COMP1511 PROGRAMMING FUNDAMENTALS

Revision: Linked Lists
the

- Quick revision of pointers, strings and arrays of struct
- Example Q1
- Linked Lists - some example problems revision

WHERE IS THE CODE?

[a回 Live lecture code can be found here:

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T3/LIVE/WEEK10/

COURSE FEEDBACK

my Experience surveys http://myexperience.unsw.edu.au/

REVISION CLASSES

PLEASE BOOK NOW!

Come along and work on revision problems with the support of our lovely tutors:

- ONLINE:
- Thursday 24th November 2-4pm
- FACE TO FACE in Sitar/Kora labs J17:
- Friday 25th November 2-4pm

Register: https://www.eventbrite.com.au/e/week-11-revision-classes-tickets-467976057987

LINKED LISTS

REVISION

- Can only access things sequentially by traversing the whole list
- Can add nodes in as needed (dynamic memory allocation) - by using malloc(sizeof(struct node))
- Can delete nodes as needed (by using free()
- Can check for memory leaks (has everything been freed?) by using: dcc --leakcheck
head is just a pointer (not a node!) that holds

End of the
the address of
the first node
list reached when you hit NULT

LINKED LISTS

REVISION

- Some special boundary conditions that you need to consider when you manipulate lists:
- Empty list
- List with 1 element
- Something happening at the beginning of the list
- Something happening at the end of the list
- Something will not occur, the item is not in the list (inserting after a number that doesn't exist etc)

Problem 1: Find the range (the difference between the biggest term and the smallest term) of a linked list
(see the working files for the details spec)

Problem 2: Concatenate two linked lists (join one linked list to another)

Problem 3: Given two linked lists, return the difference in the number of items in the two lists.

Problem 4: Insert a specified number into the middle of a linked list. Assume that there is always going to be an even number of numbers in the list before insertion.

Did you enjoy your first taste of programming?

000
Problem 5: Count all the elements in the linked list that are divisible by 6 and output the count.

Problem 6: Now delete the first node in the list that is divisible by 6

Thank you all so much for tuning in, for learning, for engaging, and I hope that you had an enjoyable intro to programming. Don't forget that Rome wasn't built in a day, and becoming a better programmer entails lots of practice!
I really appreciate the engagement that you have shown throughout the lectures, and I wish you all well in the final exam.

Have a wonderful *short* break, I hope you all get some proper down time.

Good Luck in the exam and for your future courses, and I may see some of you again in your later courses :)

WHAT DID WE LEARN TODAY?

REVISION:

LINKED LISTS
problem1.c
problem2.c
problem3.c
problem4.c
problem5.c
problemb.c

CONTENT RELATED QUESTIONS

Check out the forum

ADMIN QUESTIONS
cs1511@unsw.edu.au

