can transfer data to or from one buffer while the operating system empties or fills the other buffer

Double Buffer Speed Up

• Computation and Memory copy can be done in parallel with transfer
• Speed up with double buffering

$$\frac{T + C}{\max(T, C + M)}$$

• Usually M is much less than T giving a favourable result
Double Buffer

• May be insufficient for really bursty traffic
 – Lots of application writes between long periods of computation
 – Long periods of application computation while receiving data
 – Might want to read-ahead more than a single block for disk

Circular Buffer

• More than two buffers are used
 • Each individual buffer is one unit in a circular buffer
 • Used when I/O operation must keep up with process

Important Note

• Notice that buffering, double buffering, and circular buffering are all
 Bounded-Buffer
 Producer-Consumer
 Problems

Is Buffering Always Good?

\[
\frac{T + C}{\max(T, C) + M} \quad \text{Single} \quad \frac{T + C}{\max(T, C + M)} \quad \text{Double}
\]

• Can \(M \) be similar or greater than \(C \) or \(T \)?

Buffering in Fast Networks

• Networking may involve many copies
• Copying reduces performance
 – Especially if copy costs are similar to or greater than computation or transfer costs
• Super-fast networks put significant effort into achieving zero-copy
• Buffering also increases latency

I/O Software Summary

Layers of the I/O system and the main functions of each layer