
1COMP3231 04s1

File Management

COMP3231
Operating Systems

2004 S1

2COMP3231 04s1

References

• Textbook
– Tanenbaum, Chapter 6

3COMP3231 04s1

Files

• Named repository for data
– Potentially large amount of data

• Beyond that available via virtual memory
– (Except maybe 64-bit systems)

– File lifetime is independent of process lifetime
– Used to share data between processes

• Convenience
– Input to applications is by means of a file
– Output is saved in a file for long-term storage

4COMP3231 04s1

File Management
• File management system is considered

part of the operating system
– Manages a trusted, shared resource
– Bridges the gap between:

• low-level disk organisation (an array of blocks),
• and the user’s views (a stream or collection of

records)

• Also includes tools outside the kernel
– E.g. formatting, recovery, defrag, consistency,

and backup utilities.

5COMP3231 04s1

Objectives for a
File Management System

• Provide a convenient naming
system for files

• Provide uniform I/O support for
a variety of storage device
types
– Same file abstraction

• Provide a standardized set of
I/O interface routines
– Storage device drivers

interchangeable
• Guarantee that the data in the

file are valid

• Optimise performance
• Minimize or eliminate the

potential for lost or destroyed
data

• Provide I/O support and
access control for multiple
users

• Support system administration
(e.g., backups)

6COMP3231 04s1

File Names
• File system must provide a convenient naming

scheme
– Textual Names
– May have restrictions

• Only certain characters
– E.g. no ‘/’ characters

• Limited length
• Only certain format

– E.g DOS, 8 + 3

– Case (in)sensitive
– Names may obey conventions (.c files or C files)

• Interpreted by tools (UNIX)
• Interpreted by operating system (Windows)

7COMP3231 04s1

File Naming

Typical file extensions.

8COMP3231 04s1

File Structure
From OS’s perspective

• Three kinds of files
– byte sequence
– record sequence
– tree

9COMP3231 04s1

File Structure
• Stream of Bytes

– OS considers a file to
be unstructured

– Simplifies file
management for the
OS

– Applications can
impose their own
structure

– Used by UNIX,
Windows, most
modern OSes

• Records
– Collection of bytes

treated as a unit
• Example: employee

record

– Operations at the level
of records (read_rec,
write_rec)

– File is a collection of
similar records

– OS can optimise
operations on records

10COMP3231 04s1

File Structure
• Tree of Records

– Records of variable length
– Each has an associated key
– Record retrieval based on key
– Used on some data processing systems (mainframes)

11COMP3231 04s1

File Types
• Regular files
• Directories
• Device Files

– May be divided into
• Character Devices – stream of bytes
• Block Devices

• Some systems distinguish between regular file types
– ASCII text files, binary files

• At minimum, all systems recognise their own executable
file format
– May use a magic number

12COMP3231 04s1

File Types

(a) An executable file (b) An archive

13COMP3231 04s1

File Access
• Sequential access

– read all bytes/records from the beginning
– cannot jump around, could rewind or back up
– convenient when medium was mag tape

• Random access
– bytes/records read in any order
– essential for data base systems
– read can be …

• move file pointer (seek), then read or …
• each read specifies the file pointer

14COMP3231 04s1

File Attributes

Possible file attributes

15COMP3231 04s1

Typical File Operations
1. Create
2. Delete
3. Open
4. Close
5. Read
6. Write

7. Append
8. Seek
9. Get

attributes
10.Set

Attributes
11.Rename

16COMP3231 04s1

An Example Program Using File System Calls
(1/2)

17COMP3231 04s1

An Example Program Using File System Calls
(2/2)

18COMP3231 04s1

Memory-Mapped Files

(a) Segmented process before mapping files
into its address space

(b) Process after mapping
existing file abc into one segment
creating new segment for xyz

19COMP3231 04s1

7
6
5
4
3
2
1
0

Physical
Address Space

7
6
5

4

3

2

1
0

15
14
13
12
11
10
9
8

14

10

6

4

2

Disk

9 8

Memory
mapped

file

Memory-
mapped files
and paging

20COMP3231 04s1

Memory-Mapped Files
• Avoids translating from on-disk format to in-

memory format (and vice versa)
– Supports complex structures
– No read/write systems calls
– File simply (paged or swapped) to file system
– Unmap when finished

• Problems
– Determining actual file size after modification

• Round to nearest whole page (even if only 1 byte file)
– Care must be taken if file is shared,

• E.g. one process memory-mapped and one process
read/write syscalls

– Large files may not fit in the virtual address space

21COMP3231 04s1

File Organisation and Access
Programmer’s Perspective

• Given an operating system supporting
unstructured files that are a stream-of-bytes,
how should one organise the contents of the
files?

22COMP3231 04s1

File Organisation and Access
Programmer’s Perspective

• Performance
considerations:
– File system performance

affects overall system
performance

– Organisation of the file
system affects
performance

– File organisation (data
layout) affects performance

• depends on access
patterns

• Possible access patterns:
– Read the whole file
– Read individual blocks or

records from a file
– Read blocks or records

preceding or following the
current one

– Retrieve a set of records
– Write a whole file

sequentially
– Insert/delete/update

records in a file
– Update blocks in a file

23COMP3231 04s1

Criteria for File Organization
• Rapid access

– Needed when accessing a single record
– Not needed for batch mode

• Ease of update
– File on CD-ROM will not be updated, so this is not a concern

• Economy of storage
– Should be minimum redundancy in the data
– Redundancy can be used to speed access such as an index

• Simple maintenance
• Reliability

24COMP3231 04s1

Classic File Organisations

• There are many ways to organise a files
contents, here are just a few basic
methods
– Unstructured Stream (Pile)
– Sequential
– Indexed Sequential
– Direct or Hashed

25COMP3231 04s1

Unstructured Stream
• Data are collected in

the order they arrive
• Purpose is to

accumulate a mass of
data and save it

• Records may have
different fields

• No structure
• Record access is by

exhaustive search

26COMP3231 04s1

Unstructured Stream Performance

• Update
– Same size record -

okay
– Variable size - poor

• Retrieval
– Single record - poor
– Subset – poor
– Exhaustive - okay

27COMP3231 04s1

The Sequential File
• Fixed format used for

records
• Records are the same

length
• Field names and lengths

are attributes of the file
• One field is the key field

– Uniquely identifies the
record

– Records are stored in key
sequence

28COMP3231 04s1

Sequential File Update

• New records are placed in a log file or
transaction file

• Batch update is performed to merge the
log file with the master file

29COMP3231 04s1

The Sequential File
• Update

– Same size record -
good

– Variable size – No
• Retrieval

– Single record - poor
– Subset – poor
– Exhaustive - okay

30COMP3231 04s1

Indexed Sequential File
• Index provides a lookup

capability to quickly reach
the vicinity of the desired
record
– Contains key field and a

pointer to the main file
– Indexed is searched to find

highest key value that is
equal or less than the
desired key value

– Search continues in the
main file at the location
indicated by the pointer

Index

Key
File Ptr

Main
File

31COMP3231 04s1

Comparison of sequential and
indexed sequential lookup

• Example: a file contains 1 million records
• On average 500,00 accesses are required

to find a record in a sequential file
• If an index contains 1000 entries, it will

take on average 500 accesses to find the
key, followed by 500 accesses in the main
file. Now on average it is 1000 accesses

32COMP3231 04s1

Indexed Sequential File Update
• New records are added

to an overflow file
• Record in main file that

precedes it is updated
to contain a pointer to
the new record

• The overflow is merged
with the main file during
a batch update

Key
File Ptr

Main
File

Index

Overflow
File

33COMP3231 04s1

Indexed Sequential File
• Update

– Same size record -
good

– Variable size - No
• Retrieval

– Single record - good
– Subset – poor
– Exhaustive - okay

Index

Key
File Ptr

Main
File

34COMP3231 04s1

The Direct, or Hashed File
• Key field required for each

record
• Key maps directly or via a

hash mechanism to an
address within the file

• Directly access a block at
a the known address

HashKey

Hashed
File

35COMP3231 04s1

The Direct, or Hashed File

• Update
– Same size record - good
– Variable size – No

• Fixed sized records used

• Retrieval
– Single record - excellent
– Subset – poor
– Exhaustive - poor

HashKey

Hashed
File

36COMP3231 04s1

File Directories

• Contains information about files
– Attributes
– Location
– Ownership

• Directory itself is a file owned by the
operating system

• Provides mapping between file names and
the files themselves

37COMP3231 04s1

Simple Structure for a Directory
• List of entries, one for each file
• Sequential file with the name of

the file serving as the key
• Provides no help in organising the

files
• Forces user to be careful not to

use the same name for two
different files

38COMP3231 04s1

Two-level Scheme for a
Directory

• One directory for each user and a master directory
• Master directory contains entry for each user

– Provides access control information

• Each user directory is a simple list of files for that user
• Still provides no help in structuring collections of files

39COMP3231 04s1

Hierarchical, or Tree-Structured
Directory

• Master directory with user directories
underneath it

• Each user directory may have subdirectories
and files as entries

40COMP3231 04s1

Hierarchical, or Tree-Structured
Directory

• Files can be located by following a path
from the root, or master, directory down
various branches
– This is the absolute pathname for the file

• Can have several files with the same file
name as long as they have unique path
names

41COMP3231 04s1

42COMP3231 04s1

Current Working Directory

• Always specifying the absolute pathname
for a file is tedious!

• Introduce the idea of a working directory
– Files are referenced relative to the working

directory
• Example: cwd = /home/kevine

.profile = /home/kevine/.profile

43COMP3231 04s1

Relative and Absolute
Pathnames

• Absolute pathname
– A path specified from the root of the file system to the file

• A Relative pathname
– A pathname specified from the cwd

• Note: ‘.’ (dot) and ‘..’ (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine
../../etc/passwd
/etc/passwd
../kevine/../.././etc/passwd
Are all the same file

44COMP3231 04s1

Typical Directory Operations

1. Create
2. Delete
3. Opendir
4. Closedir

5. Readdir
6. Rename
7. Link
8. Unlink

45COMP3231 04s1

Nice properties of UNIX naming

• Simple, regular format
– Names referring to different servers, objects,

etc., have the same syntax.
• Regular tools can be used where specialised tools

would be otherwise needed.

• Location independent
– Objects can be distributed or migrated, and

continue with the same names.

46COMP3231 04s1

An example of a bad naming
convention

• From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BIN]CAT_V.EXE;13

47COMP3231 04s1

File Sharing

• In multiuser system, allow files to be
shared among users

• Two issues
– Access rights
– Management of simultaneous access

48COMP3231 04s1

Access Rights

• None
– User may not know of the existence of the file
– User is not allowed to read the user directory

that includes the file
• Knowledge

– User can only determine that the file exists
and who its owner is

49COMP3231 04s1

Access Rights

• Execution
– The user can load and execute a program but

cannot copy it
• Reading

– The user can read the file for any purpose,
including copying and execution

• Appending
– The user can add data to the file but cannot

modify or delete any of the file’s contents

50COMP3231 04s1

Access Rights
• Updating

– The user can modify, deleted, and add to the
file’s data. This includes creating the file,
rewriting it, and removing all or part of the
data

• Changing protection
– User can change access rights granted to

other users
• Deletion

– User can delete the file

51COMP3231 04s1

Access Rights

• Owners
– Has all rights previously listed
– May grant rights to others using the following

classes of users
• Specific user
• User groups
• All for public files

52COMP3231 04s1

Case Study:
UNIX Access Permissions

• First letter: file type
d for directories
- for regular files)

• Three user categories
user, group, and other

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..

drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup

-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

53COMP3231 04s1

UNIX Access Permissions

• Three access rights per category
read, write, and execute

total 1704
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

drwxrwxrwx
user group other

54COMP3231 04s1

UNIX Access Permissions

• Execute permission for directory?
– Permission to access files in the directory

• To list a directory requires read permissions
• What about drwxr-x—x?

total 1704
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

55COMP3231 04s1

UNIX Access Permissions
• Shortcoming

– The three user categories a rather coarse
• Problematic example

– Joe owns file foo.bar
– Joe wishes to keep his file private

• Inaccessible to the general public
– Joe wishes to give Bill read and write access
– Joe wishes to give Peter read-only access
– ????????

56COMP3231 04s1

Simultaneous Access
• Most Oses provide mechanisms for users to

manage concurrent access to files
– Example: lockf(), flock() system calls

• Typically
– User may lock entire file when it is to be updated
– User may lock the individual records during the

update
• Mutual exclusion and deadlock are issues for

shared access

57COMP3231 04s1

File Management II

COMP3231
Operating Systems

58COMP3231 04s1

7
6
5
4
3
2
1
0

3

2

Implementing Files

0

1

4

7

5

6

File

8 logical
blocks

Disk

???

59COMP3231 04s1

Trade-off in physical block size
• Sequential Access

– The larger the block size, the fewer I/O operation
required

• Random Access
– The larger the block size, the more unrelated data

loaded.
– Spatial locality of access improves the situation

• Choosing the an appropriate block size is a
compromise

60COMP3231 04s1

Example Block Size Trade-off

• Dark line (left hand scale) gives data rate of a disk
• Dotted line (right hand scale) gives disk space efficiency

– All files 2KB (an approximate median file size)

Block size

61COMP3231 04s1

File System Implementation

A possible file system layout

62COMP3231 04s1

Implementing Files
• The file system must keep track of

– which blocks belong to which files.
– in what order the blocks form the file
– which blocks are free for allocation

• Given a logical region of a file, the file system
must identify the corresponding block(s) on disk.
– Stored in file system metadata

• file allocation table (FAT), directory, I-node

• Creating and writing files allocates blocks on
disk
– How?

63COMP3231 04s1

Allocation Strategies
• Preallocation

– Need the maximum size for the file at the time of
creation

– Difficult to reliably estimate the maximum potential
size of the file

– Tend to overestimated file size so as not to run out of
space

• Dynamic Allocation
– Allocated in portions as needed

64COMP3231 04s1

Portion Size
• Extremes

– Portion size = length of file (contiguous allocation)
– Portion size = block size

• Tradeoffs
– Contiguity increases performance for sequential operations
– Many small portions increase the size of the metadata

required to book-keep components of a file, free-space, etc.
– Fixed-sized portions simplify reallocation of space
– Variable-sized portions minimise internal fragmentation

losses

65COMP3231 04s1

Methods of File Allocation

• Contiguous allocation
– Single set of blocks is allocated to a file at the

time of creation
– Only a single entry in the directory entry

• Starting block and length of the file

• External fragmentation will occur

66COMP3231 04s1

directory

67COMP3231 04s1

• Eventually, we will need compaction to
reclaim unusable disk space.

68COMP3231 04s1

directory

69COMP3231 04s1

Methods of File Allocation
• Chained (or linked list) allocation
• Allocation on basis of individual block

– Each block contains a pointer to the next block in the chain
– Only single entry in a directory entry

• Starting block and length of file

• No external fragmentation
• Best for sequential files

– Poor for random access

• No accommodation of the principle of locality
– Blocks end up scattered across the disk

70COMP3231 04s1

directory

71COMP3231 04s1

• To improve performance, we can run a
defragmentation utility to consolidate files.

72COMP3231 04s1

directory

73COMP3231 04s1

Methods of File Allocation

• Indexed allocation
– File allocation table contains a separate one-

level index for each file
– The index has one entry for each portion

allocated to the file
– The file allocation table contains block

number for the index

74COMP3231 04s1

directory

75COMP3231 04s1

directory

76COMP3231 04s1

Indexed Allocation
• Supports both sequential and direct access to

the file
• Portions

– Block sized
• Eliminates external fragmentation

– Variable sized
• Improves contiguity
• Reduces index size

• Most common of the three forms of file allocation

77COMP3231 04s1

UNIX I-node

An example of indexed allocation

78COMP3231 04s1

Implementing Directories

• Simple fixed-sized directory entries
(a) disk addresses and attributes in directory entry

– DOS/Windows
(b) Directory in which each entry just refers to an i-node

– UNIX

79COMP3231 04s1

Fixed Size Directory Entries

• Either too small
– Example: DOS 8+3 characters

• Waste too much space
– Example: 255 characters per file name

80COMP3231 04s1

Implementing Directories

• Two ways of handling long file names in directory
– (a) In-line
– (b) In a heap

81COMP3231 04s1

Implementing Directories

• Free variable length entries can create
external fragmentation in directory blocks
– Can compact when block is in RAM

82COMP3231 04s1

Shared Files
Files shared under different names

File system containing a shared file

83COMP3231 04s1

Implementing Shared Files
• Copy entire directory entry (including file attributes)

– Updates to shared file not seen by all parties
– Not useful

• Keep attributes separate (in I-node) and create a new
entry (name) that points to the attributes (hard link)
– Updates visible
– If one link remove, the other remains (ownership is an issue)

• Create a special “LINK” file that contains the pathname
of the shared file (symbolic link, shortcut).
– File removal leaves dangling links
– Not as efficient to access
– Can point to names outside the particular file system
– Can transparently replace the file with another

84COMP3231 04s1

Shared Files

(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

85COMP3231 04s1

Free Disk Space Management

(a) Storing the free list on a linked list
(b) A bit map

86COMP3231 04s1

Bit Tables
• Individual bits in a bit vector flags used/free

blocks
• 16GB disk with 512-byte blocks 4MB table
• May be too large to hold in main memory
• Expensive to search

– But may use a two level table
• Concentrating (de)allocations in a portion of the

bitmap has desirable effect of concentrating
access

• Simple to find contiguous free space

87COMP3231 04s1

Free Block List

• List of all unallocated blocks
• Manage as LIFO or FIFO on disk with

ends in main memory
• Background jobs can re-order list for better

contiguity
• Store in free blocks themselves

– Does not reduce disk capacity

88COMP3231 04s1

Disk Space Management

(a) Almost-full block of pointers to free disk blocks in RAM
- three blocks of pointers on disk

(b) Result of freeing a 3-block file
(c) Alternative strategy for handling 3 free blocks

- shaded entries are pointers to free disk blocks

89COMP3231 04s1

Quotas

Quotas for keeping track of each user’s disk use

