
Slide 1

Computer System Overview

Operating Systems

2004/S2

Slide 2

OPERATING SYSTEM

➜ Provides an abstraction layer over the concrete hardware

➜ Allocation of resources

• Processor

• Memory

• I/O devices

➜ Optimisation of resource utilisation

➜ Protection and Security

Understanding operating systems therefore requires some

basic understanding of computer systems

BASIC ELEMENTS 1

Slide 3

BASIC ELEMENTS

Simplified view:

➜ Processor

➜ Main Memory

• referred to as real memory or primary memory

• volatile

➜ I/O modules

• secondary memory devices

• communications equipment

• terminals

➜ System bus

• communication among processors, memory, and I/O

modules

Slide 4

TOP-LEVEL COMPONENTS

Monitor

Keyboard
Floppy

disk drive

Hard
disk drive

Hard
disk

controller

Floppy
disk

controller

Keyboard
controller

Video
controller

MemoryCPU

Bus

EXAMPLE: LARGE PENTIUM SYSTEM 2

Slide 5

EXAMPLE: LARGE PENTIUM SYSTEM

ISA
bridge

Modem

Mouse

PCI
bridgeCPU

Main
memory

SCSI USB

Local bus

Sound
card

Printer Available
ISA slot

ISA bus

IDE
disk

Available
PCI slot

Key-
board

Mon-
itor

Graphics
adaptor

Level 2
cache

Cache bus Memory bus

PCI bus

Slide 6

PROCESSOR

➜ Fetches intructions from memory, decodes and executes them

➜ Set of instructions is processor specific

➜ Instructions include:

✱ load value from memory into register

✱ combine operands from registers or memory

✱ branch

➜ All CPU’s have registers to store

✱ key variables and temporary results

✱ information related to control program execution

PROCESSOR REGISTERS 3

Slide 7

PROCESSOR REGISTERS

➜ Data and address registers

• Hold operands of most native machine instructions

• Enable programmer to minimize main-memory references by

optimizing register use

• user-visible

➜ Control and status registers

• Used by processor to control operating of the processor

• Used by operating-system routines to control the execution

of programs

• Sometimes not accessible by user (architecture dependent)

Slide 8

USER-VISIBLE REGISTERS

➜ May be referenced by machine language instructions

➜ Available to all programs - application programs and system

programs

➜ Types of registers

• Data

• Address

– Index

– Segment pointer

– Stack pointer

• Many architectures do not distinguish different types

CONTROL AND STATUS REGISTERS 4

Slide 9

CONTROL AND STATUS REGISTERS

➜ Program Counter (PC)

• Contains the address of an instruction to be fetched

➜ Instruction Register (IR)

• Contains the instruction most recently fetched

➜ Processor Status Word (PSW)

• condition codes

• interrupt enable/disable

• supervisor/user mode

Slide 10

CONTROL AND STATUS REGISTERS

➜ Condition Codes or Flags

• Bits set by the processor hardware as a result of operations

• Can be accessed by a program but not altered

• Examples

– positive/negative result

– zero

– overflow

INSTRUCTION FETCH AND EXECUTE 5

Slide 11

INSTRUCTION FETCH AND EXECUTE

➜ Program counter (PC) holds address of the instruction to be

fetched next

➜ The processor fetches the instruction from memory

➜ Program counter is incremented after each fetch

➜ Overlapped on modern architectures (pipelining)

START HALT
Fetch Next

Instruction

Fetch Cycle Execute Cycle

Execute

Instruction

Slide 12

INSTRUCTION REGISTER

➜ Fetched instruction is placed in the instruction register

➜ Types of instructions

• Processor-memory

– transfer data between processor and memory

• Processor-I/O

– data transferred to or from a peripheral device

• Data processing

– arithmetic or logic operation on data

• Control

– alter sequence of execution

INTERACTION BETWEEN PROCESSOR AND I/O DEVICES 6

Slide 13

INTERACTION BETWEEN PROCESSOR AND I/O DEVICES

➜ CPU much faster than I/O devices

- waiting for I/O operation to finish is inefficient

- not feasible for mouse, keyboard

➜ I/O module sends an interrupt to CPU to signal completion

➜ Interrupts normal sequence of execution

➜ Interrupts are also used to signal other events

Slide 14

CLASSES OF INTERRUPTS

➜ Asynchronous (external) events

• I/O

• Timer

• Hardware failure

➜ Synchronous interrupts or program exceptions

caused by program execution:

• arithmetic overflow

• division by zero

• execute illegal instruction

• reference outside user’s memory space

INTERRUPT CYCLE 7

Slide 15

INTERRUPT CYCLE

➀ Fetch next instruction

➁ Execute instruction

➂ Check for interrupt

➃ If no interrupts, fetch the next instruction

➄ If an interrupt is pending, divert to the interrupt handler

START

HALT

Fetch Next

Instruction

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts

Disabled

Interrupts

Enabled

Execute

Instruction

Check for

Interrupt;

Process Interrupt

Slide 16

INTERRUPT HANDLER

➜ A program that determines nature of the interrupt and performs

whatever actions are needed

➜ Control is transferred to this program by the hardware

➜ Generally part of the operating system

CONTROL FLOW WITH AND WITHOUT INTERRUPTS 8

Slide 17

CONTROL FLOW WITH AND WITHOUT INTERRUPTS

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

*

*

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

Slide 18

MULTIPLE INTERRUPTS

➜ Interrupt X occurs

➜ CPU disables all interrupts (only

those with lower priority)

➜ Interrupt handler may enable

interrupts

➜ Interrupt Y occurs

➜ Sequential or nested interrupt

handling

User Program

Interrupt

Handler X

Interrupt

Handler Y

(a) Sequential interrupt processing

User Program

Interrupt

Handler X

Interrupt

Handler Y

(b) Nested interrupt processing

MULTIPLE INTERRUPTS 9

Slide 19

MULTIPLE INTERRUPTS

Sequential Order:

➜ Disable interrupts so processor can complete task

➜ Interrupts remain pending until the processor enables interrupts

➜ After interrupt handler routine completes, the processor checks

for additional interrupts

Slide 20

MULTIPLE INTERRUPTS

Priorities:

➜ Higher priority interrupts cause lower-priority interrupts to wait

➜ Causes a lower-priority interrupt handler to be interrupted

➜ Example: when input arrives from communication line, it needs

to be absorbed quickly to make room for more input

MEMORY 10

Slide 21

MEMORY

Sould be

➜ fast

➜ abundant

➜ cheap

Unfortunately, that’s not the reality...

Solution:

• combination of fast & expensive and slow & cheap

memory

Slide 22

MEMORY HIERARCHY

Registers

Cache

Main memory

Magnetic tape

Magnetic disk

 1 nsec

 2 nsec

 10 nsec

 10 msec

100 sec

<1 KB

 1 MB

 64-512 MB

 5-50 GB

 20-100 GB

Typical capacityTypical access time

GOING DOWN THE H IERARCHY 11

Slide 23

GOING DOWN THE HIERARCHY

➜ Decreasing cost per bit

➜ Increasing capacity

➜ Increasing access time

➜ Decreasing frequency of access of the memory by the

processor

Locality of reference is essential!

Slide 24

DISK CACHE

➜ A portion of main memory used as a buffer to temporarily to

hold data for the disk

➜ Disk writes are clustered

➜ Some data written out may be referenced again. The data are

retrieved rapidly from the software cache instead of slowly from

disk

➜ Mostly transparent to operating system

CACHE MEMORY 12

Slide 25

CACHE MEMORY

CPU

Word Transfer

Block Transfer

Cache Main Memory

➜ Contains a portion of main memory

➜ Processor first checks cache

➜ If not found in cache, the block of memory containing the

needed information is moved to the cache

replacing some other data

Slide 26

CACHE/MAIN MEMORY SYSTEM

Memory

address

0

1

2

0

1

2

C — 1

3

2n — 1

Word

Length

Block Length

(K Words)

Block

(K words)

Block

Line

Number Tag Block

(b) Main memory

(a) Cache

¥

¥

¥

¥

¥

¥

CACHE DESIGN 13

Slide 27

CACHE DESIGN

➜ Cache size

• small caches have a significant impact on performance

➜ Line size (block size)

• the unit of data exchanged between cache and main

memory

• hit means the information was found in the cache

• larger line size ⇒ higher hit rate

until probability of using newly fetched data becomes less

than the probability of reusing data that has been moved

out of cache

Slide 28

CACHE DESIGN

➜ Mapping function

• determines which cache location the data will occupy

➜ Replacement algorithm

• determines which line to replace

• Least-Recently-Used (LRU) algorithm

➜ Write policy

• When the memory write operation takes place

• Can occur every time line is updated (write-through policy)

• Can occur only when line is replaced (write-back policy)

– Minimizes memory operations

– Leaves memory in an obsolete state

INTERACTION BETWEEN I/O DEVICES AND PROCESSOR 14

Slide 29

INTERACTION BETWEEN I/O DEVICES AND PROCESSOR

➜ Controller (chip or set of chips) provides a simple interface to OS

- often, embedded OS running on the controller

➜ Software that communicates with controller is called device

driver

➜ Most drivers run in kernel mode

➜ To put new driver into kernel, system may have to

- be relinked

- be rebooted

- dynamically load new driver

Slide 30

PROGRAMMED I/O (POLLING)

➜ I/O module performs the action, not the

processor

➜ Sets appropriate bits in the I/O status

register

➜ No interrupts occur

➜ Processor checks status until operation is

complete

• Wastes CPU cycles

Issue Read

command to

I/O module

Read status

of I/O

module

Check

status

Read word

from I/O

Module

Write word

into memory

Done?

Next instruction

(a) Programmed I/O

CPU → I/O

CPU → memory

I/O → CPU

I/O → CPU

Error

condition

Ready

Yes

No

Not

ready

INTERRUPT-DRIVEN I/O 15

Slide 31

INTERRUPT-DRIVEN I/O

➜ Processor is interrupted when I/O

module ready to exchange data

➜ Processor is free to do other work

➜ No needless waiting

➜ Consumes a lot of processor time

because every word read or written

passes through the processor

Ready

Yes

Issue Read

command to

I/O module

Do something

else

InterruptRead status

of I/O

module

Check

status

Read word

from I/O

Module

Write word

into memory

Done?

Next instruction

(b) Interrupt-driven I/O

CPU → I/O

CPU → memory

I/O → CPU

I/O → CPU

Error

condition

No

Slide 32

DIRECT MEMORY ACCESS

➜ Transfers a block of data

directly to or from memory

➜ An interrupt is sent when the

task is complete

➜ The processor is only involved

at the beginning and end of

the transfer

Do something

else

Interrupt

CPU → DMA

DMA → CPU

Issue Read

block command

to I/O module

Read status

of DMA

module

Next instruction

DIRECT MEMORY ACCESS 16

