
1

Introduction

Comp3231
Operating Systems
Kevin Elphinstone

2COMP3231 04s1

Course Outline

• Prerequisites
– COMP2011 Data Organisation
– COMP2021 Digital Systems Structure
– or the postgraduate equivalent

– You are expected to be competent
programmers!!!!

• We will be using the C programming language
– The dominant language for OS implementation.

3COMP3231 04s1

Lectures

• Wednesday, 2-4pm
• Thursday, 5-6pm

– All lectures are here (EE LG1)
– The lecture notes will be available on the

course web site
• Available prior to lectures, when possible.

– The lecture notes and textbook are NOT a
substitute for attending lectures.

4COMP3231 04s1

Tutorials

• Start in week 2
• A tutorial participation mark will contribute

to your final assessment.
– Participation means participation, NOT

attendance.
– Comp9201 students excluded

• You will only get participation marks in
your enrolled tutorial.

5COMP3231 04s1

Announcement

• We have added an extra tutorial on
Thursday at 10am.

• Consider moving if you can.

6COMP3231 04s1

Assignments
• Assignments form a substantial

component of your assessment.
• They are challenging!!!!

– Because operating systems are challenging
• We will be using OS/161,

– an educational operating system
– developed by the Systems Group At Harvard
– It contains roughly 20,000 lines of code and

comments

2

7COMP3231 04s1

Assignments
• Don’t under estimate the time needed to do the

assignments.
• If you start a couple days before they are due,

you will be late.
• To encourage you to start early,

– Bonus 10% of max mark of the assignment for
finishing a week early

– To iron out any potential problems with the spec, 5%
bonus for finishing within 48 hours of assignment
release.

– See course handout for exact details
• Read the fine print!!!!

8COMP3231 04s1

Assignments

• We usually offer advanced versions of the
assignments
– Available bonus marks are small compared to

amount of effort required.
– Student should do it for the challenge, not the

marks.
– Attempting the advanced component is not a

valid excuse for failure to complete the normal
component of the assignment

9COMP3231 04s1

Assignments

• Four assignments
– due roughly week 3, 6, 9,13

• The first one is trivial
– It’s a warm up to have you familiarize yourself

with the environment and easy marks.
– Do not use it as a gauge for judging the

difficulty of the following assignments.

10COMP3231 04s1

Assignments

• Late penalty
– 4% of total assignment value per day

• Assignment is worth 20%
• You get 18, and are 2 days late
• Final mark = 18 – (20*0.04*2) = 16 (16.4)

• Assignments are only accepted up to one
week late. 8+ days = 0

11COMP3231 04s1

Assignments

• To help you with the assignments
– We dedicate a tutorial per-assignment to

discuss issues related to the assignment
– We provide labs for the first few weeks to

ease the learning curve.
• Details soon
• Wed 4-7pm is the most likely candidate.

12COMP3231 04s1

Plagiarism
• We take cheating seriously!!!
• Penalties include

– Copying of code: 0 FL
– Help with coding: negative half the assignment’s max

marks
– Originator of a plagiarised solution: 0 for the particular

assignment
– Team work: 0 for the particular assignments

3

13COMP3231 04s1

Cheating Statistics

Session 1998/S1 1999/S1 2000/S1 2001/S1 2001/S2 2002/S1 2002/S2 2003/S1 2003/S2
enrolment 178 410 320 300 107 298 156 333 133
suspected
cheaters 10(6%) 26(6%) 22(7%) 26(9%) 20(19%) 15(5%) ???(?%) 13 (4%) ???(?%)

full penalties 2* 6* 9* 14* 10 9 5 2 1
reduced
penalties 7 15 7 7 5 4 2 2 9
cheaters

failed 4 10 16 16 10 12 5 4 ?
cheaters

suspended 0 0 1 0 0 1 0 0 0

*Note: Full penalty 0 FL not applied prior to 2001/S1
14COMP3231 04s1

Exams

• There is NO mid-session
• The final written exam is 2 hours
• Supplementary exams are oral.

– Supplementaries are available according to
school policy, not as a second chance.

15COMP3231 04s1

Assessment
• Exam Mark

Component
– Max mark of 100

• Based solely on the
final exam

• Class Mark
Component
– Max mark of 100

• 10% tutorial
participation

• 90% Assignments

16COMP3231 04s1

Assessment

• The final assessment is the harmonic
mean of the exam and class component.

• If C>= 40, and E >= 40

CE
ECM
+

=
2

17COMP3231 04s1

Assessment

• If C < 40 or E < 40

+
=

CE
ECM 2,44min

19COMP3231 04s1

Harmonic Mean
Harmonic Mean (Class Mark = 80)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Exam Mark

Fi
na

l M
ar

k

Harmonic
Arithmetic

4

20COMP3231 04s1

Harmonic Mean
Harmonic Mean (Class Mark = 100 - Exam Mark)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Exam Mark

Fi
na

l M
ar

k

Harmonic
Arithmetic

21COMP3231 04s1

Assessment

• You need to perform reasonably
consistently in both exam and class
components.

• Harmonic mean only has significant effect
with significant variation.

22COMP3231 04s1

Textbook
• Andrew Tanenbaum,

Modern Operating
Systems, 2nd Edition,
Prentice Hall

23COMP3231 04s1

References
• A. Silberschatz and P.B. Galvin, Operating System

Concepts, 6th ed., Addison Wesley (2001)
• William Stallings, Operating Systems: Internals and

Design Principles, 4th edition, 2001, Prentice Hall.
• A. Tannenbaum, A. Woodhull, Operating Systems--

Design and Implementation, Prentice Hall, ???
• John O'Gorman, Operating Systems, MacMillan, 2000
• Uresh Vahalla, UNIX Internals: The New Frontiers,

Prentice Hall, 1996
• McKusick et al., The Design and Implementation of the

4.4 BSD Operating System, Addison Wesley, 1996

24COMP3231 04s1

Consultations/Questions
• Email your questions to

cs3231@cse.unsw.edu.au
– Expect a 24 hr turn-around time.

• We reserve the right to ignore email sent directly to
us.

• Consultation Times
– Kevin Elphinstone: Tuesday 10-11am, venue

TBA
• Please phone me if I’m not there.

– Cameron Stone: TBA, venue TBA

Introduction to Operating
Systems

Chapter 1 – 1.3

5

26COMP3231 04s1

What is an Operating System?

27COMP3231 04s1

28COMP3231 04s1

Viewing the Operating System
as an Abstract Machine

• Extends the basic hardware with added
functionality

• Provides high-level abstractions
– More programmer friendly
– Common core for all applications

• It hides the details of the hardware
– Makes application code portable

29COMP3231 04s1

UsersDisk

Memory

CPU

Network

Bandwidth

30COMP3231 04s1

Viewing the Operating System
as a Resource Manager

• Responsible for allocating resources to
users and processes

• Must ensure
– No Starvation
– Progress
– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair
share; limits (quotas), etc…

– Overall, that the system is efficiently used
31COMP3231 04s1

Viewing the Operating System
as the Privileged Component

Operating System

Applications Applications

ApplicationsRequests

(System Calls)

Privileged Mode

User Mode

6

32COMP3231 04s1

The Operating System is
Privileged

• Applications should not be able to interfere or
bypass the operating system
– OS can enforce the “extend machine”
– OS can enforce is resource allocation policies
– Prevent applications from interfering with each other

• Note: Some Embedded OSs have no privileged
component, e.g. PalmOS
– Can implement OS functionality, but cannot enforce it.

33COMP3231 04s1

Why Study Operating Systems?
• There are many interesting problems in

operating systems.
• For a complete, top-to-bottom view of a

system.
• Understand performance implications of

application behaviour.
• Understanding and programming large,

complex, software systems is a good skill
to acquire.

34COMP3231 04s1

(A brief) Operating System
History

• Largely parallels hardware
development

• First Generation machines
– Vacuum tubes
– Plug boards

• Programming via wiring
• Users were simultaneously

designers, engineers, and
programmers

• “single user”
• difficult to debug (hardware)

– No Operating System

35COMP3231 04s1

Second Generation Machines
Batch Systems

• IBM 7094
– 0.35 MIPS, 32K x 36-bit

memory
– 3.5 million dollars

• Batching used to more
efficiently use the
hardware
– Share machine amongst

many users
– One at a time
– Debugging a pain

• Drink coffee until jobs
finished

36COMP3231 04s1

Batch System
Operating Systems

• Sometimes called “resident job monitor”
• Managed the Hardware
• Simple Job Control Language (JCL)

– Load compiler
– Compile job
– Run job
– End job

• No resource allocation issues
– “one user”

37COMP3231 04s1

Problem: Keeping Batch
Systems Busy

• Reading tapes or punch cards was time
consuming

• Expensive CPU was idle waiting for input

7

38COMP3231 04s1

Third Generation Systems -
Multiprogramming

• Divided memory among several
loaded jobs

• While one job is loading, CPU
works on another

• With enough jobs, CPU 100%
busy

• Needs special hardware to
isolate memory partitions from
each other
– This hardware was notably absent

on early 2nd gen. batch systems

Job 1

OS

Job 3

Job 2

Memory

39COMP3231 04s1

Multiprogramming Example

40COMP3231 04s1

Job turn-around time was still
an issue.

• Batch systems were well suited to
– Scientific calcs
– Data processing

• For programmers, debugging was much
easier on older first gen. machines as the
programmer had the machine to himself.

• Word processing on a batch system?

41COMP3231 04s1

Time sharing
• Each user had his/her own terminal

connected to the machine
• All user’s jobs were multiprogrammed

– Regularly switch between each job
– Do it fast

• Gives the illusion that the programmer has
the machine to himself

• Early examples: Compatible Time Sharing
System (CTSS), MULTICS

42COMP3231 04s1

An then…
• Further developments (hardware and software)

resulted in improved techniques, concepts, and
operating systems…..
– CAP, Hydra, Mach, UNIX V6, BSD UNIX, THE, Thoth,

Sprite, Accent, UNIX SysV, Linux, EROS, KeyKOS,
OS/360, VMS, HPUX, Apollo Domain, Nemesis, L3,
L4, CP/M, DOS, Exo-kernel, Angel, Mungi, BE OS,
Cache Kernel, Choices, V, Inferno, Grasshopper,
MOSIX, Opal, SPIN, VINO, OS9, Plan/9, QNX,
Synthetix, Tornado, x-kernel, VxWorks, Solaris……….

43COMP3231 04s1

The Advent of the PC

• Large Scale Integration (LSI) made small,
fast(-ish), cheap computers possible

• OSs followed a similar path as with the
mainframes
– Simple “single-user” systems (DOS)
– Multiprogramming without protection, (80286

era, Window 3.1, 95, 98, ME, etc…)
– “Real” operating systems (UNIX, WinNT, etc..)

8

44COMP3231 04s1

Operating System Time Line

Computer Hardware Review

Chapter 1.4

46COMP3231 04s1

Operating Systems
• Exploit the hardware available
• Provide a set of high-level services that

represent or are implemented by the
hardware.

• Manages the hardware reliably and
efficiently

• Understanding operating systems requires
a basic understanding of the underlying
hardware

47COMP3231 04s1

Basic Computer Elements

48COMP3231 04s1

Basic Computer Elements
• CPU

– Performs computations
– Load data to/from memory via system bus

• Device controllers
– Control operation of their particular device
– Operate in parallel with CPU
– Can also load/store to memory (Direct Memory Access, DMA)
– Control register appear as memory locations to CPU

• Or I/O ports
– Signal the CPU with “interrupts”

• Memory Controller
– Responsible for refreshing dynamic RAM
– Arbitrating access between different devices and CPU

49COMP3231 04s1

The real world is logically
similar, but a little more complex

9

50COMP3231 04s1

A Simple Model of CPU
Computation

• The fetch-execute cycle

51COMP3231 04s1

A Simple Model of CPU
Computation

• Stack Pointer
• Status Register

– Condition codes
• Positive result
• Zero result
• Negative result

• General Purpose Registers
– Holds operands of most

instructions
– Enables programmers to

minimise memory references.

PC: 0x0300

R1

SP: 0xcbf3
Status

Rn

CPU Registers

52COMP3231 04s1

A Simple Model of CPU
Computation

• The fetch-execute cycle
– Load memory contents from

address in program counter (PC)
• The instruction

– Execute the instruction
– Increment PC
– Repeat

PC: 0x0300

R1

SP: 0xcbf3
Status

Rn

CPU Registers

53COMP3231 04s1

Privileged-mode Operation
• To protect operating system

execution, two or more CPU
modes of operation exist
– Privileged mode (system-, kernel-

mode)
• All instructions and registers are

available
– User-mode

• Uses ‘safe’ subset of the instruction
set

– E.g. no disable interrupts instruction
• Only ‘safe’ registers are accessible

PC: 0x0300

R1

SP: 0xcbf3
Status

Rn

CPU Registers

Interrupt Mask
Exception Type

Others
MMU regs

54COMP3231 04s1

‘Safe’ registers and instructions

• Registers and instructions are safe if
– Only affect the state of the application itself
– They cannot be used to uncontrollably

interfere with
• The operating system
• Other applications

– They cannot be used to violate a correctly
implemented operating system policy.

55COMP3231 04s1

Privileged-mode Operation

• The accessibility of
addresses with an
address space
changes depending on
operating mode
– To protect kernel code

and data Accessible to
User- and

Kernel-mode

Address Space

Accessible only
to

Kernel-mode

0x00000000

0xFFFFFFFF

0x80000000

10

56COMP3231 04s1

I/O and Interrupts
• I/O events (keyboard, mouse, incoming network

packets) happen at unpredictable times
• Direct memory access (DMA)

– I/O exchanges occur directly with memory
– Processor directs I/O controller to read/write to

memory
– Relieves the processor of the responsibility for data

transfer
– Processor free to do other things

• How does the CPU know when to service an I/O
event?

57COMP3231 04s1

Interrupts
• An interruption of the normal sequence of

execution
• A suspension of processing caused by an event

external to that processing, and performed in
such a way that the processing can be resumed.

• Improves processing efficiency
– Allows the processor to execute other instructions

while an I/O operation is in progress
– Avoids unnecessary completion checking (polling)

58COMP3231 04s1

Interrupt Cycle
• Processor checks for interrupts
• If no interrupts, fetch the next instruction
• If an interrupt is pending, divert to the interrupt

handler

59COMP3231 04s1

Classes of Interrupts
• Program exceptions

(also called synchronous interrupts)
– Arithmetic overflow
– Division by zero
– Executing an illegal/privileged instruction
– Reference outside user’s memory space.

• Asynchronous (external) events
– Timer
– I/O
– Hardware or power failure

60COMP3231 04s1

Interrupt Handler

• A program that determines the nature of
the interrupt and performs whatever
actions are needed.

• Control is transferred to the handler by
hardware.

• The handler is generally part of the
operating system.

61COMP3231 04s1

Simple Interrupt Processing
Device controller

issues an interrupt

Processor finishes
current instruction

and changes to
kernel mode

Processor masks
interrupts and

transfers flow of
control (new PC)

Kernel SP loaded
user SP & PC pushed

on kernel stack

Remainder of user
state is saved

Interrupt is processed
including

acknowledging
the interrupt at the

device level

User state is restored User SP & PC
loaded from
kernel stack

Processor unmasks
interrupts and returns

to user mode.

SoftwareHardware Hardware

11

62COMP3231 04s1

Multiple Interrupts

• Sequential interrupts
– Processor ignores any

new interrupt signals
– Interrupts remain

pending until current
interrupt completes

– Upon completion,
processor checks for
additional interrupts

63COMP3231 04s1

Multiple Interrupts
• Prioritised (nested)

interrupts
– Processor ignores any

new lower-priority
interrupt signals

– New higher-priority
interrupts interrupt the
current interrupt handler

– Example: when input
arrive from a
communication line, it
needs to be absorbed
quickly to make room for
more input

64COMP3231 04s1

• Also called polling, or busy
waiting

• I/O module (controller) performs
the action, not the processor

• Sets appropriate bits in the I/O
status register

• No interrupts occur
• Processor checks status until

operation is complete
– Wastes CPU cycles

Programmed I/O

65COMP3231 04s1

Interrupt-Driven I/O
• Processor is interrupted when I/O

module (controller) ready to
exchange data

• Processor is free to do other work
• No needless waiting
• Consumes a lot of processor time

because every word read or
written passes through the
processor

66COMP3231 04s1

Direct Memory Access

• Transfers a block of data
directly to or from memory

• An interrupt is sent when
the task is complete

• The processor is only
involved at the beginning
and end of the transfer

67COMP3231 04s1

Multiprogramming (Multitasking)

• Processor has more that one program to
execute.
– Some tasks waiting for I/O to complete
– Some tasks ready to run, but not running

• Interrupt handler can switch to other tasks
when they become runnable

• Regular timer interrupts can be used for
timesharing

12

68COMP3231 04s1

Memory Hierarchy

• Going down the
hierarchy
– Decreasing cost per bit
– Increasing capacity
– Increasing access time
– Decreasing frequency

of access to the
memory by the
processor

• Hopefully
• Principle of locality!!!!!

69COMP3231 04s1

Memory Hierarchy

• Rough approximation of memory hierarchy

70COMP3231 04s1

Cache

• Cache is fast memory placed between the CPU and main memory
– 1 to a few cycles access time compared to RAM access time of tens –

hundreds of cycles
• Holds recently used data or instructions to save memory accesses.
• Matches slow RAM access time to CPU speed if high hit rate
• �(90 %)
• Is hardware maintained and (mostly) transparent to software
• Sizes range from few kB to several MB.
• Usually a hierarchy of caches (2–5 levels), on- and off-chip.
• Block transfers can achieve higher transfer bandwidth than single

words.

CPU
Registers Cache Main Memory

Word Transfer Block Transfer

71COMP3231 04s1

Processor-DRAM Gap
(latency)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Slide originally from Dave Patterson, Parcon 98

72COMP3231 04s1

Cache size affect on performance

73COMP3231 04s1

Moving-Head Disk Mechanism

13

74COMP3231 04s1

Example Disk Access Times
• Disk can read/write data relatively fast

– 15,000 rpm drive - 80 MB/sec
– 1 KB block is read in 12 microseconds

• Access time dominated by time to locate the
head over data
– Rotational latency

• Half one rotation is 2 milliseconds
– Seek time

• Full inside to outside is 8 milliseconds
• Track to track .5 milliseconds

• 2 milliseconds is 164KB in “lost bandwidth”
75COMP3231 04s1

A Strategy: Avoid Waiting for Disk
Access

• Keep a subset of the disk’s data in
memory

⇒ Main memory acts as a cache of disk
contents

